Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,759)

Search Parameters:
Keywords = power force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4047 KB  
Article
Natural Frequency and Damping Characterisation of Aerospace Grade Composite Plates
by Rade Vignjevic, Nenad Djordjevic, Javier de Caceres Prieto, Nenad Filipovic, Milos Jovicic and Gordana Jovicic
Vibration 2025, 8(4), 72; https://doi.org/10.3390/vibration8040072 (registering DOI) - 13 Nov 2025
Abstract
The natural frequencies and damping characterisation of a new aerospace grade composite material were investigated using a modified impulse method combined with the half power bandwidth method, which is applicable to the structures with a low damping. The composite material of interest was [...] Read more.
The natural frequencies and damping characterisation of a new aerospace grade composite material were investigated using a modified impulse method combined with the half power bandwidth method, which is applicable to the structures with a low damping. The composite material of interest was unidirectional carbon fibre reinforced plastic. The tests were carried out with three identical square 4.6 mm thick plates consisting of 24 plies. The composite plates were clamped along one edge in a SignalForce shaker, which applied a sinusoidal signal generated by the signal conditioner exiting the bending modes of the plates. Laser vibrometer measurements were taken at three points on the free end so that different vibrational modes could be obtained: one measurement was taken on the longitudinal symmetry plane with the other two 35 mm on either side of the symmetry plane. The acceleration of the clamp was also recorded and integrated twice to calculate its displacement, which was then subtracted from the free end displacement. Two material orientations were tested, and the first four natural frequencies were obtained in the test. Damping was determined by the half-power bandwidth method. A linear relationship between the loss factors and frequency was observed for the first two modes but not for the other two modes, which may be related to the coupling of the modes of the plate and the shaker. The experiment was also modelled by using the Finite Element Method (FEM) and implicit solver of LS Dyna, where the simulation results for the first two modes were within 15% of the experimental results. The novelty of this paper lies in the presentation of new experimental data for the natural frequencies and damping coefficients of a newly developed composite material intended for the vibration analysis of rotating components. Full article
Show Figures

Figure 1

25 pages, 1769 KB  
Review
A Review on Advanced AFM and SKPFM Data Analytics for Quantitative Nanoscale Corrosion Characterization
by Mohammad Reza Attar and Ali Davoodi
Corros. Mater. Degrad. 2025, 6(4), 58; https://doi.org/10.3390/cmd6040058 (registering DOI) - 13 Nov 2025
Abstract
Corrosion is a complex, surface-initiated process that demands nanoscale, real-time characterization to understand its initiation and propagation. Atomic force microscopy (AFM) and scanning Kelvin probe force microscopy (SKPFM) have emerged as powerful tools in corrosion science, enabling high-resolution imaging and electrochemical mapping under [...] Read more.
Corrosion is a complex, surface-initiated process that demands nanoscale, real-time characterization to understand its initiation and propagation. Atomic force microscopy (AFM) and scanning Kelvin probe force microscopy (SKPFM) have emerged as powerful tools in corrosion science, enabling high-resolution imaging and electrochemical mapping under realistic conditions. This review, inspired by pioneering work at KTH by Professors Christofer Leygraf and Jinshan Pan, highlights advanced analytical strategies that extend the capabilities of AFM and SKPFM beyond traditional line-profile analysis. Techniques such as power spectral density (PSD) analysis, multimodal Gaussian histogram fitting, statistical roughness quantification, and deconvolution methods are discussed in the context of case studies on aluminum alloys, stainless steels, magnesium alloys, biomedical implants, and protective coatings. By integrating in situ imaging, electrochemical mapping, and statistical data processing, these approaches provide deeper insights into localized corrosion, micro-galvanic coupling, and surface reactivity. Future directions include coupling AFM-based methods with high-speed imaging, machine learning, and spectro-electrochemical techniques to accelerate the development of corrosion-resistant materials and enable probabilistic diagnostics of corrosion initiation susceptibility. Full article
25 pages, 2580 KB  
Article
Cerebral Oxygenation and Cardiac Responses in Adult Women’s Rugby: A Season-Long Study
by Ben Jones, Mohammadreza Jamalifard, Mike Rogerson, Javier Andreu-Perez, Jay Perrett, Ed Hope, Lachlan Carpenter, Tracy Lewis, J. Patrick Neary, Chris E. Cooper and Sally Waterworth
Physiologia 2025, 5(4), 46; https://doi.org/10.3390/physiologia5040046 - 13 Nov 2025
Abstract
Background: Sport-related concussion is common in rugby union, yet female players remain underrepresented in research. This study examined seasonal changes in cerebral oxygenation, cardiac function, and concussion symptomology in adult female rugby players, and explored acute physiological responses following a single documented concussion. [...] Read more.
Background: Sport-related concussion is common in rugby union, yet female players remain underrepresented in research. This study examined seasonal changes in cerebral oxygenation, cardiac function, and concussion symptomology in adult female rugby players, and explored acute physiological responses following a single documented concussion. Methods: A total of 29 adult females (19 amateur rugby, 10 control) completed pre-, mid-, and end-season assessments. Measures included functional near-infrared spectroscopy (fNIRS) of the pre-frontal cortex, seismocardiography (SCG)-derived cardiac timing indices, and Sport Concussion Assessment Tool 6 (SCAT6). Group and time effects were analysed using general linear models and statistical parametric mapping. Typical error (TE) and its 90% confidence intervals (90% CI) were used to determine meaningful changes post-concussion. Results: Rugby players reported more SCAT6 symptoms (number: p = 0.006, η2p = 0.23; severity: p = 0.020, η2p = 0.17). They also had shorter systolic time (p = 0.002, η2p = 0.19) and higher twist force values (p = 0.014, η2p= 0.21) than controls. fNIRS revealed higher right-hemisphere oxyhaemoglobin (ΔO2Hb) responses for both tasks (ps < 0.001, η2p = 0.77 and η2p = 0.80) and lower activation in specific prefrontal channels. No seasonal changes occurred in global oxygenation or frequency band activity. In the exploratory single-concussion case, symptomology, SCG twist force, ΔO2Hb, and cardiac band power exceeded TE and its 90% CI at 5 days post-injury. Conclusions: The multimodal approach detected stable group-level physiology alongside localised cortical and cardiac differences, and acute changes following concussion. While these results highlight the potential of combined fNIRS and SCG measures to capture physiological disturbances, the small sample size and single-concussion case necessitate cautious interpretation. Further validation in larger, longitudinal cohorts is required before any biomarker utility can be inferred. Full article
(This article belongs to the Section Exercise Physiology)
Show Figures

Figure 1

14 pages, 1851 KB  
Article
Atomic Force Microscopy of Poliovirus Particles After Inactivation by Chemical Methods and Accelerated Electrons
by Sergey V. Kraevsky, Sergey L. Kanashenko, Alena V. Kolesnichenko, Yury Yu. Ivin, Anastasiia N. Piniaeva, Anastasiya A. Kovpak, Aydar A. Ishmukhametov, Sergey V. Budnik, Roman S. Churyukin, Oleg A. Shilov and Dmitry D. Zhdanov
Viruses 2025, 17(11), 1498; https://doi.org/10.3390/v17111498 - 12 Nov 2025
Abstract
The traditional method used in the production of inactivated vaccines is chemical inactivation using beta-propiolactone or formaldehyde. An alternative method is inactivation by irradiation. Virus inactivation is often accompanied by a change in particle shape, which can negatively affect the preservation of antigens [...] Read more.
The traditional method used in the production of inactivated vaccines is chemical inactivation using beta-propiolactone or formaldehyde. An alternative method is inactivation by irradiation. Virus inactivation is often accompanied by a change in particle shape, which can negatively affect the preservation of antigens and immunogenicity. Therefore, determining the shape and structure of the viral particle after inactivation is an important step in the development of antiviral vaccines. The poliovirus strain Sabin 2 was inactivated with a dose of 30.5 ± 0.5 kGy. in a pulsed linear electron accelerator with a power of 15 kW and electron energy of 10 MeV. Samples inactivated with beta-propiolactone or formaldehyde were used for comparison. All types of inactivation resulted in D-antigen recovery as determined by enzyme-linked immunosorbent assay. There was no statistical difference between D-antigen recovery in irradiated samples and those inactivated chemically. The shape and structure of the inactivated poliovirus particles were studied using atomic force and electron microscopy. After inactivation with beta-propiolactone or formaldehyde, a change in the native icosahedral shape was observed, with many particles appearing flattened. Specific sorption of antibodies showed that the antigen is mainly preserved in intact capsids for all type of inactivation. However, in the case of inactivation with formaldehyde and accelerated electrons, a significant number of fragments measuring 10–20 nm in height were present. Their proportion was 38 ± 2% and 17 ± 2% for inactivation with accelerated electrons and formaldehyde, respectively. The proportion of bound fragments during inactivation with beta-propiolactone was less than 1%. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

31 pages, 827 KB  
Article
Asymptotic Freedom and Vacuum Polarization Determine the Astrophysical End State of Relativistic Gravitational Collapse: Quark–Gluon Plasma Star Instead of Black Hole
by Herman J. Mosquera Cuesta, Fabián H. Zuluaga Giraldo, Wilmer D. Alfonso Pardo, Edgardo Marbello Santrich, Guillermo U. Avendaño Franco and Rafael Fragozo Larrazabal
Universe 2025, 11(11), 375; https://doi.org/10.3390/universe11110375 - 12 Nov 2025
Abstract
A general relativistic model of an astrophysical hypermassive extremely magnetized ultra-compact self-bound quark–gluon plasma (QGP: ALICE/LHC) object that is supported against its ultimate gravitational implosion by the simultaneous action of the vacuum polarization driven by nonlinear electrodynamics (NLED: ATLAS/LHC: light-by-light scattering)—the vacuum “awakening”—and [...] Read more.
A general relativistic model of an astrophysical hypermassive extremely magnetized ultra-compact self-bound quark–gluon plasma (QGP: ALICE/LHC) object that is supported against its ultimate gravitational implosion by the simultaneous action of the vacuum polarization driven by nonlinear electrodynamics (NLED: ATLAS/LHC: light-by-light scattering)—the vacuum “awakening”—and the asymptotic freedom, a key feature of quantum chromodynamics (QCD), is presented. These QCD stars can be the final figures of the equilibrium of collapsing stellar cores permeated by magnetic fields with strengths well beyond the Schwinger threshold due to being self-bound, and for which post-supernova fallback material pushes the nascent remnant beyond its stability, forcing it to collapse into a hybrid hypermassive neutron star (HHMNS). Hypercritical accretion can drive its innermost core to spontaneously break away color confinement, powering a first-order hadron-to-quark phase transition to a sea of ever-freer quarks and gluons. This core is hydro-stabilized by the steady, endlessly compression-admitting asymptotic freedom state, possibly via gluon-mediated enduring exchange of color charge among bound states, e.g., the odderon: a glueball state of three gluons, or either quark-pairing (color superconductivity) or tetraquark/pentaquark states (LHCb Coll.). This fast—at the QGP speed of sound—but incremental quark–gluon deconfinement unbinds the HHMNS’s baryons so catastrophically that transforms it, turning it inside-out, into a neat self-bound QGP star. A solution to the nonlinear Tolman–Oppenheimer–Volkoff (TOV) equation is obtained—that clarifies the nonlinear effects of both NLED and QCD on the compact object’s structure—which clearly indicates the occurrence of hypermassive QGP/QCD stars with a wide mass spectrum (0MStarQGP 7 M and beyond), for star radii (0RStarQGP24 km and beyond) with B-fields (1014BStarQGP1016 G and beyond). This unexpected feature is described by a novel mass vs. radius relation derived within this scenario. Hence, endowed with these physical and astrophysical characteristics, such QCD stars can definitively emulate what the true (theoretical) black holes are supposed to gravitationally do in most astrophysical settings. This color quark star could be found through a search for its eternal “yo-yo” state gravitational-wave emission, or via lensing phenomena like a gravitational rainbow (quantum mechanics and gravity interaction), as in this scenario, it is expected that the light deflection angle—directly influenced by the larger effective mass/radius (MStarQGP(B), RStarQGP(B)) and magnetic field of the deflecting object—increases as the incidence angle decreases, in view of the lower values of the impact parameter. The gigantic—but not infinite—surface gravitational redshift, due to NLED photon acceleration, makes the object appear dark. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

16 pages, 4287 KB  
Article
A Woven Soft Wrist-Gripper Composite End-Effector with Variable Stiffness: Design, Modeling, and Characterization
by Pan Zhou, Yangzuo Liu, Junxi Chen, Haoyuan Chen, Haili Li and Jiantao Yao
Machines 2025, 13(11), 1042; https://doi.org/10.3390/machines13111042 - 11 Nov 2025
Abstract
Soft robots often suffer from insufficient load capacity due to the softness of their materials. Existing variable stiffness technologies usually introduce rigid components, resulting in decreased flexibility and complex structures of soft robots. To address these challenges, this work proposes a novel wrist-gripper [...] Read more.
Soft robots often suffer from insufficient load capacity due to the softness of their materials. Existing variable stiffness technologies usually introduce rigid components, resulting in decreased flexibility and complex structures of soft robots. To address these challenges, this work proposes a novel wrist-gripper composite soft end-effector based on the weaving jamming principle, which features a highly integrated design combining structure, actuation, and stiffness. This end-effector is directly woven from pneumatic artificial muscles through weaving technology, which has notable advantages such as high integration, strong performance designability, lightweight construction, and high power density, effectively reconciling the technical trade-off between compliance and load capacity. Experimental results demonstrate that the proposed end-effector exhibits excellent flexibility and multi-degree-of-freedom grasping capabilities. Its variable stiffness function enhances its ability to resist external interference by 4.77 times, and its grasping force has increased by 1.7 times, with a maximum grasping force of 102 N. Further, a grasping force model for this fiber-reinforced woven structure is established, providing a solution to the modeling challenge of highly coupled structures. A comparison between theoretical and experimental data indicates that the modeling error does not exceed 7.8 N. This work offers a new approach for the design and analysis of high-performance, highly integrated soft end-effectors, with broad application prospects in unstructured environment operations, non-cooperative target grasping, and human–robot collaboration. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

20 pages, 3141 KB  
Article
Solid Lubricants for the Wheel–Rail Interface: Practical Experience and Computational Estimation of Their Effects
by Tomáš Michálek, Petr Voltr, Stanislava Liberová and Jiří Šlapák
Machines 2025, 13(11), 1041; https://doi.org/10.3390/machines13111041 - 11 Nov 2025
Abstract
This paper deals with solid lubricants for the wheel–rail interface; the topic is viewed from two different but complementary perspectives. By means of simulations, the potential contribution of these lubricants, applied for purposes of wheel flange lubrication on curved tracks, to the reduction [...] Read more.
This paper deals with solid lubricants for the wheel–rail interface; the topic is viewed from two different but complementary perspectives. By means of simulations, the potential contribution of these lubricants, applied for purposes of wheel flange lubrication on curved tracks, to the reduction in the wheel–rail wear level is estimated. Further, the relationship between frictional work in wheel–rail contact and guiding forces is investigated. The aim of this paper is to contribute to the knowledge of a physical basis for this relationship and to help understand the capability of these quantities to quantify the damaging effects of running vehicles on curved tracks. The mechanism of the observed increase in quasi-static guiding force on the leading wheel with lubricated wheel flanges is described in detail, using different quantities characterizing the steady running of a vehicle through a curve. The limitation of the contribution of wheel flange lubrication to the reduction in total frictional power on all wheels of the vehicle is also explained. In the second part, attention is paid to a practical assessment of the performance of solid lubricant samples using the testing methodology of the European standards EN 15427-2-1 and EN 16028. The aim of this part of the paper is to summarize the authors’ experience with twin-disc machine measurements, showing imperfections in the standardized testing methodology, as well as the significantly different performance of various solid lubricant samples, which is influenced by many factors. Based on their experience, further research on solid lubricant performance using wheel–rail roller rigs is outlined. Full article
(This article belongs to the Section Friction and Tribology)
Show Figures

Figure 1

13 pages, 9923 KB  
Article
Analysis of Hydrodynamic Behavior of the Floating Tapered Trash Intercepting Net in Currents
by Gangjie Yu, Zhenzhou Sun, Zhendong Lin, Tiaojian Xu and Mingxiao Xie
Water 2025, 17(22), 3216; https://doi.org/10.3390/w17223216 - 11 Nov 2025
Abstract
Ensuring the structural reliability and interception efficiency of trash-intercepting nets (TINs) is crucial for the security of the water withdrawal engineering of the nuclear power station (NPS). The numerical model of a flexible TIN using the lumped mass method was developed, and its [...] Read more.
Ensuring the structural reliability and interception efficiency of trash-intercepting nets (TINs) is crucial for the security of the water withdrawal engineering of the nuclear power station (NPS). The numerical model of a flexible TIN using the lumped mass method was developed, and its high accuracy in simulating the tension distribution of the net and its deformation was validated through physical model tests. A systematic analysis was performed to investigate the effect of key parameters (i.e., water depth, intercepting rate, and diameter of longitudinal/transversal ropes) on the structural response, including the total anchor force, the main cable tension, the rope tension, and the netting tension. The results show that the tension forces acting on the transversal ropes are dramatically larger than those acting on the longitudinal ropes, and the net experiences the smallest tension force when the diameter of transversal ropes is the same as the diameter of the longitudinal ropes. This study is useful for the safety design of the TIN of the NPS. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

16 pages, 1425 KB  
Article
Combining Physics and Machine Learning: Hybrid Models for Predicting Interatomic Potentials
by Kaoutar El Haloui, Nicolas Thome and Nicolas Sisourat
Atoms 2025, 13(11), 89; https://doi.org/10.3390/atoms13110089 - 10 Nov 2025
Viewed by 281
Abstract
Constructing accurate Potential Energy Surfaces (PES) is a central task in molecular modeling, as it determines the forces governing nuclear motion and enables reliable quantum dynamics simulations. While ab initio methods can provide accurate PES, they are computationally prohibitive for extensive applications. Alternatively, [...] Read more.
Constructing accurate Potential Energy Surfaces (PES) is a central task in molecular modeling, as it determines the forces governing nuclear motion and enables reliable quantum dynamics simulations. While ab initio methods can provide accurate PES, they are computationally prohibitive for extensive applications. Alternatively, analytical physics-based models such as the Morse potential offer efficient solutions but are limited by their rigidity and poor generalization to excited states. In recent years, neural networks have emerged as powerful tools for determining PES, due to their universal function approximation capabilities, but they require large training datasets. In this work, we investigate hybrid-residual modeling approaches that combine physics-based potentials with neural network corrections, aiming to leverage both physical priors and data adaptability. Specifically, we compare three hybrid models—APHYNITY, Sequential Phy-ML, and PhysiNet—in their ability to reconstruct the potential energy curve of the ground and first excited states of the hydrogen molecule. Each model integrates a simplified physical representation with a neural component that learns the discrepancies from accurate reference data. Our findings reveal that hybrid models significantly outperform both standalone neural networks and pure physics-based models, especially in low-data regimes. Notably, APHYNITY and Sequential Phy-ML exhibit better generalization and maintain accurate estimation of physical parameters, underscoring the benefits of explicit physics incorporation. Full article
(This article belongs to the Special Issue Artificial Intelligence for Quantum Sciences)
Show Figures

Figure 1

15 pages, 250 KB  
Article
‘If the Father Says So, That’s How It Is’: Meanings Ascribed to the Notion of the Military Family
by Janja Vuga Beršnak, Alenka Švab and Andreja Živoder
Soc. Sci. 2025, 14(11), 656; https://doi.org/10.3390/socsci14110656 - 7 Nov 2025
Viewed by 280
Abstract
This paper builds on findings from the first systematic study of military families in Slovenia (2019–2022) to critically examine how military families are perceived and constructed within broader sociocultural and institutional frameworks. Using perspectives from family studies, military sociology, defense studies, and critical [...] Read more.
This paper builds on findings from the first systematic study of military families in Slovenia (2019–2022) to critically examine how military families are perceived and constructed within broader sociocultural and institutional frameworks. Using perspectives from family studies, military sociology, defense studies, and critical military theory, the study investigates whether these perceptions continue to reproduce the traditional binary logic that positions the family as a feminized, private domain and the military as a masculinized, public domain, or whether late modern discourses have begun to disrupt these dichotomies. The analysis focuses on the intersection of gender roles, family practices, parental responsibilities, and the symbolic and practical meanings ascribed to the notion of the “military family.” We used a reflexive approach to thematic analysis, combining qualitative interviews with young adults (aged > 18) who grew up in military families (14 participants), interviews with military and civilian experts (41 participants), survey data from service members, their spouses, and civilian respondents (411 and 125 open-ended responses from separate surveys). Findings reveal significant differences in how military families are understood and experienced. More critically, the study highlights how military institutional power and its greediness extend into the familial realm, not only through logistical demands, but also through the normalization of military values, hierarchical gendered expectations, and parenting practices. Full article
(This article belongs to the Section Family Studies)
25 pages, 4931 KB  
Review
Bioinspired Drilling for Extraterrestrial Applications
by Gal-Erdene Battsengel, Noune Melkoumian, David Harvey and Rini Akmeliawati
Biomimetics 2025, 10(11), 752; https://doi.org/10.3390/biomimetics10110752 - 7 Nov 2025
Viewed by 314
Abstract
This review presents the novel synthesis of nature-inspired drilling strategies specifically tailored for extraterrestrial environments, where conventional technologies fail under the environmental conditions and power and mass constraints. Biomimetic drilling, inspired by insects, mollusks, reptiles, and other organisms, offers novel solutions for extraterrestrial [...] Read more.
This review presents the novel synthesis of nature-inspired drilling strategies specifically tailored for extraterrestrial environments, where conventional technologies fail under the environmental conditions and power and mass constraints. Biomimetic drilling, inspired by insects, mollusks, reptiles, and other organisms, offers novel solutions for extraterrestrial subsurface exploration. Numerous organisms efficiently penetrate materials with low energy, using little force, and adapt to flexible substrates, which are essential capabilities for use off this planet. Traditional rotary and percussive drills do not function well under microgravity, at the end of the temperature spectrum, or in low energy and mass environments, such as landers which are typically under 300 kg and 200 W of power available. Nature-inspired approaches such as the reciprocating carpenter bee style have been shown to reduce overhead forces by as much as 50%; clam-like fluidization reduces drag by 90%; and sandfish-inspired methods improve mobility in granular media by 40%. These also improve the in situ resource utilization (ISRU) approaches for efficient sampling, water ice extraction, and planetary surface operations. This paper focuses on bio-drilling with other biological models, their engineering analogs, and exploration models for off-Earth use. Based on this synthesis, the paper recommends prioritizing dual-reciprocating and oscillatory mechanisms for near-term missions, while pursuing hybrid, AI-driven, and wear-resistant designs for long-term exploration. These approaches will help to improve penetration efficiency, reduce power demands, and extend the drilling system’s lifespan in challenging extraterrestrial environments. Full article
(This article belongs to the Special Issue Biomimetic Approaches and Materials in Engineering)
Show Figures

Figure 1

30 pages, 2656 KB  
Article
A Political Ecology of Fisheries Regulation and Community Resilience in the Coastal Mississippi River Delta, Southeast Louisiana, U.S.A.
by Grant S. McCall
Water 2025, 17(22), 3187; https://doi.org/10.3390/w17223187 - 7 Nov 2025
Viewed by 292
Abstract
The estuaries of the Mississippi River Delta are among the most productive coastal ecosystems in the world and have attracted human fishing communities for centuries. Beginning in the early 20th century, the oil and gas industry also emerged as a powerful economic force [...] Read more.
The estuaries of the Mississippi River Delta are among the most productive coastal ecosystems in the world and have attracted human fishing communities for centuries. Beginning in the early 20th century, the oil and gas industry also emerged as a powerful economic force in exploiting coastal fossil fuel deposits. This paper reviews the complex history of the oil and gas industry in Southeast Louisiana, including its relationships with political corruption, inequality, pollution, and environmental catastrophe; and also its role in supporting coastal fishing communities with complementary economic opportunities. In the 21st century, a series of disasters—above all Hurricane Katrina in 2005 and the B.P. oil spill in 2010—drew attention to the risks inherent to the region, as well as its crucial role in buffering the impacts of tropical storms for inland urban communities. This paper examines the evolution of fisheries regulations and their consequences of small-scale fishers, focusing especially on the banning of gill net use in 1990s. By combining historical information with ethnographic interviews and participant observation, this paper examines the complex political–economic forces involved in shifting regulatory frameworks and policies, and it shows their negative consequences for fishing communities facing an existentially threatening combination of coastal erosion, fisheries declines, and various macroeconomic headwinds. This paper argues that resilient coastal communities are crucial to combating the environmental problems facing coastal regions and that rethinking fisheries regulations may be a dynamic tool in enhancing community resilience. Full article
(This article belongs to the Special Issue Coastal Ecology and Fisheries Management)
Show Figures

Figure 1

27 pages, 889 KB  
Article
BLDC Motor Models for Multi-Domain Modeling of Electric Power Tools
by Paweł Kocwa, Andrzej Tutaj, Tomasz Drabek and Paweł Piątek
Energies 2025, 18(21), 5851; https://doi.org/10.3390/en18215851 - 6 Nov 2025
Viewed by 296
Abstract
Accurate modeling of Brushless DC (BLDC) motors is crucial for the multi-domain simulation of complex electromechanical systems like electric torque tools, especially when high fidelity is required for Model-Based Design (MBD) and controller validation. Standard BLDC models often employ simplifications that may not [...] Read more.
Accurate modeling of Brushless DC (BLDC) motors is crucial for the multi-domain simulation of complex electromechanical systems like electric torque tools, especially when high fidelity is required for Model-Based Design (MBD) and controller validation. Standard BLDC models often employ simplifications that may not capture critical operational details. This paper presents a comparative analysis of four distinct BLDC motor simulation models: two based on ready-to-use MATLAB/Simulink/Simscape Electrical library blocks (Specialized Power Systems/Electrical Machines/Permanent Magnet Synchronous Machine and Electromechanical/Permanent Magnet/BLDC) and two custom models developed by the authors at AGH University. The models are evaluated based on their structure, underlying equations, and performance in simulating typical operational scenarios of an electric torque tool. Key assessment criteria include the ability to implement realistic (e.g., tabulated, non-ideal) back-EMF (electromotive force) profiles, incorporate cogging torque, model commutation effects, and flexibility for modification. Simulation results indicate that while all models can be suitable for basic control design, the custom-developed models offer greater flexibility and fidelity in representing detailed motor phenomena such as irregular back-EMF waveforms and cogging torque, making them better suited for advanced, high-precision applications. Conversely, standard library models, particularly the one underlying the PMSM block, exhibit limitations in custom back-EMF implementation. This study concludes by recommending models based on specific application requirements and outlines directions for future enhancements, including thermal modeling and iron loss representation. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

20 pages, 2424 KB  
Article
An Aerodynamic Optimization Approach for Wind Turbine Blades Using Proper Generalized Decomposition
by Nacer Eddine Boumezbeur and Arezki Smaili
Energies 2025, 18(21), 5846; https://doi.org/10.3390/en18215846 - 6 Nov 2025
Viewed by 373
Abstract
A new approach for optimizing the blade profile of a horizontal axis wind turbine is proposed in this paper, based on the combination of the Blade Element Momentum (BEM) method and Proper Generalized Decomposition (PGD). The resulting algorithm was implemented in MATLAB (R2010A). [...] Read more.
A new approach for optimizing the blade profile of a horizontal axis wind turbine is proposed in this paper, based on the combination of the Blade Element Momentum (BEM) method and Proper Generalized Decomposition (PGD). The resulting algorithm was implemented in MATLAB (R2010A). To investigate the applicability of the proposed BEM-PGD method, simulations were conducted using the NREL phase VI turbine. By focusing on the tangential force coefficient as a parametrized solution, the study demonstrated a 21.7% improvement in the power coefficient relative to the baseline blade corresponding to a 20 kW turbine, while the tip speed ratio (TSR) ranged from 1 to 12, as assessed through a quantitative metric comparing the optimized and reference curves. These advancements are attributed to the algorithm’s capability to parameterize the solution and to select the appropriate airfoil type, thickness, chord, and twist, allowing for an optimized and realistic blade design. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

34 pages, 578 KB  
Article
Deepfakes and the Geneva Conventions: Does Deceptive AI-Generated Misinformation Directed at an Enemy During Armed Conflict Violate International Humanitarian Law? A Critical Discussion
by Berkant Akkuş
Laws 2025, 14(6), 83; https://doi.org/10.3390/laws14060083 - 5 Nov 2025
Viewed by 570
Abstract
‘Deepfakes’ and other forms of digital communications disinformation are now on the virtual frontlines of many armed conflicts. Military commanders can potentially gain significant tactical advantages by misleading enemy forces, opposing governments, and civilian populations into believing X when Y is the true [...] Read more.
‘Deepfakes’ and other forms of digital communications disinformation are now on the virtual frontlines of many armed conflicts. Military commanders can potentially gain significant tactical advantages by misleading enemy forces, opposing governments, and civilian populations into believing X when Y is the true state of affairs. Distinct from military propaganda, deliberate deceptions and subterfuge have long been part of warfare. However, a powerful claim is advanced that deepfakes such as announcing surrender, truce declarations, or similar messages that place soldiers and civilians at greater risk are international humanitarian law (IHL) violations, notably under the 1907 Hague Convention and the 1977 Additional Protocol I to the Geneva Conventions. This four-section critical discussion considers whether, or to what extent, deepfakes are IHL compliant. Selected examples taken from the ongoing Russia–Ukraine war are highlighted to illustrate the potentially grave dangers that deepfakes represent for innocent civilian populations. IHL reform recommendations are made that would reduce deepfake harm—if such reforms are embraced by the international community (an admittedly doubtful prospect). Full article
Show Figures

Figure 1

Back to TopTop