Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (71,732)

Search Parameters:
Keywords = potential treatments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1054 KiB  
Review
Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review
by Beatriz Teixeira, Helena M. R. Gonçalves and Paula Martins-Lopes
Biosensors 2025, 15(8), 513; https://doi.org/10.3390/bios15080513 (registering DOI) - 7 Aug 2025
Abstract
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on [...] Read more.
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on the healthcare systems. Thus, a number of novel technological approaches have emerged in order to face some of the pivotal questions still associated with IBD. In navigating the intricate landscape of IBD, biosensors act as indispensable allies, bridging the gap between traditional diagnostic methods and the evolving demands of precision medicine. Continuous progress in biosensor technology holds the key to transformative breakthroughs in IBD management, offering more effective and patient-centric healthcare solutions considering the One Health Approach. Here, we will delve into the landscape of biomarkers utilized in the diagnosis, monitoring, and management of IBD. From well-established serological and fecal markers to emerging genetic and epigenetic markers, we will explore the role of these biomarkers in aiding clinical decision-making and predicting treatment response. Additionally, we will discuss the potential of novel biomarkers currently under investigation to further refine disease stratification and personalized therapeutic approaches in IBD. By elucidating the utility of biosensors across the spectrum of IBD care, we aim to highlight their importance as valuable tools in optimizing patient outcomes and reducing healthcare costs. Full article
(This article belongs to the Special Issue Feature Papers of Biosensors)
Show Figures

Figure 1

13 pages, 301 KiB  
Review
The Impact of Genital Infections on Women’s Fertility
by Sara Occhipinti, Carla Ettore, Giosuè Giordano Incognito, Chiara Gullotta, Dalila Incognito, Roberta Foti, Giuseppe Nunnari and Giuseppe Ettore
Acta Microbiol. Hell. 2025, 70(3), 33; https://doi.org/10.3390/amh70030033 (registering DOI) - 7 Aug 2025
Abstract
Sexually transmitted infections (STIs) are a significant global health concern, affecting millions of people worldwide, particularly sexually active adolescents and young adults. These infections, caused by various pathogens, including bacteria, viruses, parasites, and fungi, can have profound implications for women’s reproductive health and [...] Read more.
Sexually transmitted infections (STIs) are a significant global health concern, affecting millions of people worldwide, particularly sexually active adolescents and young adults. These infections, caused by various pathogens, including bacteria, viruses, parasites, and fungi, can have profound implications for women’s reproductive health and fertility. This review explores the role of vaginal and uterine infections in women’s infertility, focusing on the most common pathogens and their impact on reproductive outcomes. Bacterial infections, such as those caused by intracellular bacteria (Mycoplasma, Ureaplasma, and Chlamydia), Neisseria gonorrhoeae, and bacterial vaginosis, are among the most prevalent causes of infertility in women. Studies have shown that these infections can lead to pelvic inflammatory disease, tubal occlusion, and endometrial damage, all of which can impair fertility. Mycobacterium tuberculosis, in particular, is a significant cause of genital tuberculosis and infertility in high-incidence countries. Viral infections, such as Human papillomavirus (HPV) and Herpes simplex virus (HSV), can also affect women’s fertility. While the exact role of HPV in female infertility remains unclear, studies suggest that it may increase the risk of endometrial implantation issues and miscarriage. HSV may be associated with unexplained infertility. Parasitic infections, such as trichomoniasis and schistosomiasis, can directly impact the female reproductive system, leading to infertility, ectopic pregnancy, and other complications. Fungal infections, such as candidiasis, are common but rarely have serious outcomes related to fertility. The vaginal microbiome plays a crucial role in maintaining reproductive health, and alterations in the microbial balance can increase susceptibility to STIs and infertility. Probiotics have been proposed as a potential therapeutic strategy to restore the vaginal ecosystem and improve fertility outcomes, although further research is needed to establish their efficacy. In conclusion, vaginal and uterine infections contribute significantly to women’s infertility, with various pathogens affecting the reproductive system through different mechanisms. Early diagnosis, appropriate treatment, and preventive measures are essential to mitigate the impact of these infections on women’s reproductive health and fertility. Full article
14 pages, 1407 KiB  
Article
Black Soldier Fly Frass Fertilizer Outperforms Traditional Fertilizers in Terms of Plant Growth in Restoration in Madagascar
by Cédrique L. Solofondranohatra, Tanjona Ramiadantsoa, Sylvain Hugel and Brian L. Fisher
Sustainability 2025, 17(15), 7152; https://doi.org/10.3390/su17157152 (registering DOI) - 7 Aug 2025
Abstract
Black soldier fly frass (BSFF) is a nutrient-rich organic byproduct with growing potential as a sustainable fertilizer. While its effects on crops have been studied, its impact on tree seedling development for reforestation remains poorly understood. This study evaluated the effect of BSFF [...] Read more.
Black soldier fly frass (BSFF) is a nutrient-rich organic byproduct with growing potential as a sustainable fertilizer. While its effects on crops have been studied, its impact on tree seedling development for reforestation remains poorly understood. This study evaluated the effect of BSFF on the growth and survival of two native Malagasy tree species: the fast-growing Dodonaea madagascariensis and the slow-growing Verpis macrophylla. A six-month nursery experiment tested three BSFF application rates (half-, one-, and two-fold nitrogen equivalence), along with cattle manure, synthetic NPK, and a no-fertilizer control. The survival was highest in the half-fold BSFF (95% for D. madagascariensis, 87.5% for V. macrophylla) and lowest in BSFF two-fold (0% and 22.5%, respectively) treatments. NPK also significantly reduced the survival (5% for D. madagascariensis, 17.5% for V. macrophylla). The growth responses were most pronounced in D. madagascariensis, where the BSFF half- and one-fold treatments led to height growth rates that were 2.0–2.7 times higher than that of the control, cattle manure, and NPK treatments, and diameter growth that was 1.8–2.3 times higher. The biomass accumulation was also significantly higher under the BSFF half- and one-fold treatments for D. madagascariensis. In contrast, V. macrophylla showed limited response to the treatments. These findings indicate that calibrated BSFF application can enhance seedling performance in reforestation efforts, particularly for fast-growing species. Notably, the growth rate of D. madagascariensis doubled (in terms of cm/month) under optimal BSFF treatment—a critical advantage, as time is a key constraint in reforestation and faster growth directly supports more efficient forest restoration. This highlights BSFF’s potential as a sustainable and locally available input for forest restoration in Madagascar. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

17 pages, 5600 KiB  
Article
From Marshes to Mines: Germination and Establishment of Crinum bulbispermum on Gold Mine Tailings
by Vincent C. Clarke, Sarina Claassens, Dirk P. Cilliers and Stefan J. Siebert
Plants 2025, 14(15), 2443; https://doi.org/10.3390/plants14152443 (registering DOI) - 7 Aug 2025
Abstract
The growth potential of Crinum bulbispermum was evaluated on gold mine tailings. The primary objectives were to model the species’ climatic niche in relation to gold mining regions, assess its germination success on tailings, and compare seedling survival and growth on tailings versus [...] Read more.
The growth potential of Crinum bulbispermum was evaluated on gold mine tailings. The primary objectives were to model the species’ climatic niche in relation to gold mining regions, assess its germination success on tailings, and compare seedling survival and growth on tailings versus other soil types. Species distribution modelling identified the South African Grassland Biome on the Highveld (1000+ m above sea level), where the majority of gold mines are located, as highly suitable for the species. Pot trials demonstrated above 85% germination success across all soil treatments, including gold mine tailings, indicating its potential for restoration through direct seeding. An initial seedling establishment rate of 100% further demonstrated the species’ resilience to mine tailings, which are often seasonally dry, nutrient-poor, and may contain potentially toxic metals. However, while C. bulbispermum was able to germinate and establish in mine tailings, long-term growth potential (over 12 months) was constrained by low organic carbon content (0.11%) and high salinity (194.50 mS/m). These findings underscore the critical role of soil chemistry and organic matter in supporting long-term plant establishment and growth on gold tailings. Building on previous research, this study confirms the ability of this thick-rooted geophyte to tolerate chemically extreme soil conditions. Crinum bulbispermum shows promise for phytostabilization and as a potential medicinal plant crop on tailings. However, future research on microbial community interactions and soil amendment strategies is essential to ensure its long-term sustainability. Full article
Show Figures

Figure 1

28 pages, 3251 KiB  
Article
Predictors of ISUP Grade Group Discrepancies Between Biopsy and Radical Prostatectomy: A Single-Center Analysis of Clinical, Imaging, and Histopathological Parameters
by Victor Pasecinic, Dorin Novacescu, Flavia Zara, Cristina-Stefania Dumitru, Vlad Dema, Silviu Latcu, Razvan Bardan, Alin Adrian Cumpanas, Raluca Dumache, Talida Georgiana Cut, Hossam Ismail and Ademir Horia Stana
Cancers 2025, 17(15), 2595; https://doi.org/10.3390/cancers17152595 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: ISUP grade group discordance between prostate biopsy and radical prostatectomy (RP) impacts treatment decisions in over a third (~25–40%) of prostate cancer (PCa) patients. We aimed to identify ISUP grade migration predictors and assess the impact of preoperative imaging (MRI) in [...] Read more.
Background/Objectives: ISUP grade group discordance between prostate biopsy and radical prostatectomy (RP) impacts treatment decisions in over a third (~25–40%) of prostate cancer (PCa) patients. We aimed to identify ISUP grade migration predictors and assess the impact of preoperative imaging (MRI) in a contemporary Romanian PCa cohort. Methods: We retrospectively analyzed 142 PCa patients undergoing RP following biopsy between January 2021 and December 2024 at Pius Brinzeu County Hospital, Timișoara: 90 without and 52 with preoperative MRI. Clinical parameters, MRI findings (PI-RADS), and biopsy characteristics were evaluated. Machine learning models (gradient boosting, random forest) were developed with SHAP analysis for interpretability. Results: Grade migration occurred in 69/142 patients (48.6%): upstaging in 55 (38.7%) and downstaging in 14 (9.9%). In the non-MRI cohort, 37/90 (41.1%) were upstaged and 9/90 (10.0%) were downstaged, versus 18/52 (34.6%) upstaged and 5/52 (9.6%) downstaged in the MRI cohort. The MRI group showed a 6.5% absolute reduction in upstaging (34.6% vs. 41.1%), a promising non-significant trend (p = 0.469) that requires further investigation. Grade 1 patients showed the highest upstaging (69.4%), while Grades 3–4 showed the highest downstaging (11/43, 25.6%). PI-RADS 4 lesions had the highest upstaging (43.5%). PSA density > 0.20 ng/mL2 emerged as the strongest predictor. Gradient boosting achieved superior performance (AUC = 0.812) versus logistic regression (AUC = 0.721), representing a 13% improvement in discrimination. SHAP analysis revealed PSA density as the most influential (importance: 0.287). Grade migration associated with adverse pathology: extracapsular extension (52.7% vs. 28.7%, p = 0.008) and positive margins (38.2% vs. 21.8%, p = 0.045). Conclusions: ISUP grade migration affects 48.6% of Romanian patients, with 38.7% upstaged and 9.9% downstaged. The 69.4% upstaging in Grade 1 patients emphasizes the need for enhanced risk stratification tools, while 10% downstaging suggests potential overtreatment. Machine learning with SHAP analysis provides superior predictive performance (13% AUC improvement) while offering clinically interpretable risk assessments. PSA density dominates risk assessment, while PI-RADS 4 lesions warrant closer scrutiny than previously recognized. Full article
(This article belongs to the Special Issue Prostate Cancer: Contemporary Standards and Challenges)
Show Figures

Figure 1

13 pages, 1488 KiB  
Article
Validation of a Quantitative Ultrasound Texture Analysis Model for Early Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: A Prospective Serial Imaging Study
by Daniel Moore-Palhares, Lakshmanan Sannachi, Adrian Wai Chan, Archya Dasgupta, Daniel DiCenzo, Sonal Gandhi, Rossanna Pezo, Andrea Eisen, Ellen Warner, Frances Wright, Nicole Look Hong, Ali Sadeghi-Naini, Mia Skarpathiotakis, Belinda Curpen, Carrie Betel, Michael C. Kolios, Maureen Trudeau and Gregory J. Czarnota
Cancers 2025, 17(15), 2594; https://doi.org/10.3390/cancers17152594 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Patients with breast cancer who do not achieve a complete response to neoadjuvant chemotherapy (NAC) may benefit from intensified adjuvant systemic therapy. However, such treatment escalation is typically delayed until after tumour resection, which occurs several months into the treatment course. Quantitative [...] Read more.
Background/Objectives: Patients with breast cancer who do not achieve a complete response to neoadjuvant chemotherapy (NAC) may benefit from intensified adjuvant systemic therapy. However, such treatment escalation is typically delayed until after tumour resection, which occurs several months into the treatment course. Quantitative ultrasound (QUS) can detect early microstructural changes in tumours and may enable timely identification of non-responders during NAC, allowing for earlier treatment intensification. In our previous prospective observational study, 100 breast cancer patients underwent QUS imaging before and four times during NAC. Machine learning algorithms based on QUS texture features acquired in the first week of treatment were developed and achieved 78% accuracy in predicting treatment response. In the current study, we aimed to validate these algorithms in an independent prospective cohort to assess reproducibility and confirm their clinical utility. Methods: We included breast cancer patients eligible for NAC per standard of care, with tumours larger than 1.5 cm. QUS imaging was acquired at baseline and during the first week of treatment. Tumour response was defined as a ≥30% reduction in target lesion size on the resection specimen compared to baseline imaging. Results: A total of 51 patients treated between 2018 and 2021 were included (median age 49 years; median tumour size 3.6 cm). Most were estrogen receptor–positive (65%) or HER2-positive (33%), and the majority received dose-dense AC-T (n = 34, 67%) or FEC-D (n = 15, 29%) chemotherapy, with or without trastuzumab. The support vector machine algorithm achieved an area under the curve of 0.71, with 86% accuracy, 91% specificity, 50% sensitivity, 93% negative predictive value, and 43% positive predictive value for predicting treatment response. Misclassifications were primarily associated with poorly defined tumours and difficulties in accurately identifying the region of interest. Conclusions: Our findings validate QUS-based machine learning models for early prediction of chemotherapy response and support their potential as non-invasive tools for treatment personalization and clinical trial development focused on early treatment intensification. Full article
(This article belongs to the Special Issue Clinical Applications of Ultrasound in Cancer Imaging and Treatment)
Show Figures

Figure 1

16 pages, 1769 KiB  
Review
SGLT2 Inhibitors and GLP-1 Receptor Agonists in Cardiovascular–Kidney–Metabolic Syndrome
by Aryan Gajjar, Arvind Kumar Raju, Amani Gajjar, Mythili Menon, Syed Asfand Yar Shah, Sourbha Dani and Andrew Weinberg
Biomedicines 2025, 13(8), 1924; https://doi.org/10.3390/biomedicines13081924 (registering DOI) - 7 Aug 2025
Abstract
Cardiovascular–Kidney–Metabolic (CKM) syndrome symbolizes a single pathophysiologic entity including obesity, type 2 diabetes, chronic kidney disease, and cardiovascular disease. These conditions altogether accelerate adverse outcomes when they coexist. Recent evidence has shown that the function of glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium–glucose [...] Read more.
Cardiovascular–Kidney–Metabolic (CKM) syndrome symbolizes a single pathophysiologic entity including obesity, type 2 diabetes, chronic kidney disease, and cardiovascular disease. These conditions altogether accelerate adverse outcomes when they coexist. Recent evidence has shown that the function of glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium–glucose cotransporter-2 inhibitors (SGLT2i) alleviate stress on multiple organs. SGLT2i has been demonstrated to benefit heart failure, hemodynamic regulation, and renal protection while GLP-1RA on the other hand has been shown to demonstrate a strong impact on glycemic management, weight loss, and atherosclerotic cardiovascular disease. This review will aim to understand and evaluate the mechanistic rationalization, clinical evidence, and the potential therapeutic treatment of SGLT2 inhibitors and GLP-1 receptor agonists to treat individuals who have CKM syndrome. This analysis also assesses whether combination therapy can be a synergistic approach that may benefit patients but is still underutilized because of the lack of clear guidelines, the associated costs, and disparities in accessibility. Therefore, in this review, we will be discussing the combination therapy’s additive and synergistic effects, current recommendations and clinical evidence, and mechanistic insights of these GLT2 inhibitors and GLP-1 receptor agonists in CKM syndrome patients. Overall, early and combination usage of GLP-1RA and SGLT2i may be essential to demonstrating a significant shift in modern cardiometabolic therapy toward patient-centered care. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

15 pages, 1253 KiB  
Article
Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace
by Gabrielė Kaminskytė, Jolita Jagelavičiūtė, Loreta Bašinskienė, Michail Syrpas and Dalia Čižeikienė
Appl. Sci. 2025, 15(15), 8722; https://doi.org/10.3390/app15158722 (registering DOI) - 7 Aug 2025
Abstract
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the [...] Read more.
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the study was to evaluate the impact of modification methods, such as enzymatic hydrolysis and supercritical carbon dioxide extraction (SFE-CO2), on the chemical composition and technological properties of SBP. SBP and SBP obtained after SFE-CO2 (SBP-CO2) were enzymatically modified using Pectinex® Ultra Tropical, Viscozyme® L, and Celluclast® 1.5 L (Novozyme A/S, Bagsværd, Denmark). The SBP’s main constituent was insoluble dietary fiber (IDF), followed by crude proteins and lipids (respectively, 58.7, 21.1 and 12.6 g/100 in d.m.). SFE-CO2 reduced the lipid content (by 85.7%) in the pomace while increasing protein and TDF content. Enzymatic hydrolysis decreased the content of both soluble dietary fiber (SDF) and IDF, and increased the content of mono- and oligosaccharides as well as free phenolics, depending on the commercial enzyme preparation used in SBP and SBP-CO2 samples. Celluclast® 1.5 L was the most effective in hydrolyzing IDF, while Viscozyme® L and Pectinex® Ultra Tropical were the most effective in degrading SDF. Enzymatic treatment improved water swelling capacity, water retention capacity, water solubility index, oil retention capacity of SBP and SBP-CO2; however, it did not have a significant effect on the stability of the emulsions. Modification of SBP by SFE-CO2 effectively increased WSC and WSI, however it reduced WRC. These findings highlight the potential of targeted modifications to enhance the nutritional and technological properties of SBP for functional food applications. Full article
Show Figures

Figure 1

14 pages, 2127 KiB  
Article
Photodegradation of Polyethylene Terephthalate and Bis(2-hydroxyethyl) Terephthalate Using Excimer Lamps and Hydrogen Peroxide: A Strategy for PET–Derived Waste Treatment
by Ángel Navarro-García, María Gómez, María D. Murcia, Elisa Gómez, Asunción M. Hidalgo, Luis A. Dorado and Josefa Bastida
Molecules 2025, 30(15), 3302; https://doi.org/10.3390/molecules30153302 (registering DOI) - 7 Aug 2025
Abstract
Polyethylene terephthalate (PET) is a widely used polymer whose accumulation in the environment poses a significant pollution challenge. This study explores the degradation of bis(2-hydroxyethyl) terephthalate (BHET) and terephthalic acid (TPA)—two monomers commonly produced during PET hydrolysis and widely used as intermediates in [...] Read more.
Polyethylene terephthalate (PET) is a widely used polymer whose accumulation in the environment poses a significant pollution challenge. This study explores the degradation of bis(2-hydroxyethyl) terephthalate (BHET) and terephthalic acid (TPA)—two monomers commonly produced during PET hydrolysis and widely used as intermediates in PET recycling—through Advanced Oxidation Processes (AOPs) employing KrCl (222 nm) and XeBr (283 nm) excimer lamps in the presence of hydrogen peroxide (H2O2). The effects of the H2O2/monomer mass ratio, initial monomer concentrations, and reaction volume on degradation efficiency were systematically evaluated. The results demonstrate that excimer lamp technology, particularly KrCl, holds promising potential for the effective degradation of both BHET and TPA, and thus represents a viable strategy for PET waste treatment. Full article
Show Figures

Figure 1

21 pages, 4164 KiB  
Article
Characterization and Functional Analysis of the FBN Gene Family in Cotton: Insights into Fiber Development
by Sunhui Yan, Liyong Hou, Liping Zhu, Zhen Feng, Guanghui Xiao and Libei Li
Biology 2025, 14(8), 1012; https://doi.org/10.3390/biology14081012 (registering DOI) - 7 Aug 2025
Abstract
Fibrillins (FBNs) are indispensable for plant growth and development, orchestrating multiple physiological processes. However, the precise functional role of FBNs in cotton fiber development remains uncharacterized. This study reports a genome-wide characterization of the FBN gene family in cotton. A total of 28 [...] Read more.
Fibrillins (FBNs) are indispensable for plant growth and development, orchestrating multiple physiological processes. However, the precise functional role of FBNs in cotton fiber development remains uncharacterized. This study reports a genome-wide characterization of the FBN gene family in cotton. A total of 28 GhFBN genes were identified in upland cotton, with systematic analyses of their phylogenetic relationships, protein motifs, gene structures, and hormone-responsive cis-regulatory elements. Expression profiling of GhFBN1A during fiber development revealed stage-specific activity across the developmental continuum. Transcriptomic analyses following hormone treatments demonstrated upregulation of GhFBN family members, implicating their involvement in hormone-mediated regulatory networks governing fiber cell development. Collectively, this work presents a detailed molecular characterization of cotton GhFBNs and establishes a theoretical foundation for exploring their potential applications in cotton breeding programs aimed at improving fiber quality. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

20 pages, 4891 KiB  
Article
Electrochemical Behavior of Thermomechanically Processed UNS S41003 Steel in Acidic Chloride Media: Assessing Martensitic Transformation Effects
by Carlos H. B. Queiroz, Davi A. Marques, Otílio B. F. Diógenes, Daniel de C. Girão, Roberta B. Vasques, Adolfo K. do N. Viana, Gemma Fargas, Mauro A. C. Florez and Walney S. Araújo
Metals 2025, 15(8), 880; https://doi.org/10.3390/met15080880 (registering DOI) - 7 Aug 2025
Abstract
UNS S41003 is a low-cost, low-carbon ferritic stainless steel that exhibits moderate corrosion resistance but limited mechanical performance. This study evaluates the electrochemical behavior of untreated and thermomechanically treated UNS S41003 samples. Corrosion tests were conducted in acidic electrolytes with varying pH to [...] Read more.
UNS S41003 is a low-cost, low-carbon ferritic stainless steel that exhibits moderate corrosion resistance but limited mechanical performance. This study evaluates the electrochemical behavior of untreated and thermomechanically treated UNS S41003 samples. Corrosion tests were conducted in acidic electrolytes with varying pH to simulate aggressive environments relevant to industrial and structural applications where exposure to acidic media and corrosive pollutants occurs. Potentiodynamic polarization curves for all samples displayed passive regions typically associated with protective oxide film formation; however, localized pitting corrosion was detected post-test. Electrochemical impedance spectroscopy indicated a marked decrease in corrosion resistance as pH decreased. The corrosion resistance of the treated alloy remained comparable to that of the untreated condition, indicating that thermomechanical processing did not detrimentally affect passivity or corrosion performance under the tested conditions. The literature suggests that the applied treatment enhances mechanical properties, supporting the potential use of this alloy in structural components subjected to acidic environments requiring a balance of mechanical strength and corrosion resistance. Full article
(This article belongs to the Special Issue Corrosion Behavior of Alloys in Water Environments)
Show Figures

Figure 1

18 pages, 3441 KiB  
Review
Epidermal Growth Factor Receptor (EGFR)-Targeting Peptides and Their Applications in Tumor Imaging Probe Construction: Current Advances and Future Perspectives
by Lu Huang, Ying Dong, Jinhang Li, Xinyu Yang, Xiaoqiong Li, Jia Wu, Jinhua Huang, Qiaoxuan Zhang, Zemin Wan, Shuzhi Hu, Ruibing Feng, Guodong Li, Xianzhang Huang and Pengwei Zhang
Biology 2025, 14(8), 1011; https://doi.org/10.3390/biology14081011 (registering DOI) - 7 Aug 2025
Abstract
The epidermal growth factor receptor (EGFR) is a key target for both cancer diagnosis and therapeutic interventions. Assessing EGFR expression before therapy has become routine in clinical practice, yet current methods like biopsy and immunohistochemistry (IHC) have significant limitations, including invasiveness, limited repeatability, [...] Read more.
The epidermal growth factor receptor (EGFR) is a key target for both cancer diagnosis and therapeutic interventions. Assessing EGFR expression before therapy has become routine in clinical practice, yet current methods like biopsy and immunohistochemistry (IHC) have significant limitations, including invasiveness, limited repeatability, and lack of real-time, whole-body data. EGFR-targeted imaging has emerged as a promising alternative. EGFR-targeting peptides, owing to their favorable physicochemical properties and versatility, are increasingly being explored for a variety of applications, including molecular imaging, drug delivery, and targeted therapy. Recent advances have demonstrated the potential of EGFR-targeting peptides conjugated to imaging probes for non-invasive, real-time in vivo tumor detection, precision therapy, and surgical guidance. Here, we provide a comprehensive overview of the latest progress in EGFR-targeting peptides development, with a particular focus on their application in the development of molecular imaging agents, including fluorescence imaging, PET/CT, magnetic resonance imaging, and multimodal imaging. Furthermore, we examine the challenges and future directions concerning the development and clinical application of EGFR-targeting peptide-based imaging probes. Finally, we highlight emerging technologies such as artificial intelligence, mutation-specific peptides, and multimodal imaging platforms, which offer significant potential for advancing the diagnosis and treatment of EGFR-targeted cancers. Full article
Show Figures

Figure 1

28 pages, 1748 KiB  
Review
Neutrophil Dynamics in Response to Cancer Therapies
by Huazhen Xu, Xiaojun Chen, Yuqing Lu, Nihao Sun, Karis E. Weisgerber, Manzhu Xu and Ren-Yuan Bai
Cancers 2025, 17(15), 2593; https://doi.org/10.3390/cancers17152593 (registering DOI) - 7 Aug 2025
Abstract
Neutrophils are increasingly recognized as key players in the tumor microenvironment (TME), displaying functional plasticity that enables them to either promote or inhibit cancer progression. Depending on environmental cues, tumor-associated neutrophils (TANs) may polarize toward antitumor “N1” or protumor “N2” phenotypes, exerting diverse [...] Read more.
Neutrophils are increasingly recognized as key players in the tumor microenvironment (TME), displaying functional plasticity that enables them to either promote or inhibit cancer progression. Depending on environmental cues, tumor-associated neutrophils (TANs) may polarize toward antitumor “N1” or protumor “N2” phenotypes, exerting diverse effects on tumor growth, metastasis, immune modulation, and treatment response. While previous studies have focused on the pathological roles of TANs in cancer, less attention has been given to how cancer therapies themselves influence the behavior of TANs. This review provides a comprehensive synthesis of current knowledge regarding the dynamics of TANs in response to major cancer treatment modalities, including chemotherapy, radiotherapy, cell-based immunotherapies, and oncolytic viral and bacterial therapies. We discuss how these therapies influence TAN recruitment, polarization, and effector functions within the TME, and highlight key molecular regulators involved. By consolidating mechanistic and translational insights, this review emphasizes the potential to therapeutically reprogram TANs to enhance treatment efficacy. A deeper understanding of context-dependent TAN roles will be essential for developing more effective, neutrophil-informed cancer therapies. Full article
(This article belongs to the Special Issue The Role of Neutrophils in Tumor Progression and Metastasis)
Show Figures

Figure 1

19 pages, 2057 KiB  
Review
Therapeutic Opportunities in Overcoming Premature Termination Codons in Epidermolysis Bullosa via Translational Readthrough
by Kathleen L. Miao, Ryan Huynh, David Woodley and Mei Chen
Cells 2025, 14(15), 1215; https://doi.org/10.3390/cells14151215 (registering DOI) - 7 Aug 2025
Abstract
Epidermolysis Bullosa (EB) comprises a group of inherited blistering disorders caused by pathogenic variants in genes essential for skin and mucosal integrity. Nonsense mutations, which generate premature termination codons (PTCs), result in reduced or absent protein expression and contribute to severe disease phenotypes [...] Read more.
Epidermolysis Bullosa (EB) comprises a group of inherited blistering disorders caused by pathogenic variants in genes essential for skin and mucosal integrity. Nonsense mutations, which generate premature termination codons (PTCs), result in reduced or absent protein expression and contribute to severe disease phenotypes in EB. Readthrough therapies, which may continue translation past PTCs to restore full-length functional proteins, have emerged as promising approaches. This review summarizes findings from preclinical studies investigating readthrough therapies in EB models, clinical studies demonstrating efficacy in EB patients, and emerging readthrough agents with potential application to EB. Preclinical and clinical studies with gentamicin have demonstrated restored type VII collagen and laminin-332 expression, leading to measurable clinical improvements. Parallel development of novel compounds—including aminoglycoside analogs (e.g., ELX-02), translation termination factor degraders (e.g., CC-90009, SRI-41315, SJ6986), tRNA post-transcriptional inhibitors (e.g., 2,6-diaminopurine, NV848), and nucleoside analogs (e.g., clitocine)—has expanded the therapeutic pipeline. Although challenges remain regarding toxicity, codon specificity, and variable protein restoration thresholds, continued advances in molecular targeting and combination therapies offer the potential to establish readthrough therapies as localized or systemic treatments addressing both cutaneous and extracutaneous disease manifestations in EB. Full article
Show Figures

Figure 1

20 pages, 3734 KiB  
Review
Microbial Community and Metabolic Pathways in Anaerobic Digestion of Organic Solid Wastes: Progress, Challenges and Prospects
by Jiachang Cao, Chen Zhang, Xiang Li, Xueye Wang, Xiaohu Dai and Ying Xu
Fermentation 2025, 11(8), 457; https://doi.org/10.3390/fermentation11080457 (registering DOI) - 7 Aug 2025
Abstract
Anaerobic digestion (AD) is a sustainable and widely adopted technology for the treatment of organic solid wastes (OSWs). However, AD efficiency varies significantly across different substrates, primarily due to differences in the microbial community and metabolic pathways. This review provides a comprehensive summary [...] Read more.
Anaerobic digestion (AD) is a sustainable and widely adopted technology for the treatment of organic solid wastes (OSWs). However, AD efficiency varies significantly across different substrates, primarily due to differences in the microbial community and metabolic pathways. This review provides a comprehensive summary of the AD processes for four types of typical OSWs (i.e., sewage sludge, food waste, livestock manure, and straw), with an emphasis on their universal characteristics across global contexts, focusing mainly on the electron transfer mechanisms, essential microbial communities, and key metabolic pathways. Special attention was given to the mechanisms by which substrate-specific structural differences influence anaerobic digestion efficiency, with a focused analysis and discussion on how different components affect microbial communities and metabolic pathways. This study concluded that the hydrogenotrophic methanogenesis pathway, TCA cycle, and the Wood–Ljungdahl pathway serve as critical breakthrough points for enhancing methane production potential. This research not only provides a theoretical foundation for optimizing AD efficiency, but also offers crucial scientific insights for resource recovery and energy utilization of OSWs, making significant contributions to advancing sustainable waste management practices. Full article
(This article belongs to the Special Issue Feature Review Papers in Industrial Fermentation, 2nd Edition)
Show Figures

Figure 1

Back to TopTop