Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = precise photothermal therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1545 KiB  
Review
Nanomedicine as a Promising Treatment Approach for Obesity
by Abeer Alanazi, Alexander Craven, Spiridon V. Spirou, Maria Jose Santos-Martinez, Carlos Medina and Oliviero L. Gobbo
J. Nanotheranostics 2025, 6(3), 21; https://doi.org/10.3390/jnt6030021 - 5 Aug 2025
Viewed by 15
Abstract
Obesity is a chronic disorder associated with serious comorbidities such as diabetes, cardiovascular disease, and cancer. Conventional pharmacological treatments often suffer from limited efficacy, poor selectivity, and undesirable side effects, highlighting the need for more effective alternatives. Nanomedicine offers a promising approach by [...] Read more.
Obesity is a chronic disorder associated with serious comorbidities such as diabetes, cardiovascular disease, and cancer. Conventional pharmacological treatments often suffer from limited efficacy, poor selectivity, and undesirable side effects, highlighting the need for more effective alternatives. Nanomedicine offers a promising approach by overcoming these limitations through targeted drug delivery and enhanced therapeutic precision. This review examines key nanotechnological strategies in obesity management, including targeting white adipose tissue (WAT) and the vascular marker prohibitin, promoting WAT browning, and utilizing photothermal therapy and magnetic hyperthermia as nanotheranostic tools. We discuss major nanomedicine platforms—such as liposomes, nanoemulsions, and polymeric nanoparticles—alongside emerging applications in gene nanotherapy and herbal formulations. Potential toxicity concerns are also addressed. In summary, nanomedicine holds substantial potential to revolutionize obesity treatment through targeted, effective, and multifunctional therapeutic strategies. Full article
Show Figures

Figure 1

17 pages, 7485 KiB  
Review
Organic Afterglow Materials for Tumor Diagnosis and Therapy
by Xiayi Chen, Bin Li, Baoli Yin, Dong Xu and Youjuan Wang
Biosensors 2025, 15(8), 484; https://doi.org/10.3390/bios15080484 - 25 Jul 2025
Viewed by 447
Abstract
Organic afterglow nanoparticles (OANs) represent a unique class of optical materials capable of sustaining luminescence after excitation cessation. Owing to their exceptional design flexibility, tunable optical properties, and favorable biosafety profiles, OAN-based afterglow imaging has emerged as an advanced modality in tumor diagnosis [...] Read more.
Organic afterglow nanoparticles (OANs) represent a unique class of optical materials capable of sustaining luminescence after excitation cessation. Owing to their exceptional design flexibility, tunable optical properties, and favorable biosafety profiles, OAN-based afterglow imaging has emerged as an advanced modality in tumor diagnosis and therapy. These nanostructures demonstrate significant potential in guiding precision surgical interventions and real-time monitoring of tumor treatment, including photodynamic therapy, photothermal therapy, and immunotherapy. This review systematically analyzes and discusses the luminescence mechanisms of OANs under various excitation sources, with particular emphasis on recent developments in tumor detection and treatment. Additionally, we also discuss the current challenges and future perspectives of using these nanoparticles in this field. Full article
(This article belongs to the Special Issue Single-Molecule Biosensing: Recent Advances and Future Challenges)
Show Figures

Figure 1

13 pages, 2327 KiB  
Article
Biocompatible and Biodegradable Nanocarriers for Targeted Drug Delivery in Precision Medicine
by Xin Jin, Hu Qian, Yuxiang Xie, Changzhi Liu, Yuan Cheng, Jinsong Hou and Jiandong Zheng
Biomimetics 2025, 10(7), 430; https://doi.org/10.3390/biomimetics10070430 - 1 Jul 2025
Viewed by 346
Abstract
Despite the promising natural origin, biocompatibility, and biodegradability of chitosan for biomedical applications, developing biodegradable nanocarriers with controllable sizes and precise drug delivery targeting remains a significant challenge, hindering its integration into precision medicine. To address this, we synthesized gold nanocage (AuNCs)/poly-(N-isopropylacrylamide-co-carboxymethyl chitosan) [...] Read more.
Despite the promising natural origin, biocompatibility, and biodegradability of chitosan for biomedical applications, developing biodegradable nanocarriers with controllable sizes and precise drug delivery targeting remains a significant challenge, hindering its integration into precision medicine. To address this, we synthesized gold nanocage (AuNCs)/poly-(N-isopropylacrylamide-co-carboxymethyl chitosan) core-shell multifunctional composite nanospheres (CPAu) through a two-step one-pot method. The resulting CPAu nanospheres (~146 nm in size) exhibited multi-sensitive release properties, excellent biocompatibility, and potent photothermal therapy (PTT) activity. These nanospheres effectively encapsulated diverse antitumor drugs while demonstrating triple responsiveness (thermo-, reduction-, and PTT-triggered) for targeted tumor cell delivery, thereby achieving enhanced antitumor efficacy in combinatorial chemotherapy. Full article
Show Figures

Figure 1

35 pages, 5960 KiB  
Review
The Role of Perylene Diimide Dyes as Cellular Imaging Agents and for Enhancing Phototherapy Outcomes
by Panangattukara Prabhakaran Praveen Kumar
Colorants 2025, 4(3), 22; https://doi.org/10.3390/colorants4030022 - 1 Jul 2025
Viewed by 464
Abstract
Recent advancements in phototherapy have underscored the need for effective cellular imaging agents that can enhance therapeutic efficacy and precision. Perylene diimide (PDI) dyes, known for their unique optical properties and biocompatibility, have emerged as promising candidates in this domain. This review paper [...] Read more.
Recent advancements in phototherapy have underscored the need for effective cellular imaging agents that can enhance therapeutic efficacy and precision. Perylene diimide (PDI) dyes, known for their unique optical properties and biocompatibility, have emerged as promising candidates in this domain. This review paper provides a comprehensive analysis of the potential applications of PDI dyes in cellular imaging, specifically within the context of phototherapies. We explore the synthesis of these dyes, their photophysical characteristics, and mechanisms of cellular uptake. Moreover, this review highlights recent studies that demonstrate the effectiveness of PDI dyes in the real-time imaging of cellular processes and their synergistic effects in photodynamic therapy (PDT) and photothermal therapy (PTT). By evaluating various experimental approaches and their outcomes, we aim to elucidate the advantages of employing PDI dyes in clinical settings. The findings of this review suggest that perylene diimide dyes are not only capable of enhancing imaging contrast but also optimizing the therapeutic response in targeted phototherapy applications. Ultimately, this paper advocates for further research into the integration of PDI dyes in clinical practice, emphasizing their potential to significantly improve patient outcomes in cancer and other diseases requiring photoactive treatment modalities. Full article
Show Figures

Figure 1

12 pages, 3717 KiB  
Article
Sustainable Eco-Friendly Synthesis of Gold Nanoparticles Anchored on Graphene Oxide: Influence of Reductant Concentration on Nanoparticle Morphology
by Mariano Palomba, Gianfranco Carotenuto, Maria Grazia Raucci, Antonio Ruotolo and Angela Longo
Materials 2025, 18(13), 3003; https://doi.org/10.3390/ma18133003 - 25 Jun 2025
Viewed by 401
Abstract
Gold nanoparticles (AuNPs) anchored on graphene oxide (GO) have had a significant interest for their unique optical, electrical, and catalytic properties. This study presents an eco-friendly and sustainable synthesis of AuNPs on GO sheets using L-ascorbic acid (L-aa) as a green reducing agent [...] Read more.
Gold nanoparticles (AuNPs) anchored on graphene oxide (GO) have had a significant interest for their unique optical, electrical, and catalytic properties. This study presents an eco-friendly and sustainable synthesis of AuNPs on GO sheets using L-ascorbic acid (L-aa) as a green reducing agent and polyvinylpyrrolidone (PVP) as a stabilizer. The effect of reductant concentration on nanoparticle morphology was systematically investigated using UV–Visible spectroscopy and transmission electron microscopy (TEM). Results indicate the formation of AuNPs anchored on GO sheets and that an increase in the L-aa amount leads to both an increase in nanoparticle size and a morphological transition from spherical to irregular structures. The simultaneous nucleation and growth processes result in the formation of multiple families of nanostructures, as confirmed by TEM analysis, which reveals two distinct size distributions. At higher L-aa concentrations, the nanoparticles shape evolves into irregular morphologies due to selective growth along a preferential facet. This approach not only enables precise control over AuNP size and shape but also aligns with green chemistry principles, making it a promising route for applications in plasmonics, sensors, and photothermal therapy. Full article
Show Figures

Figure 1

31 pages, 2967 KiB  
Review
Advances in Photothermal Electrospinning: From Fiber Fabrication to Biomedical Application
by Jingwen Liu, Kai Wang, Fengying Jin, Yile Bin, Jiayi Li and Xiaofei Qian
Polymers 2025, 17(13), 1725; https://doi.org/10.3390/polym17131725 - 20 Jun 2025
Viewed by 637
Abstract
Photothermal electrospinning (PTE) represents an innovative fusion of electrospinning (ES) technology and photothermal therapy (PTT), where photothermal agents (PTAs) are incorporated into electrospun fibers to enable localized thermal effects under near-infrared (NIR) irradiation. The high surface area and tunable architecture of electrospun fibers [...] Read more.
Photothermal electrospinning (PTE) represents an innovative fusion of electrospinning (ES) technology and photothermal therapy (PTT), where photothermal agents (PTAs) are incorporated into electrospun fibers to enable localized thermal effects under near-infrared (NIR) irradiation. The high surface area and tunable architecture of electrospun fibers provide an ideal platform for efficient PTA loading, while the precise temperature control and therapeutic efficacy of PTT significantly broaden its biomedical applications, including antibacterial therapy, anticancer treatment, tissue regeneration, and drug delivery. This review mainly focuses on the emerging field of PTE. Following an overview of the basic PTE parts (ES, PTAs, and PTT), the fabrication strategies (one- and two-step methods) of photothermal electrospun fibers and their latest advancements in both antibacterial and non-antibacterial applications are summarized. Furthermore, the current challenges are deliberated at the end of this review. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

42 pages, 2266 KiB  
Review
Innovative Approaches in Cancer Treatment: Emphasizing the Role of Nanomaterials in Tyrosine Kinase Inhibition
by Antónia Kurillová, Libor Kvítek and Aleš Panáček
Pharmaceutics 2025, 17(6), 783; https://doi.org/10.3390/pharmaceutics17060783 - 16 Jun 2025
Viewed by 845
Abstract
Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge [...] Read more.
Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge technologies, structure-based drug design, and personalized medicine, is critical for developing effective therapies, specifically anticancer treatments. Background/Objectives: One of the key drivers of cancer at the cellular level is the abnormal activity of protein enzymes, specifically serine, threonine, or tyrosine residues, through a process known as phosphorylation. While tyrosine kinase-mediated phosphorylation constitutes a minor fraction of total cellular phosphorylation, its dysregulation is critically linked to carcinogenesis and tumor progression. Methods: Small-molecule inhibitors, such as imatinib or erlotinib, are designed to halt this process, restoring cellular equilibrium and offering targeted therapeutic approaches. However, challenges persist, including frequent drug resistance and severe side effects associated with these therapies. Nanomedicine offers a transformative potential to overcome these limitations. Results: By leveraging the unique properties of nanomaterials, it is possible to achieve precise drug delivery, enhance accumulation at target sites, and improve therapeutic efficacy. Examples include nanoparticle-based delivery systems for TKIs and the combination of nanomaterials with photothermal or photodynamic therapies to enhance treatment effectiveness. Combining nanomedicine with traditional treatments holds promise and perspective for synergistic and more effective cancer management. Conclusions: This review delves into recent advances in understanding tyrosine kinase activity, the mechanisms of their inhibition, and the innovative integration of nanomedicine to revolutionize cancer treatment strategies. Full article
Show Figures

Graphical abstract

33 pages, 4970 KiB  
Review
A Review on the Recent Advancements of Polymer-Modified Mesoporous Silica Nanoparticles for Drug Delivery Under Stimuli-Trigger
by Madhappan Santhamoorthy, Perumal Asaithambi, Vanaraj Ramkumar, Natarajan Elangovan, Ilaiyaraja Perumal and Seong Cheol Kim
Polymers 2025, 17(12), 1640; https://doi.org/10.3390/polym17121640 - 13 Jun 2025
Cited by 1 | Viewed by 1276
Abstract
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly [...] Read more.
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly under stimuli-responsive settings. Polymer-modified MSNs provide increased stability, longer circulation times, and, most crucially, the capacity to respond to diverse internal (pH, redox potential, enzymes, and temperature) and external (light, magnetic field, and ultrasonic) stimuli. These systems allow for the site-specific, on-demand release of therapeutic molecules, increasing treatment effectiveness while decreasing off-target effects. This review presents a comprehensive analysis of recent advancements in the development and application of polymer-functionalized MSNs for stimuli-triggered drug delivery. Key polymeric modifications, including thermoresponsive, pH-sensitive, redox-responsive, and enzyme-degradable systems, are discussed in terms of their design strategies and therapeutic outcomes. The synergistic use of dual or multiple stimuli-responsive polymers is also highlighted as a promising avenue to enhance precision and control in complex biological environments. Moreover, the integration of targeting ligands and stealth polymers such as PEG further enables selective tumor targeting and immune evasion, broadening the potential clinical applications of these nanocarriers. Recent progress in stimuli-triggered MSNs for combination therapies such as chemo-photothermal and chemo-photodynamic therapy is also covered, emphasizing how polymer modifications enhance responsiveness and therapeutic synergy. Finally, the review discusses current challenges, including scalability, biosafety, and regulatory considerations, and provides perspectives on future directions to bridge the gap between laboratory research and clinical translation. Full article
Show Figures

Figure 1

13 pages, 2448 KiB  
Article
NIR-Responsive Microbubble Delivery Platforms for Controlled Drug Release in Cancer Therapy
by Kibeom Kim, Been Yoon, Jungmin Lee, Gyuri Kim and Myoung-Hwan Park
Materials 2025, 18(12), 2725; https://doi.org/10.3390/ma18122725 - 10 Jun 2025
Viewed by 549
Abstract
Cancer remains one of the leading causes of death worldwide. Therefore, the continuous development of effective therapeutic strategies is necessary. Conventional anticancer chemotherapy has low bioavailability and poor systemic distribution, resulting in serious side effects and limited therapeutic efficacy. To address these limitations, [...] Read more.
Cancer remains one of the leading causes of death worldwide. Therefore, the continuous development of effective therapeutic strategies is necessary. Conventional anticancer chemotherapy has low bioavailability and poor systemic distribution, resulting in serious side effects and limited therapeutic efficacy. To address these limitations, drug delivery systems that respond to external stimuli have been developed to release drugs at specific sites. In this study, a phase transition-based bubble-mediated emulsion system was developed to enable near-infrared (NIR)-induced drug release. This system consists of an oil phase, 2H,3H-perfluoropentane (PFC), a fluorinated liquid gas that evaporates at a certain temperature, and encapsulated IR-780 and paclitaxel to maintain stable microbubbles. Under NIR irradiation, IR-780 exhibits a photothermal conversion effect, which increases the temperature. Above the critical temperature, PFC undergoes a phase transition into gas, forming gas bubbles. This phase transition leads to a rapid volume expansion, destroys the microbubble structure, and triggers drug release. The NIR-responsive microbubble system developed in this study facilitated targeted and selective drug release through precise temperature control using the photothermal effects and phase transition. This system provides a novel platform to improve the efficacy of cancer therapies. Full article
Show Figures

Figure 1

18 pages, 753 KiB  
Systematic Review
Graphene Quantum Dots for Glioblastoma Treatment and Detection–Systematic Review
by Kacper Kregielewski, Wiktoria Fraczek and Marta Grodzik
Molecules 2025, 30(12), 2483; https://doi.org/10.3390/molecules30122483 - 6 Jun 2025
Viewed by 716
Abstract
Glioblastoma, a highly malignant tumor, has a poor prognosis, necessitating the development of effective therapeutic strategies due to the low success rates of existing treatments. Graphene quantum dots (GQDs) have garnered attention for their unique physicochemical, electronic, and optical properties, along with biocompatibility [...] Read more.
Glioblastoma, a highly malignant tumor, has a poor prognosis, necessitating the development of effective therapeutic strategies due to the low success rates of existing treatments. Graphene quantum dots (GQDs) have garnered attention for their unique physicochemical, electronic, and optical properties, along with biocompatibility and the ability to cross the blood–brain barrier. This systematic review evaluates the current applications of GQDs in glioblastoma management. A search across databases such as PubMed, Science Direct, and Web of Science identified 658 papers, with 10 selected for this review based on the eligibility criteria. Most of the selected studies explored GQDs as pretreatment agents for therapies like chemotherapy and photothermal therapy, alongside their roles in biosensing, bioimaging, and drug delivery. Although research is still limited, this review highlights the significant potential of GQDs as multifunctional platforms in glioblastoma therapy. Further studies are essential to optimize these nanostructures for clinical applications, aiming to improve the precision and effectiveness of treatments while reducing systemic side effects. Full article
Show Figures

Figure 1

24 pages, 1538 KiB  
Review
Multifunctional Hydrogels for Advanced Cancer Treatment: Diagnostic Imaging and Therapeutic Modalities
by Kyung Kwan Lee, Kwangmo Go, Eonjin Lee, Hongki Kim, Seonwook Kim, Ji-Hyun Kim, Min Suk Chae and Jin-Oh Jeong
Gels 2025, 11(6), 426; https://doi.org/10.3390/gels11060426 - 1 Jun 2025
Cited by 2 | Viewed by 1303
Abstract
Multifunctional hydrogels represent an emerging technological advancement in cancer therapeutics, integrating diagnostic imaging capabilities with therapeutic modalities into comprehensive, multifunctional systems. These hydrogels exhibit exceptional biocompatibility, biodegradability, high water retention capacity, and tunable mechanical properties, enabling precise drug delivery while minimizing systemic side [...] Read more.
Multifunctional hydrogels represent an emerging technological advancement in cancer therapeutics, integrating diagnostic imaging capabilities with therapeutic modalities into comprehensive, multifunctional systems. These hydrogels exhibit exceptional biocompatibility, biodegradability, high water retention capacity, and tunable mechanical properties, enabling precise drug delivery while minimizing systemic side effects. Recent innovations in stimuli-responsive components facilitate intelligent, controlled drug release mechanisms triggered by various stimuli, including changes in pH, temperature, magnetic fields, and near-infrared irradiation. Incorporating diagnostic imaging agents, such as magnetic nanoparticles, fluorescent dyes, and radiolabeled isotopes, substantially improves tumor visualization and real-time therapeutic monitoring. Multifunctional hydrogels effectively integrate chemotherapy, photothermal therapy, photodynamic therapy, immunotherapy, and their synergistic combinations, demonstrating superior therapeutic outcomes compared to conventional methods. Particularly, injectable and in situ-forming hydrogels provide sustained local drug delivery postoperatively, effectively reducing tumor recurrence. However, challenges persist, including initial burst release, mechanical instability, regulatory barriers, and scalability concerns. Current research emphasizes advanced nanocomposite formulations, biofunctionalization strategies, and innovative manufacturing technologies like 3D bioprinting to facilitate clinical translation. This review comprehensively summarizes recent advancements, clinical applications, and future perspectives of multifunctional hydrogel systems for enhanced cancer treatment, underscoring their potential to revolutionize personalized oncology. Full article
Show Figures

Figure 1

29 pages, 4463 KiB  
Review
Magnetic 2D Transition-Metal-Based Nanomaterials in Biomedicine: Opportunities and Challenges in Cancer Therapy
by Sunčica Sukur and Václav Ranc
Materials 2025, 18(11), 2570; https://doi.org/10.3390/ma18112570 - 30 May 2025
Viewed by 630
Abstract
Severe systemic toxicity and poor targeting efficiency remain major limitations of traditional chemotherapy, emphasising the need for smarter drug delivery systems. Magnetic 2D transition-metal-based nanomaterials offer a promising approach, as they can be designed to combine high drug loading, precise targeting, and controlled [...] Read more.
Severe systemic toxicity and poor targeting efficiency remain major limitations of traditional chemotherapy, emphasising the need for smarter drug delivery systems. Magnetic 2D transition-metal-based nanomaterials offer a promising approach, as they can be designed to combine high drug loading, precise targeting, and controlled release. The key material classes—transition metal dichalcogenides, transition metal carbides/nitrides, transition metal oxides, and metal–organic frameworks—share important physicochemical properties. These include high surface-to-volume ratios, tuneable functionalities, and efficient intracellular uptake. Incorporating magnetic nanoparticles into these 2D structures broadens their potential beyond drug delivery, through enabling multimodal therapeutic strategies such as hyperthermia induction, real-time imaging, and photothermal or photodynamic therapy. This review outlines the potential of magnetic 2D transition-metal-based nanomaterials for biomedical applications by evaluating their therapeutic performance and biological response. In parallel, it offers a critical analysis of how differences in physicochemical properties influence their potential for specific cancer treatment applications, highlighting the most promising uses of each in bionanomedicine. Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery in Cancer Treatment)
Show Figures

Graphical abstract

23 pages, 8205 KiB  
Review
Application of NIR Fluorescent Materials in Imaging and Treatment of Tumors of Different Depths
by Mengdi Yu, Xuan Liu, Shuqiong Wang, Ziyao Qin, Beibei Hu, Zhiwei Li and Shiguo Sun
Nanomaterials 2025, 15(11), 811; https://doi.org/10.3390/nano15110811 - 28 May 2025
Viewed by 704
Abstract
Deep-seated tumors present significant diagnostic challenges and pose substantial mortality risks due to their occult anatomical localization. Current diagnostic paradigms predominantly depend on conventional imaging modalities; nevertheless, inherent technical constraints persistently compromise diagnostic precision and therapeutic efficacy. In contrast to traditional methodologies, near-infrared [...] Read more.
Deep-seated tumors present significant diagnostic challenges and pose substantial mortality risks due to their occult anatomical localization. Current diagnostic paradigms predominantly depend on conventional imaging modalities; nevertheless, inherent technical constraints persistently compromise diagnostic precision and therapeutic efficacy. In contrast to traditional methodologies, near-infrared (NIR; 700–1700 nm) fluorescence imaging (FLI) demonstrates superior sensitivity and spatiotemporal resolution, facilitating real-time intraoperative visualization and precision-guided surgical interventions. This paper explores fluorescence materials with tailored structures for tumors at different depths. We critically analyze optimization strategies for NIR fluorescence materials while evaluating their comparative advantages in stratified tissue imaging. This study presents a systematic evaluation of NIR fluorescence molecular tomography (FMT) systems and image reconstruction methodologies. These insights provide feasible ideas for detecting and treating tumors at varying depths in clinical practice. Furthermore, the application of NIR fluorescent materials in tumor diagnosis, navigation-guided surgery, and phototherapy (including photothermal, photodynamic, and immunomodulation therapies) is discussed. Finally, the prospects and challenges of clinical transformation are summarized. Full article
(This article belongs to the Special Issue Applications of Fluorescent Nanomaterials in Imaging and Detection)
Show Figures

Graphical abstract

25 pages, 814 KiB  
Review
Nanoparticles for Glioblastoma Treatment
by Dorota Bartusik-Aebisher, Kacper Rogóż and David Aebisher
Pharmaceutics 2025, 17(6), 688; https://doi.org/10.3390/pharmaceutics17060688 - 23 May 2025
Cited by 1 | Viewed by 811
Abstract
GBM is the most common and aggressive primary brain tumor in adults, characterized by low survival rates, high recurrence, and resistance to conventional therapies. Traditional diagnostic and therapeutic methods remain limited due to the difficulty in permeating the blood–brain barrier (BBB), diffuse tumor [...] Read more.
GBM is the most common and aggressive primary brain tumor in adults, characterized by low survival rates, high recurrence, and resistance to conventional therapies. Traditional diagnostic and therapeutic methods remain limited due to the difficulty in permeating the blood–brain barrier (BBB), diffuse tumor cell infiltration, and tumor heterogeneity. In recent years, nano-based technologies have emerged as innovative approaches for the detection and treatment of GBM. A wide variety of nanocarriers, including dendrimers, liposomes, metallic nanoparticles, carbon nanotubes, carbon dots, extracellular vesicles, and many more demonstrate the ability to cross the BBB, precisely deliver therapeutic agents, and enhance the effects of radiotherapy and immunotherapy. Surface functionalization, peptide modification, and cell membrane coating improve the targeting capabilities of nanostructures toward GBM cells and enable the exploitation of their photothermal, magnetic, and optical properties. Furthermore, the development of miRNA nanosponge systems offers the simultaneous inhibition of multiple tumor growth mechanisms and the modulation of the immunosuppressive tumor microenvironment. This article presents current advancements in nanotechnology for GBM, with a particular focus on the characteristics and advantages of specific groups of nanoparticles, including their role in radiosensitization. Full article
(This article belongs to the Special Issue Nano-Based Technology for Glioblastoma)
Show Figures

Figure 1

31 pages, 2880 KiB  
Review
Advances in Photothermal Therapy for Oral Cancer
by Jian Liang, Pei Wang, Yanfang Lin, Ao Jia, Fei Tong and Zhihua Li
Int. J. Mol. Sci. 2025, 26(9), 4344; https://doi.org/10.3390/ijms26094344 - 2 May 2025
Cited by 1 | Viewed by 908
Abstract
Oral cancer represents a critical global health issue, where traditional treatment modalities are often characterized by considerable adverse effects and suboptimal effectiveness. Photothermal therapy (PTT) offers an innovative method for tumor treatment, leveraging photothermal agents to convert light into hyperthermia, ultimately leading to [...] Read more.
Oral cancer represents a critical global health issue, where traditional treatment modalities are often characterized by considerable adverse effects and suboptimal effectiveness. Photothermal therapy (PTT) offers an innovative method for tumor treatment, leveraging photothermal agents to convert light into hyperthermia, ultimately leading to tumor ablation. PTT offers unique advantages in treating oral cancer due to its superficial anatomical location and consequent accessibility to laser irradiation. PTT’s advantage is further enhanced by its capacity to facilitate drug release and promote tissue regeneration. Consequently, the application of PTT for oral cancer has garnered widespread interest and has undergone rapid development. This review outlines advances in PTT for oral cancer, emphasizing strategies to improve efficacy and combination therapy approaches. The key challenges, including temperature control and long-term biosafety, are discussed alongside future directions. The review also encompasses PTT’s role in managing oral potentially malignant disorders and postoperative defects, conditions intimately linked with oral cancer. We aim to provide guidance for emerging PTT research in oral cancer and to promote the development of precise and efficient treatment strategies. Full article
Show Figures

Figure 1

Back to TopTop