Advances in Photothermal Electrospinning: From Fiber Fabrication to Biomedical Application
Abstract
1. Introduction
2. Overview of Electrospinning
3. Overview of Photothermal Agents (PTAs) and Photothermal Therapy (PTT)
4. Fabrication Methods of Photothermal Electrospun Fibers
4.1. One-Step Method
4.2. Two-Step Method
5. Biomedical Applications of Photothermal Electrospun Fibers
5.1. Antibacterial Applications
Polymers | Photothermal Agents | Other Additives | Temperature Reached | Application Field | Ref. |
---|---|---|---|---|---|
PVA | Au@CD | - | About 50 °C | Wound healing | [100] |
CS/GA | GelMA@MXene | - | PTT: 50–52 °C MPTT: 40–42 °C | Wound healing | [101] |
PLA | MXene/ZIF-8 | - | Above 45 °C within 25 s | Wound healing Tumor therapy | [138] |
PVA/CS/HTCC | polyaniline (PANI) | S-Nitrosoglutathione (GSNO) | Approximately 58 °C within 30 s A stable plateau at 62 °C | Wound healing | [151] |
PVA | MoS2-LA-COS | - | 60.5 °C | Personal protective equipment | [152] |
PVA | MoS2-IR780 | - | 52.7 °C within 90 s | Antibacterial therapy | [139] |
PP (inner layer) PAN (outer layer) | PDA | - | Outer layer: 60 °C Inner layer: 30 °C | Wound healing | [153] |
PCL (inner layer) PCL (outer layer) | TA-Fe3+ | - | 40−50 °C within 10 min | Wound healing | [154] |
PCL | TA-Fe3+ | - | 41–45 °C within 10 min | Wound healing | [155] |
PCL | BP | AgNPs | 41 °C | Wound healing | [140] |
PCL/Gel | ZIF-8 | Ciprofloxacin hydrochloride (CIP) | 47.8 °C | Wound healing | [156] |
PCL | Mesoporous polydopamine (MPDA) | Sulfobetaine (SBMA) Polyethyleneimine 10,000 (PEI) | Increased 21.2 °C compared to original | Wound healing | [124] |
PVDF | UCNPs@TiO2@GO | - | 59.7 °C within 5 min | Wound healing | [137] |
CS/PVA | SNP-PB NPs | Type I collagen | About 75 °C | Wound healing | [157] |
PVA | SF/CuS NPs | - | 51.5 °C | Wound healing | [134] |
PLGA | MoS2@Pd | - | 57 °C | Wound healing | [133] |
PVA/PEO/CT/Chitin | Demineralized mussel shells (deMS) | - | 70–95 °C | Contact lenses | [158] |
Poly(3-hydroxybutyrate-co-3hydroxyvalerate) (PHBV) | Indocyanine green (ICG) | - | 65 °C | Face Masks | [159] |
PLLA | Ag NPs | Dexamethasone (Dex) | 51.9 °C | Bone infection treatment | [105] |
Hyaluronic acid derivative (HA-EDA) | GO | Ciprofloxacin (CPX) | 47 °C | Wound healing | [98] |
PLLA | NO@HKUST-1 | - | 42 °C | Wound healing | [149] |
PLLA/QCS | BP | Hemoglobin (Hb) | 40.1 ± 0.3 °C within 3 min | Wound healing | [130] |
PVDF/HFP | AIEgen TTVB | - | - | Personal protective equipment (PPE) | [136] |
PCL | AuNPs | - | - | Wound healing | [160] |
2-MI/PLA | Cur-ICG@ZIF-8 | - | 46 °C | Wound healing | [118] |
PLA | CNT@ZIF-8 | - | 45.7 °C within 100 s | Personal protective equipment | [128] |
PCL | uCNT@PDA | Cur | 52–115 °C (uCNT@PDA: 0.25% w/v-1.0% w/v) | Bacterial eradication | [161] |
PAN | AuNPs | - | 60 °C | Personal protective equipment Surgical face masks | [162] |
PLA | AgNWs | - | About 40 °C | Wound healing | [141] |
Thermoplastic polyurethane (TPU) | EGaIn(liquid metal/Gallium (Ga)/Indium (In)/Tin (Sn)) | Cur-loaded LA nanoparticles | About 45 °C | Wound healing | [163] |
PLLA | PDA-Zn-Ag bimetallic coating | Hydroxyapatite nanowires (HANWs) | 53.5 °C | Wound healing | [143] |
PLLA | Reduced graphene oxide (rGO) | Calcium peroxide (CaO2) and catalase (CAT) | About 50–55 °C | Wound healing | [150] |
PAN/PEG | Cu2O/V2CTx | - | 60 °C | Wound healing | [164] |
PVA/CS | GO | LaCl3 | Over 160 °C within 15 s | Wound healing | [142] |
Polyurethane (PU) | TiO2/CNFs | Cellulose nano crystals (CNC) and polydimethylsiloxane (PDMS) | Above 50 °C | Biomedical application | [165] |
PLLA | PDA/CuNPs | - | 48.2 °C | Infectious bone defect treatment | [166] |
5.2. Non-Antibacterial Applications of Photothermal Electrospun Fibers
Polymers | Photothermal Agents | Other Additives | Ref. |
---|---|---|---|
PLA | Multi-walled carbon nanotubes (MWCNTs) | DOX | [174] |
PVA/CS | MoS2 | DOX | [184] |
Gelatin/PCL | CuS | Dihydromyricetin | [185] |
Redox-responsive Glutathione-extended polyurethane urea derivative (PolyCEGS) | AuNRs | PTX | [177] |
PCL/PDLLA | Copper silicate hollow microspheres (CSO HMSs) | Trametinib | [186] |
PCL | PDA | DOX | [114] |
PCFs/PBS/LA@ZIF-8 | GNRs | DOX | [187] |
Alginate-dopamine/PVA (Outer and inner layers) PLA/PCL (Middle layer) | PDA NPs | Docetaxel | [112] |
PLA/PCL/Gelatin | Prussian blue (PB) | Hydroxychloroquine sulfate (HCQ) | [188] |
PLGA/CS aerogel | MXene | DOX | [176] |
Polydioxanone (PDO) | PDA NPs | Bortezomib (BTZ) | [189] |
PLGA | Au NRs | DOX | [190] |
PCL/Gelatin | PDA NPs | DOX | [191] |
Poly (tetramethylene ether) glycol based-polyurethane (PTMG-PU) (core)/chitosan (shell) | GO/Au NRs | PTX | [110] |
PCL | Hydroxylated multi-walled carbon nanotubes (MWCNTsOH) | All-trans retinoic acid (ATRA) | [192] |
CS/PVA | Indocyanine green (ICG) | DOX | [193] |
PCL | gold nanocage (AuNC) | DOX/phase-changeable fatty acid | [111] |
PCL/PLGA | Pyrrole | DOX | [194] |
PCL | Polypyrrole (PPy) | PTX | [195] |
PCL | PDA | DOX | [114] |
Polyacrylonitrile (PAN)/polymethyl methacrylate (PMMA) | PCNFs | DOX | [196] |
PLGA/PLA-b-PEG | PEGylated gold nanorods (PEG-GNRs) | - | [197] |
Gelatin/PCL | Polyaniline nanoparticles | - | [198] |
PCL | GO | - | [122] |
SF/PLGA | SF-modified BP nanosheets (BP@SF) | - | [199] |
PLLA | PDA NPs | - | [113] |
PCL | Polypyrrole hollow fibers (PPy-HFs) | - | [200] |
PLLA | Bi2Se3 | - | [178] |
CS/PEO | CuSe NPs | - | [173] |
Gelatin/PCL | DOX-Cu9S5@mSiO2 | - | [201] |
Polymers | Photothermal Agents | Other Additives | Temperature Reached | Application Field | Ref. |
---|---|---|---|---|---|
PLA | CuS@BSA | - | 42 °C | Skin tissue regeneration | [103] |
PLLA/SF | Gold-polydopamine (PDA) blackspheres (AuPBs) | - | 35 °C | Neural tissue regeneration | [99] |
PCL | Ti3C2Tx MXene | - | - | Neural tissue regeneration | [183] |
PVP/PLA | GO | Urolithin A (UA) | 52.2 °C over 2 min 30 s | Bone tissue regeneration | [129] |
PCL | Nd@WH | - | 40.5 ± 0.5 °C after 1 min about 40 °C | Bone tissue regeneration | [104] |
PCL | MoS2 | - | 40.5 ± 0.5 °C | Guided bone regeneration | [182] |
PCL | BP NSs | Apt19S Lauric acid and stearic acid | around 40 °C | Bone fracture repair | [102] |
6. Challenges of Practical Applications
6.1. Material Selection
6.2. Industrial Production and Clinical Translation
6.3. Therapeutic Efficacy
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keirouz, A.; Wang, Z.; Reddy, V.S.; Nagy, Z.K.; Vass, P.; Buzgo, M.; Ramakrishna, S.; Radacsi, N. The history of electrospinning: Past, present, and future developments. Adv. Mater. Technol. 2023, 8, 2201723. [Google Scholar] [CrossRef]
- Tucker, N.; Stanger, J.J.; Staiger, M.P.; Razzaq, H.; Hofman, K. The history of the science and technology of electrospinning from 1600 to 1995. J. Eng. Fibers Fabr. 2012, 7, 63–73. [Google Scholar] [CrossRef]
- Uhljar, L.; Ambrus, R. Electrospinning of potential medical devices (wound dressings, tissue engineering scaffolds, face masks) and their regulatory approach. Pharmaceutics 2023, 15, 417. [Google Scholar] [CrossRef]
- Wang, X.; Ding, B.; Li, B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today 2013, 16, 229–241. [Google Scholar] [CrossRef]
- Liu, Z.; Ramakrishna, S.; Liu, X. Electrospinning and emerging healthcare and medicine possibilities. APL Bioeng. 2020, 4, 030901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Y.; Wang, P.; Zhang, H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr. Rev. Food Sci. Food Saf. 2020, 19, 479–502. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Xing, J.; Zhang, M.; Liu, X.; Wang, C.; Xu, N.; Xing, D. Multi-material electrospinning: From methods to biomedical applications. Mater. Today Bio. 2023, 21, 100710. [Google Scholar] [CrossRef]
- Abadi, B.; Goshtasbi, N.; Bolourian, S.; Tahsili, J.; Adeli-Sardou, M.; Forootanfar, H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front. Bioeng. Biotechnol. 2022, 10, 986975. [Google Scholar] [CrossRef]
- Chen, Z.; Guan, M.; Bian, Y.; Yin, X. Multifunctional electrospun nanofibers for biosensing and biomedical engineering applications. Biosensors 2023, 14, 13. [Google Scholar] [CrossRef]
- Madruga, L.Y.C.; Kipper, M.J. Expanding the repertoire of electrospinning: New and emerging biopolymers, techniques, and applications. Adv. Healthc. Mater. 2022, 11, e2101979. [Google Scholar] [CrossRef]
- He, L.; Di, D.; Chu, X.; Liu, X.; Wang, Z.; Lu, J.; Wang, S.; Zhao, Q. Photothermal antibacterial materials to promote wound healing. J. Control. Release 2023, 363, 180–200. [Google Scholar] [CrossRef]
- Estelrich, J.; Busquets, M.A. Iron oxide nanoparticles in photothermal therapy. Molecules 2018, 23, 1567. [Google Scholar] [CrossRef]
- Dediu, V.; Ghitman, J.; Gradisteanu Pircalabioru, G.; Chan, K.H.; Iliescu, F.S.; Iliescu, C. Trends in photothermal nanostructures for antimicrobial applications. Int. J. Mol. Sci. 2023, 24, 9375. [Google Scholar] [CrossRef]
- Li, C.; Cheng, Y.; Li, D.; An, Q.; Zhang, W.; Zhang, Y.; Fu, Y. Antitumor applications of photothermal agents and photothermal synergistic therapies. Int. J. Mol. Sci. 2022, 23, 7909. [Google Scholar] [CrossRef]
- Overchuk, M.; Weersink, R.A.; Wilson, B.C.; Zheng, G. Photodynamic and photothermal therapies: Synergy opportunities for nanomedicine. ACS Nano 2023, 17, 7979–8003. [Google Scholar] [CrossRef]
- Cui, X.; Ruan, Q.; Zhuo, X.; Xia, X.; Hu, J.; Fu, R.; Li, Y.; Wang, J.; Xu, H. Photothermal nanomaterials: A powerful light-to-heat converter. Chem. Rev. 2023, 123, 6891–6952. [Google Scholar] [CrossRef]
- Tang, R.J.; Ju, J.G.; Huang, Y.T.; Kang, W.M. A review: Electrospinning applied to solar interfacial evaporator. Sol. RRL 2023, 7, 2300382. [Google Scholar] [CrossRef]
- Li, D.M.; Cheng, Y.Y.; Luo, Y.X.; Teng, Y.Q.; Liu, Y.H.; Feng, L.B.; Wang, N.; Zhao, Y. Electrospun nanofiber materials for photothermal interfacial evaporation. Materials 2023, 16, 5676. [Google Scholar] [CrossRef]
- Keirouz, A.; Chung, M.; Kwon, J.; Fortunato, G.; Radacsi, N. 2d and 3d electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1626. [Google Scholar] [CrossRef]
- Hermosilla, J.; Pastene-Navarrete, E.; Acevedo, F. Electrospun fibers loaded with natural bioactive compounds as a biomedical system for skin burn treatment. A review. Pharmaceutics 2021, 13, 2054. [Google Scholar] [CrossRef]
- Chinnappan, B.A.; Krishnaswamy, M.; Xu, H.; Hoque, M.E. Electrospinning of biomedical nanofibers/nanomembranes: Effects of process parameters. Polymers 2022, 14, 3719. [Google Scholar] [CrossRef]
- Wang, M. Emerging multifunctional NIR photothermal therapy systems based on polypyrrole nanoparticles. Polymers 2016, 8, 373. [Google Scholar] [CrossRef]
- Barhoum, A.; Pal, K.; Rahier, H.; Uludag, H.; Kim, I.S.; Bechelany, M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today 2019, 17, 1–35. [Google Scholar] [CrossRef]
- Zhang, W.; Ronca, S.; Mele, E. Electrospun nanofibres containing antimicrobial plant extracts. Nanomaterials 2017, 7, 42. [Google Scholar] [CrossRef]
- Mo, X.; Sun, B.; Wu, T.; Li, D. Electrospun nanofibers for tissue engineering. In Electrospinning: Nanofabrication and Applications; William Andrew: Aberdeen, UK, 2019; pp. 719–734. [Google Scholar]
- Kurtz, I.S.; Schiffman, J.D. Current and emerging approaches to engineer antibacterial and antifouling electrospun nanofibers. Materials 2018, 11, 1059. [Google Scholar] [CrossRef]
- Agiba, A.M.; Elsayyad, N.; ElShagea, H.N.; Metwalli, M.A.; Mahmoudsalehi, A.O.; Beigi-Boroujeni, S.; Lozano, O.; Aguirre-Soto, A.; Arreola-Ramirez, J.L.; Segura-Medina, P.; et al. Advances in light-responsive smart multifunctional nanofibers: Implications for targeted drug delivery and cancer therapy. Pharmaceutics 2024, 16, 1017. [Google Scholar] [CrossRef]
- Zulkifli, M.Z.A.; Nordin, D.; Shaari, N.; Kamarudin, S.K. Overview of electrospinning for tissue engineering applications. Polymers 2023, 15, 2418. [Google Scholar] [CrossRef]
- Sofi, H.S.; Ashraf, R.; Khan, A.H.; Beigh, M.A.; Majeed, S.; Sheikh, F.A. Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 1102–1124. [Google Scholar] [CrossRef]
- Makarov, I.; Palchikova, E.; Vinogradov, M.; Golubev, Y.; Legkov, S.; Gromovykh, P.; Makarov, G.; Arkharova, N.; Karimov, D.; Gainutdinov, R. Characterization of structure and morphology of cellulose lyocell microfibers extracted from pan matrix. Polysaccharides 2025, 6, 10. [Google Scholar] [CrossRef]
- Kalantari, K.; Afifi, A.M.; Jahangirian, H.; Webster, T.J. Biomedical applications of chitosan electrospun nanofibers as a green polymer—Review. Carbohydr. Polym. 2019, 207, 588–600. [Google Scholar] [CrossRef]
- Miguel, S.P.; Figueira, D.R.; Simões, D.; Ribeiro, M.P.; Coutinho, P.; Ferreira, P.; Correia, I.J. Electrospun polymeric nanofibres as wound dressings: A review. Colloids Surf. B Biointerfaces 2018, 169, 60–71. [Google Scholar] [CrossRef]
- Cheng, J.; Jun, Y.; Qin, J.; Lee, S.H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 2017, 114, 121–143. [Google Scholar] [CrossRef]
- Owida, H.A.; Al-Nabulsi, J.I.; Alnaimat, F.; Al-Ayyad, M.; Turab, N.M.; Al Sharah, A.; Shakur, M. Recent applications of electrospun nanofibrous scaffold in tissue engineering. Appl. Bionics. Biomech. 2022, 2022, 1953861. [Google Scholar] [CrossRef]
- Refate, A.; Mohamed, Y.; Mohamed, M.; Sobhy, M.; Samhy, K.; Khaled, O.; Eidaroos, K.; Batikh, H.; El-Kashif, E.; El-Khatib, S.; et al. Influence of electrospinning parameters on biopolymers nanofibers, with emphasis on cellulose & chitosan. Heliyon 2023, 9, e17051. [Google Scholar] [CrossRef]
- Han, W.; Wang, L.; Li, Q.; Ma, B.; He, C.; Guo, X.; Nie, J.; Ma, G. A review: Current status and emerging developments on natural polymer-based electrospun fibers. Macromol. Rapid Commun. 2022, 43, e2200456. [Google Scholar] [CrossRef]
- Kalluri, L.; Satpathy, M.; Duan, Y. Effect of electrospinning parameters on the fiber diameter and morphology of PLGA nanofibers. Dent. Oral Biol. Craniofacial Res. 2021, 4, 1–7. [Google Scholar] [CrossRef]
- Liu, X.; Aho, J.; Baldursdottir, S.; Bohr, A.; Qu, H.; Christensen, L.P.; Rantanen, J.; Yang, M. The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats. Int. J. Pharm. 2017, 529, 371–380. [Google Scholar] [CrossRef]
- Dokuchaeva, A.A.; Timchenko, T.P.; Karpova, E.V.; Vladimirov, S.V.; Soynov, I.A.; Zhuravleva, I.Y. Effects of electrospinning parameter adjustment on the mechanical behavior of poly-ε-caprolactone vascular scaffolds. Polymers 2022, 14, 349. [Google Scholar] [CrossRef]
- Laramee, A.W.; Lanthier, C.; Pellerin, C. Electrospinning of highly crystalline polymers for strongly oriented fibers. ACS Appl. Polym. Mater. 2020, 2, 5025–5032. [Google Scholar] [CrossRef]
- Yao, J.; Jin, J.; Lepore, E.; Pugno, N.M.; Bastiaansen, C.W.M.; Peijs, T. Electrospinning of p-aramid fibers. Macromol. Mater. Eng. 2015, 300, 1238–1245. [Google Scholar] [CrossRef]
- Kim, C.; Cho, Y.J.; Yun, W.Y.; Ngoc, B.T.N.; Yang, K.S.; Chang, D.R.; Lee, J.W.; Kojima, M.; Kim, Y.A.; Endo, M. Fabrications and structural characterization of ultra-fine carbon fibres by electrospinning of polymer blends. Solid State Commun. 2007, 142, 20–23. [Google Scholar] [CrossRef]
- Yang, Z.; Takarada, W.; Matsumoto, H. Effect of the fiber diameter of polyamide 11 nanofibers on their internal molecular orientation and properties. Macromol. Rapid Commun. 2023, 44, e2300212. [Google Scholar] [CrossRef]
- Ballengee, J.B.; Pintauro, P.N. Morphological control of electrospun nafion nanofiber mats. J. Electrochem. Soc. 2011, 158, B568–B572. [Google Scholar] [CrossRef]
- Tariq, A.; Behravesh, A.H.; Rizvi, G. Statistical modeling and optimization of electrospinning for improved morphology and enhanced β-phase in polyvinylidene fluoride nanofibers. Polymers 2023, 15, 4344. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.; Song, W.-L.; Yu, D.-G.; Bligh, S.W.A. Electrospun janus beads-on-a-string structures for different types of controlled release profiles of double drugs. Biomolecules 2021, 11, 635. [Google Scholar] [CrossRef]
- Florez, M.; Cazon, P.; Vazquez, M. Selected biopolymers’ processing and their applications: A review. Polymers 2023, 15, 641. [Google Scholar] [CrossRef]
- Syed, M.H.; Khan, M.M.R.; Zahari, M.A.K.M.; Beg, M.D.H.; Abdullah, N. Current issues and potential solutions for the electrospinning of major polysaccharides and proteins: A review. Int. J. Biol. Macromol. 2023, 253, 126735. [Google Scholar] [CrossRef]
- Keshvardoostchokami, M.; Majidi, S.S.; Huo, P.; Ramachandran, R.; Chen, M.; Liu, B. Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering. Nanomaterials 2020, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Pasaoglu, M.E.; Koyuncu, I. Substitution of petroleum-based polymeric materials used in the electrospinning process with nanocellulose: A review and future outlook. Chemosphere 2021, 269, 128710. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Li, Y.; Tjong, S.C. Antibacterial activities of aliphatic polyester nanocomposites with silver nanoparticles and/or graphene oxide sheets. Nanomaterials 2019, 9, 1102. [Google Scholar] [CrossRef]
- Homer, W.J.A.; Lisnenko, M.; Hauzerova, S.; Heczkova, B.; Gardner, A.C.; Kostakova, E.K.; Topham, P.D.; Jencova, V.; Theodosiou, E. Thermally stabilised poly(vinyl alcohol) nanofibrous materials produced by scalable electrospinning: Applications in tissue engineering. Polymers 2024, 16, 2079. [Google Scholar] [CrossRef]
- Abdelhafiz, M.; Shalaby, A.S.A.; Hussein, A.K. Preparation and characterization of bioactive polyvinylpyrrolidone film via electrospinning technique. Microsc. Res. Tech. 2022, 85, 3347–3355. [Google Scholar] [CrossRef]
- Coviello, L.; Montalbano, G.; Piovano, A.; Izaguirre, N.; Vitale-Brovarone, C.; Gerbaldi, C.; Fiorilli, S. The impact of recovered lignin on solid-state peo-based electrolyte produced via electrospinning: Manufacturing and characterisation. Polymers 2025, 17, 982. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, Y.; Jia, S.; Liu, F. Preparation and properties of polyimide/polysulfonamide/polyethylene glycol (pi/psa/peg) hydrophobic nanofibrous membranes. Materials 2024, 17, 4135. [Google Scholar] [CrossRef]
- DeFrates, K.G.; Moore, R.; Borgesi, J.; Lin, G.; Mulderig, T.; Beachley, V.; Hu, X. Protein-based fiber materials in medicine: A review. Nanomaterials 2018, 8, 457. [Google Scholar] [CrossRef]
- Khodayari, A.; Vats, S.; Mertz, G.; Schnell, C.N.; Rojas, C.F.; Seveno, D. Electrospinning of cellulose nanocrystals; procedure and optimization. Carbohydr. Polym. 2025, 347, 122698. [Google Scholar] [CrossRef]
- Xue, C.; Wilson, L.D. Preparation and characterization of salicylic acid grafted chitosan electrospun fibers. Carbohydr. Polym. 2022, 275, 118751. [Google Scholar] [CrossRef]
- Pan, W.; Liang, Q.; Gao, Q. Preparation of hydroxypropyl starch/polyvinyl alcohol composite nanofibers films and improvement of hydrophobic properties. Int. J. Biol. Macromol. 2022, 223, 1297–1307. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Li, Y.; Wu, S. Fabrication and characterisation of collagen/pullulan ultra-thin fibers by electrospinning. Food. Chem. X 2024, 21, 101138. [Google Scholar] [CrossRef]
- Valachová, K.; El Meligy, M.A.; Šoltés, L. Hyaluronic acid and chitosan-based electrospun wound dressings: Problems and solutions. Int. J. Biol. Macromol. 2022, 206, 74–91. [Google Scholar] [CrossRef]
- Najafi, R.; Yazdian, F.; Pezeshki-Modaress, M.; Aleemardani, M.; Chahsetareh, H.; Hassanzadeh, S.; Farhadi, M.; Bagher, Z. Fabrication and optimization of multilayered composite scaffold made of sulfated alginate-based nanofiber/decellularized wharton’s jelly ecm for tympanic membrane tissue engineering. Int. J. Biol. Macromol. 2023, 253, 127128. [Google Scholar] [CrossRef]
- Wang, J.; Shan, H.; Qin, Y.; Qin, D.; Zhao, W.; Yang, Z.; Kong, L.; Li, S. Electrospinning zein with theaflavin: Production, characterization, and application in active packaging for cold-fresh pork. Int. J. Biol. Macromol. 2025, 287, 138594. [Google Scholar] [CrossRef]
- Mirhaj, M.; Varshosaz, J.; Nasab, P.M.; Al-Musawi, M.H.; Almajidi, Y.Q.; Shahriari-Khalaji, M.; Tavakoli, M.; Alizadeh, M.; Sharifianjazi, F.; Mehrjoo, M.; et al. A double-layer cellulose/pectin-soy protein isolate-pomegranate peel extract micro/nanofiber dressing for acceleration of wound healing. Int. J. Biol. Macromol. 2024, 255, 128198. [Google Scholar] [CrossRef]
- Chen, M.; Yan, T.; Jiang, Q.; Li, J.; Ali, U.; Miao, Y.; Farooq, S.; Hu, Y.; Zhang, H. Real-time shrimp freshness detection by anthocyanin-enriched wheat gluten/gelatin electrospun nanofiber films. Food Chem. 2025, 469, 142542. [Google Scholar] [CrossRef]
- Kerignard, E.; Bethry, A.; Falcoz, C.; Nottelet, B.; Pinese, C. Design of hybrid polymer nanofiber/collagen patches releasing IGF and HGF to promote cardiac regeneration. Pharmaceutics 2022, 14, 1854. [Google Scholar] [CrossRef]
- Bryan, A.; Wales, E.; Vedante, S.; Blanquer, A.; Neupane, D.; Mishra, S.; Bačáková, L.; Fujiwara, T.; Jennings, J.A.; Bumgardner, J.D. Evaluation of magnesium-phosphate particle incorporation into co-electrospun chitosan-elastin membranes for skin wound healing. Mar. Drugs 2022, 20, 615. [Google Scholar] [CrossRef]
- Xu, D.; Li, Z.; Deng, Z.; Nie, X.; Pan, Y.; Cheng, G. Degradation profiles of the poly(ε-caprolactone)/silk fibroin electrospinning membranes and their potential applications in tissue engineering. Int. J. Biol. Macromol. 2024, 266, 131124. [Google Scholar] [CrossRef]
- Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014, 185, 12–21. [Google Scholar] [CrossRef]
- Wolf, M.T.; Dearth, C.L.; Sonnenberg, S.B.; Loboa, E.G.; Badylak, S.F. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv. Drug Deliv. Rev. 2015, 84, 208–221. [Google Scholar] [CrossRef]
- Homaeigohar, S.; Boccaccini, A.R. Nature-derived and synthetic additives to poly(ε-caprolactone) nanofibrous systems for biomedicine; an updated overview. Front. Chem. 2021, 9, 809676. [Google Scholar] [CrossRef]
- Visser, D.; Rogg, K.; Fuhrmann, E.; Marzi, J.; Schenke-Layland, K.; Hartmann, H. Electrospinning of collagen: Enzymatic and spectroscopic analyses reveal solvent-independent disruption of the triple-helical structure. J. Mater. Chem. B 2023, 11, 2207–2218. [Google Scholar] [CrossRef]
- Penton, K.E.; Kinler, Z.; Davis, A.; Spiva, J.A.; Hamilton, S.K. Electrospinning drug-loaded alginate-based nanofibers towards developing a drug release rate catalog. Polymers 2022, 14, 2773. [Google Scholar] [CrossRef]
- Su, H.; Chen, X.; Mao, L.; Li, T. Enhancing electrospinnability of chitosan membranes in low-humidity environments by sodium chloride addition. Mar. Drugs 2024, 22, 443. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Wang, X.; Qi, R.; Yuan, H. Recent progress of photothermal therapy based on conjugated nanomaterials in combating microbial infections. Nanomaterials. 2023, 13, 2269. [Google Scholar] [CrossRef]
- Liu, S.; Pan, X.; Liu, H. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. Engl. 2020, 59, 5890–5900. [Google Scholar] [CrossRef]
- Yin, X.; Ai, F.; Han, L. Recent development of mof-based photothermal agent for tumor ablation. Front. Chem. 2022, 10, 841316. [Google Scholar] [CrossRef]
- Melancon, M.P.; Zhou, M.; Li, C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. ACC Chem Res 2011, 44, 947–956. [Google Scholar] [CrossRef]
- Jiang, W.; Sun, D.; Cai, C.; Zhang, H. Sensitive detection of extracellular hydrogen peroxide using plasmon-enhanced electrochemical activity on pd-tipped au nanobipyramids. Analyst 2023, 148, 3791–3797. [Google Scholar] [CrossRef]
- Kesharwani, P.; Ma, R.; Sang, L.; Fatima, M.; Sheikh, A.; Abourehab, M.A.S.; Gupta, N.; Chen, Z.S.; Zhou, Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol. Cancer 2023, 22, 98. [Google Scholar] [CrossRef]
- Shafiqa, A.R.; Abdul Aziz, A.; Mehrdel, B. Nanoparticle optical properties: Size dependence of a single gold spherical nanoparticle. J. Phys. Conf. Ser. 2018, 1083, 012040. [Google Scholar] [CrossRef]
- Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674. [Google Scholar] [CrossRef]
- Spyratou, E.; Makropoulou, M.; Efstathopoulos, E.P.; Georgakilas, A.G.; Sihver, L. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers 2017, 9, 173. [Google Scholar] [CrossRef]
- Eker, F.; Akdaşçi, E.; Duman, H.; Bechelany, M.; Karav, S. Gold nanoparticles in nanomedicine: Unique properties and therapeutic potential. Nanomaterials 2024, 14, 1854. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, D.Y. Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers 2018, 10, 961. [Google Scholar] [CrossRef]
- Vines, J.B.; Yoon, J.-H.; Ryu, N.-E.; Lim, D.-J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front. Chem. 2019, 7, 167. [Google Scholar] [CrossRef]
- Moyer, H.R.; Delman, K.A. The role of hyperthermia in optimizing tumor response to regional therapy. Int. J. Hyperth. 2008, 24, 251–261. [Google Scholar] [CrossRef]
- Kaur, P.; Hurwitz, M.D.; Krishnan, S.; Asea, A. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers 2011, 3, 3799–3823. [Google Scholar] [CrossRef]
- Mantso, T.; Vasileiadis, S.; Anestopoulos, I.; Voulgaridou, G.P.; Lampri, E.; Botaitis, S.; Kontomanolis, E.N.; Simopoulos, C.; Goussetis, G.; Franco, R.; et al. Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma. Sci. Rep. 2018, 8, 10724. [Google Scholar] [CrossRef]
- Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941–1949. [Google Scholar] [CrossRef]
- Wang, H.; Tian, Z.; Wang, L.; Wang, H.; Zhang, Y.; Shi, Z. Advancements, functionalization techniques, and multifunctional applications in biomedical and industrial fields of electrospun pectin nanofibers: A review. Int. J. Biol. Macromol. 2025, 307, 141964. [Google Scholar] [CrossRef]
- Yoo, H.S.; Kim, T.G.; Park, T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009, 61, 1033–1042. [Google Scholar] [CrossRef]
- Chen, S.; Xie, Y.; Ma, K.; Wei, Z.; Ran, X.; Fu, X.; Zhang, C.; Zhao, C. Electrospun nanofibrous membranes meet antibacterial nanomaterials: From preparation strategies to biomedical applications. Bioact. Mater. 2024, 42, 478–518. [Google Scholar] [CrossRef]
- Homaeigohar, S.; Boccaccini, A.R. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater. 2020, 107, 25–49. [Google Scholar] [CrossRef]
- Liu, M.; Duan, X.P.; Li, Y.M.; Yang, D.P.; Long, Y.Z. Electrospun nanofibers for wound healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 1413–1423. [Google Scholar] [CrossRef]
- Buzgo, M.; Mickova, A.; Rampichova, M.; Doupnik, M. Blend electrospinning, coaxial electrospinning, and emulsion electrospinning techniques. In Core-Shell Nanostructures for Drug Delivery and Theranostics; Woodhead Publishing: Cambridge, UK, 2018; pp. 325–347. [Google Scholar]
- Federico, S.; Catania, V.; Palumbo, F.S.; Fiorica, C.; Schillaci, D.; Pitarresi, G.; Giammona, G. Photothermal nanofibrillar membrane based on hyaluronic acid and graphene oxide to treat Staphylococcus Aureus and pseudomonas aeruginosa infected wounds. Int. J. Biol. Macromol. 2022, 214, 470–479. [Google Scholar] [CrossRef]
- Hu, C.S.; Li, X.H.; Huang, Z.B.; Li, J.Y.; Wang, J.; Pu, X.M.; Li, Y.; Wu, J.; Yin, G.F. Fabrication of au-polydopamine blackspheres-loaded plla-(silk fibroin) scaffold with photothermal conversion in NIR-II biowindows for deep nerve regeneration. Chem. Eng. J. 2024, 489, 151171. [Google Scholar] [CrossRef]
- Tian, H.; Hong, J.; Li, C.; Qiu, Y.; Li, M.; Qin, Z.; Ghiladi, R.A.; Yin, X. Electrospinning membranes with Au@carbon dots: Low toxicity and efficient antibacterial photothermal therapy. Biomater. Adv. 2022, 142, 213155. [Google Scholar] [CrossRef]
- Fu, J.; Wang, D.; Tang, Z.; Xu, Y.; Xie, J.; Chen, R.; Wang, P.; Zhong, Q.; Ning, Y.; Lei, M.; et al. NIR-responsive electrospun nanofiber dressing promotes diabetic-infected wound healing with programmed combined temperature-coordinated photothermal therapy. J. Nanobiotechnol. 2024, 22, 384. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Q.; Li, L.; Ouyang, J.; Wang, T.; Chen, J.; Hu, X.; Ao, Y.; Qin, D.; Zhang, L.; et al. Bioinspired mild photothermal effect-reinforced multifunctional fiber scaffolds promote bone regeneration. ACS Nano 2023, 17, 6466–6479. [Google Scholar] [CrossRef]
- Xiao, Y.; Peng, J.; Liu, Q.; Chen, L.; Shi, K.; Han, R.; Yang, Q.; Zhong, L.; Zha, R.; Qu, Y.; et al. Ultrasmall CuS@BSA nanoparticles with mild photothermal conversion synergistically induce mscs-differentiated fibroblast and improve skin regeneration. Theranostics 2020, 10, 1500–1513. [Google Scholar] [CrossRef]
- Li, Q.; Liu, W.; Hou, W.; Wu, X.; Wei, W.; Liu, J.; Hu, Y.; Dai, H. Micropatterned photothermal double-layer periosteum with angiogenesis-neurogenesis coupling effect for bone regeneration. Mater. Today Bio. 2023, 18, 100536. [Google Scholar] [CrossRef]
- Liu, Y.G.; Liu, F.F.; Qiu, Y.N.; Li, Z.K.; Wei, Q.; Zhang, N.Y.; Ma, C.; Xu, W.; Wang, Y.B. Potent antibacterial fibers with the functional “triad” of photothermal, silver, and dex for bone infections. Mater. Des. 2022, 223, 111153. [Google Scholar] [CrossRef]
- Kyuchyuk, S.; Paneva, D.; Manolova, N.; Rashkov, I. Core-sheath fibers via single-nozzle spinneret electrospinning of emulsions and homogeneous blend solutions. Materials 2024, 17, 5379. [Google Scholar] [CrossRef]
- Guo, T.; Hu, X.; Du, Z.; Wang, X.; Lang, J.; Liu, J.; Xu, H.; Sun, Z. Modification of transvaginal polypropylene mesh with co-axis electrospun nanofibrous membrane to alleviate complications following surgical implantation. J. Nanobiotechnol. 2024, 22, 598. [Google Scholar] [CrossRef]
- Vats, S.; Anyfantakis, M.; Honaker, L.W.; Basoli, F.; Lagerwall, J.P.F. Stable electrospinning of core-functionalized coaxial fibers enabled by the minimum-energy interface given by partial core-sheath miscibility. Langmuir 2021, 37, 13265–13277. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, S.; Yan, Z.; Li, S.; Wang, Q.; Gao, Z. Improvement of stress resistance of microencapsulated Lactobacillus Plantarum by emulsion electrospinning. Foods 2024, 13, 1897. [Google Scholar] [CrossRef]
- Azerbaijan, M.H.; Bahmani, E.; Jouybari, M.H.; Hassaniazardaryani, A.; Goleij, P.; Akrami, M.; Irani, M. Electrospun gold nanorods/graphene oxide loaded-core-shell nanofibers for local delivery of paclitaxel against lung cancer during photo-chemotherapy method. Eur. J. Pharm. Sci. 2021, 164, 105914. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, H.; Kim, D.I.; Choi, J.H.; Son, J.H.; Kim, J.; Moon, G.D.; Hyun, D.C. Gold nanocage-incorporated poly(ε-caprolactone) (pcl) fibers for chemophotothermal synergistic cancer therapy. Pharmaceutics 2019, 11, 60. [Google Scholar] [CrossRef]
- Sadeghi, M.; Falahi, F.; Akbari-Birgani, S.; Nikfarjam, N. Trilayer tubular scaffold to mimic ductal carcinoma breast cancer for the study of chemo-photothermal therapy. ACS Appl. Polym. Mater. 2023, 5, 2394–2407. [Google Scholar] [CrossRef]
- Sui, C.H.; Luo, Y.J.; Xiao, X.; Liu, J.X.; Shao, X.T.; Xue, Y.X.; Wang, C.; Li, W.L. A photothermal therapy study based on electrospinning nanofibers blended and coated with polydopamine nanoparticles. Chemistryselect 2023, 8, e202302998. [Google Scholar] [CrossRef]
- Tiwari, A.P.; Bhattarai, D.P.; Maharjan, B.; Ko, S.W.; Kim, H.Y.; Park, C.H.; Kim, C.S. Polydopamine-based implantable multifunctional nanocarpet for highly efficient photothermal-chemo therapy. Sci. Rep. 2019, 9, 2943. [Google Scholar] [CrossRef] [PubMed]
- El Ouardi, M.; El Aouni, A.; Ait Ahsaine, H.; Zbair, M.; BaQais, A.; Saadi, M. Zif-8 metal organic framework composites as hydrogen evolution reaction photocatalyst: A review of the current state. Chemosphere 2022, 308, 136483. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Liu, X.; Huang, Z.; Xu, L.; Bai, R.; He, F.; Wang, M.; Han, L.; Bao, Z.; Wu, Y.; et al. Nanoscale zeolitic imidazolate framework (zif)-8 in cancer theranostics: Current challenges and prospects. Cancers 2022, 14, 3935. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Chen, Q.; Gong, T.; Liu, J.; Li, C. Recent advancement of imidazolate framework (zif-8) based nanoformulations for synergistic tumor therapy. Nanoscale 2019, 11, 21030–21045. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Ye, J.W.; Liu, X.; Wang, G.Y.; Qi, Y.; Wang, T.L.; Song, Y.Q.; Li, Y.C.; Ning, G.L. Dual stimuli-responsive smart fibrous membranes for efficient photothermal/photodynamic/chemo-therapy of drug-resistant bacterial infection. Chem. Eng. J. 2022, 432, 134351. [Google Scholar] [CrossRef]
- Liu, S.; Wang, T.; Wang, H.; Hui, D.; Li, H.; Gong, M.; Cai, B.; Zhang, D.; Xu, K.; Tang, A. In situ growth of carbon nanotubes on fly ash substrates. Nanotechnol. Rev. 2024, 13, 20240111. [Google Scholar] [CrossRef]
- Asadian, M.; Chan, K.V.; Norouzi, M.; Grande, S.; Cools, P.; Morent, R.; De Geyter, N. Fabrication and plasma modification of nanofibrous tissue engineering scaffolds. Nanomaterials 2020, 10, 119. [Google Scholar] [CrossRef]
- Kopuk, B.; Gunes, R.; Palabiyik, I. Cold plasma modification of food macromolecules and effects on related products. Food Chem. 2022, 382, 132356. [Google Scholar] [CrossRef]
- Mauro, N.; Scialabba, C.; Pitarresi, G.; Giammona, G. Enhanced adhesion and in situ photothermal ablation of cancer cells in surface-functionalized electrospun microfiber scaffold with graphene oxide. Int. J. Pharm. 2017, 526, 167–177. [Google Scholar] [CrossRef]
- Zille, A.; Oliveira, F.R.; Souto, A.P. Plasma treatment in textile industry. Plasma Process. Polym. 2015, 12, 98–131. [Google Scholar] [CrossRef]
- Li, Y.H.; Huang, Z.J.; Zhang, J.Q.; Ye, M.N.; Jun, M.; Wang, W.; Chen, X.L.; Wang, G.H. Synergistic antibacterial and antifouling wound dressings: Integration of photothermal-activated no release and zwitterionic surface modification. Int. J. Pharm. 2024, 657, 124160. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Huangfu, L.; Liu, C.; Bonfili, L.; Xiang, Q.; Wu, H.; Bai, Y. Electrospinning and electrospraying: Emerging techniques for probiotic stabilization and application. Polymers 2023, 15, 2402. [Google Scholar] [CrossRef]
- Tanhaei, A.; Mohammadi, M.; Hamishehkar, H.; Hamblin, M.R. Electrospraying as a novel method of particle engineering for drug delivery vehicles. J. Control. Release 2021, 330, 851–865. [Google Scholar] [CrossRef]
- Pires, J.B.; Santos, F.N.D.; Costa, I.H.L.; Kringel, D.H.; Zavareze, E.D.R.; Dias, A.R.G. Essential oil encapsulation by electrospinning and electrospraying using food proteins: A review. Food Res. Int. 2023, 170, 112970. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhu, X.J.; Li, J.Q.; Shao, J.; Zhang, Y.; Zhu, J.T.; Li, S.H.; Zheng, L.A.; Li, X.P.; Zhang, S.H.; et al. Electroactive and breathable protective membranes by surface engineering of dielectric nanohybrids at poly(lactic acid) nanofibers with excellent self-sterilization and photothermal properties. Sep. Purif. Technol. 2024, 339, 126708. [Google Scholar] [CrossRef]
- Yu, L.; Qiao, Y.S.; Ge, G.R.; Chen, M.; Yang, P.; Li, W.H.; Qin, Y.; Xia, W.Y.; Zhu, C.; Pan, G.Q.; et al. Rational design of engineered bionic periosteum for dynamic immunoinduction, smart bactericidal, and efficient bone regeneration. Adv. Funct. Mater. 2024, 34, 2401109. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, C.; Liu, Y.; Liu, Z.; Li, J.; Wang, Z.; Han, X. All-in-one bioactive properties of photothermal nanofibers for accelerating diabetic wound healing. Biomaterials 2023, 295, 122029. [Google Scholar] [CrossRef]
- Xu, M.; Li, L.; Hu, Q. The recent progress in photothermal-triggered bacterial eradication. Biomater Sci. 2021, 9, 1995–2008. [Google Scholar] [CrossRef]
- Mocan, L.; Tabaran, F.A.; Mocan, T.; Pop, T.; Mosteanu, O.; Agoston-Coldea, L.; Matea, C.T.; Gonciar, D.; Zdrehus, C.; Iancu, C. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles. Int. J. Nanomed. 2017, 12, 2255–2263. [Google Scholar] [CrossRef]
- Chen, Z.; Mo, Q.; Mo, D.; Pei, X.; Liang, A.; Cai, J.; Zhou, B.; Zheng, L.; Li, H.; Yin, F.; et al. A multifunctional photothermal electrospun PLGA/MoS2@Pd nanofiber membrane for diabetic wound healing. Regen. Biomater. 2025, 12, rbae143. [Google Scholar] [CrossRef]
- Cai, R.; Zhao, J.; Zhou, P.; Ma, X.; Zhang, C.; Wu, Z.; Hu, L.; Hu, Y.; Chen, Y.; Huang, C.; et al. A brief strategy for the preparation of silk fibroin-copper sulfide-based electrospun nanofibrous membranes with photothermal antimicrobial properties to accelerate the infected wound healing. Mater. Today Bio 2025, 31, 101605. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, Y.; Chen, Y.; Liu, L.; Mo, A.; Peng, Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J. Control. Release 2020, 328, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wen, H.; Li, H.; Yan, Z.C.; Li, Y.; Wang, L.; Wang, D.; Tang, B.Z. Aiegen-loaded nanofibrous membrane as photodynamic/photothermal antimicrobial surface for sunlight-triggered bioprotection. Biomaterials 2021, 276, 121007. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Song, L.; Fan, Y.; Tian, L.; Luan, S.; Niu, S.; Ren, L.; Ming, W.; Zhao, J. Synergistic photodynamic and photothermal antibacterial nanocomposite membrane triggered by single NIR light source. ACS Appl. Mater. Interfaces 2019, 11, 26581–26589. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, J.; Liu, X.; Wang, Y.; Li, C.; Fang, J.; Chang, B.; Qi, Y.; Li, Y.; Ning, G. Titanium carbide/zeolite imidazole framework-8/polylactic acid electrospun membrane for near-infrared regulated photothermal/photodynamic therapy of drug-resistant bacterial infections. J. Colloid Interface Sci. 2021, 599, 390–403. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, J.; Zhu, X.Y.; Jia, X.Y.; Liu, Y.H.; Cai, L.; Wu, Y.; Ruan, H.J.; Chen, J. Electrospun nanofibrous membranes loaded with ir780 conjugated mos2-nanosheet for dual-mode photodynamic/photothermal inactivation of drug-resistant bacteria. Environ. Technol. Innov. 2023, 30, 103098. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Liu, Y.M.; Tian, C.; Liu, Z.Q.; Wu, K.P.; Zhang, C.Z.; Han, X.W. Construction of antibacterial photothermal PCL/AgNPs/BP nanofibers for infected wound healing. Mater. Des. 2023, 226, 111670. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Lu, Q.Q.; Wu, J.Z.; Zhang, Y.H.; Guo, J.B.; Yu, J.J.; Shu, X.R.; Chen, Q. Flexible, robust and self-peeling PLA/AgNWs nanofiber membranes with photothermally antibacterial properties for wound dressing. Appl. Surf. Sci. 2023, 615, 156284. [Google Scholar] [CrossRef]
- Tang, W.J.; Zhang, J.X.; Wen, M.L.; Wei, Y.; Tang, T.T.; Yang, T.T.; Bai, H.T.; Guo, C.Q.; Gao, X.; Wang, Z.C.; et al. Preparation of polyvinyl alcohol/chitosan nanofibrous films incorporating graphene oxide and lanthanum chloride by electrospinning method for potential photothermal and chemical synergistic antibacterial applications in wound dressings. J. Mech. Behav. Biomed. Mater. 2023, 148, 106162. [Google Scholar] [CrossRef]
- Qiu, Y.N.; Gao, Y.; Liu, Y.G.; Li, Z.K.; Wei, Q.; Xu, W.; Wang, Y.B. Near-infrared electrospun fiber with bimetallic coating for antibacterial and bone regeneration. React. Funct. Polym. 2022, 174, 105249. [Google Scholar] [CrossRef]
- Tu, C.; Lu, H.; Zhou, T.; Zhang, W.; Deng, L.; Cao, W.; Yang, Z.; Wang, Z.; Wu, X.; Ding, J.; et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ros-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 2022, 286, 121597. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.L.; Wu, J.J.; Lin, C.C.; Qin, X.; Tay, F.R.; Miao, L.; Tao, B.L.; Jiao, Y. Elimination of methicillin-resistant Staphylococcus Aureus biofilms on titanium implants via photothermally-triggered nitric oxide and immunotherapy for enhanced osseointegration. Mil. Med. Res. 2023, 10, 21. [Google Scholar] [CrossRef]
- Tang, L.; Wu, P.; Zhuang, H.; Qin, Z.; Yu, P.; Fu, K.; Qiu, P.; Liu, Y.; Zhou, Y. Nitric oxide releasing polyvinyl alcohol and sodium alginate hydrogels as antibacterial and conductive strain sensors. Int. J. Biol. Macromol. 2023, 241, 124564. [Google Scholar] [CrossRef] [PubMed]
- Malone-Povolny, M.J.; Maloney, S.E.; Schoenfisch, M.H. Nitric oxide therapy for diabetic wound healing. Adv. Healthc. Mater. 2019, 8, e1801210. [Google Scholar] [CrossRef] [PubMed]
- Won, J.E.; Kim, W.J.; Shim, J.S.; Ryu, J.J. Guided bone regeneration with a nitric-oxide releasing polymer inducing angiogenesis and osteogenesis in critical-sized bone defects. Macromol. Biosci. 2022, 22, e2200162. [Google Scholar] [CrossRef]
- Su, L.; Dong, C.; Liu, L.; Feng, Y.; Xu, J.; Ke, Q.; Chang, J.; Yang, C.; Xu, H. Low-temperature trigger nitric oxide nanogenerators for anti-biofilm and wound healing. Adv. Fiber Mater. 2024, 6, 512–528. [Google Scholar] [CrossRef]
- Lai, Y.H.; Barman, S.R.; Ganguly, A.; Pal, A.; Yu, J.H.; Chou, S.H.; Huang, E.W.; Lin, Z.H.; Chen, S.Y. Oxygen-producing composite dressing activated by photothermal and piezoelectric effects for accelerated healing of infected wounds. Chem. Eng. J. 2023, 476, 146744. [Google Scholar] [CrossRef]
- Xie, J.; Liu, G.; Chen, R.; Wang, D.; Mai, H.; Zhong, Q.; Ning, Y.; Fu, J.; Tang, Z.; Xu, Y.; et al. NIR-activated electrospun nanodetonator dressing enhances infected diabetic wound healing with combined photothermal and nitric oxide-based gas therapy. J. Nanobiotechnol. 2024, 22, 232. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Liu, Y.; Cai, L.; Zhou, L.; Jiang, H.; Chen, J. Encapsulating MoS2-nanoflowers conjugated with chitosan oligosaccharide into electrospun nanofibrous scaffolds for photothermal inactivation of bacteria. J. Nanostruct. Chem. 2024, 14, 137–151. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, N.; Ren, Q.; Niu, S.; Zhu, L.; Hong, L.; Cui, K.; Wang, X.; Jiang, W.; Wen, M.; et al. Janus nanofiber membranes with photothermal-enhanced biofluid drainage and sterilization for diabetic wounds. Adv. Funct. Mater. 2024, 34, 2315020. [Google Scholar] [CrossRef]
- Chen, X.; Ren, X.; Wang, Y.; Meng, J.; Huang, Q.; Shen, J. Construction of a multifunctional janus nanofiber membrane based on tannic acid-fe complexes for photothermal/drug synergistic antibacteria. ACS Appl. Polym. Mater. 2024, 6, 15345–15354. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhang, Q.; Meng, J.; Pan, T.; Xu, H.; Du, L.; Yang, X. Accessible approach of fabricating pH-responsive nanofibrous membranes with photothermal effect as antibacterial wound dressings. J. Appl. Polym. Sci. 2023, 140, e54657. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, D.; Cheng, K.; Li, W.; Yu, Q.; Wang, L. Photothermal-responsive fiber dressing with enhanced antibacterial activity and cell manipulation towards promoting wound-healing. J. Colloid Interface Sci. 2022, 623, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Y.; Ding, D.J.; Zhou, K.P.; Zhang, M.; Zhang, W.F.; Yan, F.; Cheng, N. Prussian blue and collagen loaded chitosan nanofibers with NIR-controlled NO release and photothermal activities for wound healing. J. Mater. Sci. Technol. 2021, 93, 17–27. [Google Scholar] [CrossRef]
- Bartolewska, M.; Kosik-Kozioł, A.; Korwek, Z.; Krysiak, Z.; Montroni, D.; Mazur, M.; Falini, G.; Pierini, F. Eumelanin-enhanced photothermal disinfection of contact lenses using a sustainable marine nanoplatform engineered with electrospun nanofibers. Adv. Healthc. Mater. 2025, 14, e2402431. [Google Scholar] [CrossRef]
- Bayan, M.A.H.; Rinoldi, C.; Kosik-Koziol, A.; Bartolewska, M.; Rybak, D.; Zargarian, S.S.; Shah, S.A.; Krysiak, Z.J.; Zhang, S.; Lanzi, M.; et al. Solar-to-NIR light activable phbv/icg nanofiber-based face masks with on-demand combined photothermal and photodynamic antibacterial properties. Adv. Mater. Technol. 2025, 10, 2400450. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, X.; Chen, G.; Wang, F.; Ren, J. Aunps-pcl nanocomposite accelerated abdominal wound healing through photothermal effect and improving cell adhesion. J. Biomater. Sci. Polym. Ed. 2018, 29, 2035–2049. [Google Scholar] [CrossRef] [PubMed]
- Patil, T.V.; Dutta, S.D.; Patel, D.K.; Ganguly, K.; Lim, K.-T. Electrospinning near infra-red light-responsive unzipped CNT/PDA nanofibrous membrane for enhanced antibacterial effect and rapid drug release. Appl. Surf. Sci. 2023, 612, 155949. [Google Scholar] [CrossRef]
- Bayan, M.A.H.; Rinoldi, C.; Rybak, D.; Zargarian, S.S.; Zakrzewska, A.; Cegielska, O.; Pohako-Palu, K.; Zhang, S.; Stobnicka-Kupiec, A.; Gorny, R.L.; et al. Engineering surgical face masks with photothermal and photodynamic plasmonic nanostructures for enhancing filtration and on-demand pathogen eradication. Biomater. Sci. 2024, 12, 949–963. [Google Scholar] [CrossRef]
- Lin, P.; He, K.; Luo, J.; Wang, J.; Liu, Y.; Zhang, J.; Fan, H.; Huang, S.; Lan, W.; Wang, W.; et al. Multifunctional nanofiber system with photothermal-controlled drug delivery and motion monitoring capabilities as intelligent wound dressing. Chem. Eng. J. 2025, 503, 158544. [Google Scholar] [CrossRef]
- Xiao, F.; Jin, B.; Zhou, Q.; Zhang, G.; Hou, H.; Bi, J.; Yan, S.; Hao, H. Photothermal synergistic sterilization performance and mechanism of electrospun cu2o/v2ctx nano-fibrous membranes. Mater. Today Commun. 2024, 39, 109158. [Google Scholar] [CrossRef]
- Zhou, A.; Zhang, Y.; Qu, Q.; Li, F.; Lu, T.; Liu, K.; Huang, C. Well-defined multifunctional superhydrophobic green nanofiber membrane based-polyurethane with inherent antifouling, antiadhesive and photothermal bactericidal properties and its application in bacteria, living cells and zebra fish. Compos. Commun. 2021, 26, 100758. [Google Scholar] [CrossRef]
- Amantay, M.; Ma, Y.; Chen, L.; Osman, H.; Liu, M.; Jiang, T.; Zhou, T.; Ye, T.; Wang, Y. Electrospinning fibers modified with near infrared light-excited copper nanoparticles for antibacterial and bone regeneration. Adv. Mater. Interfaces 2023, 10, 2300113. [Google Scholar] [CrossRef]
- Abid, S.; Hussain, T.; Raza, Z.A.; Nazir, A. Current applications of electrospun polymeric nanofibers in cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 966–977. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, R.; Liang, Z.; Guo, J.; Chen, B.; Zhou, S.; Yu, D. Application of electrospun drug-loaded nanofibers in cancer therapy. Polymers 2024, 16, 504. [Google Scholar] [CrossRef]
- Talebian, S.; Foroughi, J.; Wade, S.J.; Vine, K.L.; Dolatshahi-Pirouz, A.; Mehrali, M.; Conde, J.; Wallace, G.G. Biopolymers for antitumor implantable drug delivery systems: Recent advances and future outlook. Adv. Mater. 2018, 30, e1706665. [Google Scholar] [CrossRef]
- Xin, Y.; Sun, Z.; Liu, J.; Li, W.; Wang, M.; Chu, Y.; Sun, Z.; Deng, G. Nanomaterial-mediated low-temperature photothermal therapy via heat shock protein inhibition. Front. Bioeng. Biotechnol. 2022, 10, 1027468. [Google Scholar] [CrossRef]
- Hou, Y.J.; Yang, X.X.; Liu, R.Q.; Zhao, D.; Guo, C.X.; Zhu, A.C.; Wen, M.N.; Liu, Z.; Qu, G.F.; Meng, H.X. Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles. Int. J. Nanomed. 2020, 15, 6827–6838. [Google Scholar] [CrossRef]
- Hou, X.; Tao, Y.; Pang, Y.; Li, X.; Jiang, G.; Liu, Y. Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment. Int. J. Cancer 2018, 143, 3050–3060. [Google Scholar] [CrossRef]
- Shao, J.; Xie, H.; Wang, H.; Zhou, W.; Luo, Q.; Yu, X.F.; Chu, P.K. 2d material-based nanofibrous membrane for photothermal cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, S.; Xiong, H.; Jing, X.; Xie, Z.; Chen, X.; Huang, Y. Electrospun PLA/MWCNTs composite nanofibers for combined chemo- and photothermal therapy. Acta Biomater. 2015, 26, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Alavi, S.E.; Alharthi, S.; Alavi, S.Z.; Raza, A.; Ebrahimi Shahmabadi, H. Bioresponsive drug delivery systems. Drug Discov. Today 2024, 29, 103849. [Google Scholar] [CrossRef]
- Fu, Y.J.; Li, C.W.; Chen, C.; An, Q.; Zhang, W.; Jiang, Y.; Li, D.W. Hemostatic nanofibers/chitosan composite aerogel for potential chemo-photothermal therapy. J. Mol. Struct. 2025, 1319, 139477. [Google Scholar] [CrossRef]
- Martorana, A.; Puleo, G.; Miceli, G.C.; Cancilla, F.; Licciardi, M.; Pitarresi, G.; Tranchina, L.; Marrale, M.; Palumbo, F.S. Redox/NIR dual-responsive glutathione extended polyurethane urea electrospun membranes for synergistic chemo-photothermal therapy. Int. J. Pharm. 2025, 669, 125108. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, L.; Ding, Y.N.; Liu, C.; Wang, B.C.; Yu, Y.C.; Hui, C.; Ramakrishna, S.; Zhang, J.; Long, Y.Z. NIR-II-triggered composite nanofibers to simultaneously achieve intracranial hemostasis, killing superbug and residual cancer cells in brain tumor resection surgery. Adv. Fiber Mater. 2023, 5, 209–222. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, H.; Ying, B.; Mei, X.; Zeng, D.; Liu, S.; Qu, W.; Pan, X.; Pu, S.; Li, R.; et al. Mild photothermal therapy assist in promoting bone repair: Related mechanism and materials. Mater. Today Bio 2023, 23, 100834. [Google Scholar] [CrossRef]
- Yi, X.; Duan, Q.Y.; Wu, F.G. Low-temperature photothermal therapy: Strategies and applications. Research 2021, 2021, 9816594. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Zhou, J.; Zhang, L.; Xue, J.; Tao, W. Non-invasive thermal therapy for tissue engineering and regenerative medicine. Small 2022, 18, e2107705. [Google Scholar] [CrossRef]
- Ma, K.; Liao, C.; Huang, L.; Liang, R.; Zhao, J.; Zheng, L.; Su, W. Electrospun PCL/MoS2 nanofiber membranes combined with NIR-triggered photothermal therapy to accelerate bone regeneration. Small 2021, 17, e2104747. [Google Scholar] [CrossRef]
- Li, J.; Hashemi, P.; Liu, T.; Dang, K.M.; Brunk, M.G.K.; Mu, X.; Nia, A.S.; Sacher, W.D.; Feng, X.; Poon, J.K.S. 3d printed titanium carbide mxene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation. Commun. Mater. 2024, 5, 62. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Y.; Ye, C.; Chen, Y.; Wang, S.; Zou, D.; Li, Z. Photothermal transforming agent and chemotherapeutic co-loaded electrospun nanofibers for tumor treatment. Int. J. Nanomed. 2019, 14, 3893–3909. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, Y.; Liu, Y.; Huang, T.; Xing, J.; Ge, R.; Yu, D.-G. Electrospun medicated gelatin/polycaprolactone janus fibers for photothermal-chem combined therapy of liver cancer. Int. J. Biol. Macromol. 2024, 269, 132113. [Google Scholar] [CrossRef]
- Yu, Q.; Han, Y.; Wang, X.; Qin, C.; Zhai, D.; Yi, Z.; Chang, J.; Xiao, Y.; Wu, C. Copper silicate hollow microspheres-incorporated scaffolds for chemo-photothermal therapy of melanoma and tissue healing. ACS Nano 2018, 12, 2695–2707. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, Q.; Cheng, K.; Topham, P.D.; Xu, M.; Sun, X.; Pan, Y.; Jia, Y.; Wang, S.; Wang, L. Can photothermal post-operative cancer treatment be induced by a thermal trigger? ACS Appl. Mater. Interfaces 2021, 13, 60837–60851. [Google Scholar] [CrossRef]
- Mu, J.; Meng, Z.; Liu, X.; Guan, P.; Lian, H. Implantable nanofiber membranes with synergistic photothermal and autophagy inhibition effects for enhanced tumor therapy efficacy. Adv. Fiber Mater. 2023, 5, 1810–1825. [Google Scholar] [CrossRef]
- Obiweluozor, F.O.; Emechebe, G.A.; Tiwari, A.P.; Kim, J.Y.; Park, C.H.; Kim, C.S. Short duration cancer treatment: Inspired by a fast bio-resorbable smart nano-fiber device containing NIR lethal polydopamine nanospheres for effective chemo-photothermal cancer therapy. Int. J. Nanomed. 2018, 13, 6375–6390. [Google Scholar] [CrossRef]
- Choi, J.H.; Seo, H.; Park, J.H.; Son, J.H.; Kim, D.I.; Kim, J.; Moon, G.D.; Hyun, D.C. Poly(d,l-lactic-co-glycolic acid) (PLGA) hollow fiber with segmental switchability of its chains sensitive to NIR light for synergistic cancer therapy. Colloids Surf. B-Biointerfaces 2019, 173, 258–265. [Google Scholar] [CrossRef]
- Cen, D.; Wan, Z.; Fu, Y.; Pan, H.; Xu, J.; Wang, Y.; Wu, Y.; Li, X.; Cai, X. Implantable fibrous ‘patch’ enabling preclinical chemo-photothermal tumor therapy. Colloids Surf. B-Biointerfaces 2020, 192, 111005. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Y.; Sun, L.; Ni, S. Electrospun composite nanofibers with all-trans retinoic acid and MWCNTs-oh against cancer stem cells. Life Sci. 2020, 258, 118152. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Zong, S.; Qiu, R.; Liu, S. Use of multifunctional composite nanofibers for photothermalchemotherapy to treat cervical cancer in mice. Biomater Sci. 2019, 7, 3846–3854. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Khanom, J.; Kim, C.S.; Rezk, A.I. Near-infrared responsive synergistic chemo-phototherapy from surface-functionalized poly(ε-caprolactone)-poly(d,l-lactic-co-glycolic acid) composite nanofibers for postsurgical cancer treatment. Biomacromolecules 2022, 23, 3582–3592. [Google Scholar] [CrossRef]
- Tiwari, A.P.; Hwang, T.I.; Oh, J.M.; Maharjan, B.; Chun, S.; Kim, B.S.; Joshi, M.K.; Park, C.H.; Kim, C.S. Ph/NIR-responsive polypyrrole-functionalized fibrous localized drug-delivery platform for synergistic cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 20256–20270. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Luo, Y.; Nie, D.; Jin, J.; Yang, S.; Li, G.; Yang, Y.; Zhang, W. Ph/photothermal dual -responsive drug delivery and synergistic chemo- photothermal therapy by novel porous carbon nanofibers. Chem. Eng. J. 2020, 397, 125402. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Zhang, Z.; Li, N.; Fang, X.; Xu, S. Gold nanorod-embedded electrospun fibrous membrane as a photothermal therapy platform. ACS Appl. Mater. Interfaces 2014, 6, 1569–1575. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Hou, Z.; Huang, S.; Liu, B.; He, F.; Luo, L.; Lin, J. Polyaniline electrospinning composite fibers for orthotopic photothermal treatment of tumors in vivo. New J. Chem. 2015, 39, 4987–4993. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Wu, H.; Dai, F.; Li, J.; Li, Z. Electrospun silk fibroin/polylactic-co-glycolic acid/black phosphorus nanosheets nanofibrous membrane with photothermal therapy potential for cancer. Molecules 2022, 27, 4563. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, Z.; Liu, B.; Huang, S.; Li, C.; Lin, J. DOX-Cu9S5@ mSiO2-PG composite fibers for orthotopic synergistic chemo- and photothermal tumor therapy. Dalton Trans. 2015, 44, 3118–3127. [Google Scholar] [CrossRef]
- Bhattarai, D.P.; Tiwari, A.P.; Maharjan, B.; Tumurbaatar, B.; Park, C.H.; Kim, C.S. Sacrificial template-based synthetic approach of polypyrrole hollow fibers for photothermal therapy. J. Colloid Interface Sci. 2019, 534, 447–458. [Google Scholar] [CrossRef]
- Yamada, M.; Foote, M.; Prow, T.W. Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 428–445. [Google Scholar] [CrossRef]
- Karahan, H.E.; Wiraja, C.; Xu, C.; Wei, J.; Wang, Y.; Wang, L.; Liu, F.; Chen, Y. Graphene materials in antimicrobial nanomedicine: Current status and future perspectives. Adv. Healthc. Mater. 2018, 7, e1701406. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Lin, W.; Huang, Y.; Xia, J.; Xu, J.F.; Zhang, J.; Pi, J. Advances and potentials of polydopamine nanosystem in photothermal-based antibacterial infection therapies. Front. Pharmacol. 2022, 13, 829712. [Google Scholar] [CrossRef]
- He, X.; Obeng, E.; Sun, X.; Kwon, N.; Shen, J.; Yoon, J. Polydopamine, harness of the antibacterial potentials-a review. Mater. Today Bio. 2022, 15, 100329. [Google Scholar] [CrossRef] [PubMed]
- Omer, S.; Forgách, L.; Zelkó, R.; Sebe, I. Scale-up of electrospinning: Market overview of products and devices for pharmaceutical and biomedical purposes. Pharmaceutics 2021, 13, 286. [Google Scholar] [CrossRef] [PubMed]
- Beachley, V.; Wen, X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C Mater. Biol. Appl. 2009, 29, 663–668. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Kang, I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Yu, D.G.; Wang, M.; Li, X.; Liu, X.; Zhu, L.M.; Annie Bligh, S.W. Multifluid electrospinning for the generation of complex nanostructures. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1601. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, X.; Wang, H.; Ou, W.; He, J.; Liu, M.; Lu, Z.; Hu, J.; Zheng, G.; Wu, D. Response surface methodology to explore the influence mechanism of fiber diameter in a new multi-needle electrospinning spinneret. Polymers 2024, 16, 2222. [Google Scholar] [CrossRef]
- Alam, H.A.; Dalgic, A.D.; Tezcaner, A.; Ozen, C.; Keskin, D. A comparative study of monoaxial and coaxial pcl/gelatin/poloxamer 188 scaffolds for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 339–350. [Google Scholar] [CrossRef]
- Khalf, A.; Madihally, S.V. Recent advances in multiaxial electrospinning for drug delivery. Eur. J. Pharm. Biopharm. 2017, 112, 1–17. [Google Scholar] [CrossRef]
- Yang, C.; Yu, D.G.; Pan, D.; Liu, X.K.; Wang, X.; Bligh, S.W.; Williams, G.R. Electrospun pH-sensitive core-shell polymer nanocomposites fabricated using a tri-axial process. Acta Biomater. 2016, 35, 77–86. [Google Scholar] [CrossRef]
- Wang, J.; You, C.; Xu, Y.; Xie, T.; Wang, Y. Research advances in electrospun nanofiber membranes for non-invasive medical applications. Micromachines 2024, 15, 1226. [Google Scholar] [CrossRef] [PubMed]
- Herwig, G.; Batt, T.; Clement, P.; Wick, P.; Rossi, R.M. Sterilization and filter performance of nano- and microfibrous facemask filters—Electrospinning and restoration of charges for competitive sustainable alternatives. Macromol. Rapid Commun. 2024. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Havlickova, K.; Kuzelova Kostakova, E.; Lisnenko, M.; Hauzerova, S.; Stuchlik, M.; Vrchovecka, S.; Vistejnova, L.; Molacek, J.; Lukas, D.; Prochazkova, R.; et al. The impacts of the sterilization method and the electrospinning conditions of nanofibrous biodegradable layers on their degradation and hemocompatibility behavior. Polymers 2024, 16, 1029. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Wang, C.; Xu, R.; Wang, J.; Chen, Q.; Zhu, Z.; Hu, Q.; Shen, Q.; Shen, J.W. Copper-based metal-organic frameworks for antitumor application. J. Nanobiotechnol. 2025, 23, 135. [Google Scholar] [CrossRef]
- Wuttke, S.; Zimpel, A.; Bein, T.; Braig, S.; Stoiber, K.; Vollmar, A.; Müller, D.; Haastert-Talini, K.; Schaeske, J.; Stiesch, M.; et al. Validating metal-organic framework nanoparticles for their nanosafety in diverse biomedical applications. Adv. Healthc. Mater. 2017, 6, 1600818. [Google Scholar] [CrossRef]
- Vasyukova, I.A.; Zakharova, O.V.; Kuznetsov, D.V.; Gusev, A.A. Synthesis, toxicity assessment, environmental and biomedical applications of mxenes: A review. Nanomaterials 2022, 12, 1797. [Google Scholar] [CrossRef]
- Pietroiusti, A.; Stockmann-Juvala, H.; Lucaroni, F.; Savolainen, K. Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1513. [Google Scholar] [CrossRef]
- Ema, M.; Gamo, M.; Honda, K. Developmental toxicity of engineered nanomaterials in rodents. Toxicol. Appl. Pharmacol. 2016, 299, 47–52. [Google Scholar] [CrossRef]
- Yu, Z.; Chan, W.K.; Zhang, Y.; Tan, T.T.Y. Near-infrared-II activated inorganic photothermal nanomedicines. Biomaterials 2021, 269, 120459. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, K.; Jin, F.; Bin, Y.; Li, J.; Qian, X. Advances in Photothermal Electrospinning: From Fiber Fabrication to Biomedical Application. Polymers 2025, 17, 1725. https://doi.org/10.3390/polym17131725
Liu J, Wang K, Jin F, Bin Y, Li J, Qian X. Advances in Photothermal Electrospinning: From Fiber Fabrication to Biomedical Application. Polymers. 2025; 17(13):1725. https://doi.org/10.3390/polym17131725
Chicago/Turabian StyleLiu, Jingwen, Kai Wang, Fengying Jin, Yile Bin, Jiayi Li, and Xiaofei Qian. 2025. "Advances in Photothermal Electrospinning: From Fiber Fabrication to Biomedical Application" Polymers 17, no. 13: 1725. https://doi.org/10.3390/polym17131725
APA StyleLiu, J., Wang, K., Jin, F., Bin, Y., Li, J., & Qian, X. (2025). Advances in Photothermal Electrospinning: From Fiber Fabrication to Biomedical Application. Polymers, 17(13), 1725. https://doi.org/10.3390/polym17131725