Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (999)

Search Parameters:
Keywords = pore fracture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4663 KiB  
Article
Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR
by Dunqing Liu, Chengzhi Jia and Keji Chen
Energies 2025, 18(15), 4111; https://doi.org/10.3390/en18154111 (registering DOI) - 2 Aug 2025
Abstract
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in [...] Read more.
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in light shale oil or tight oil. However, the representativeness of these simulated oils for low-maturity crude oils with higher viscosity and greater content of resins and asphaltenes requires further research. In this study, imbibition experiments were conducted and T2 and T1T2 nuclear magnetic resonance (NMR) spectra were adopted to investigate the oil recovery characteristics among resin–asphaltene-rich Jimusar shale oil and two WMOs. The overall imbibition recovery rates, pore scale recovery characteristics, mobility variations among oils with different occurrence states, as well as key factors influencing imbibition efficiency were analyzed. The results show the following: (1) WMO, kerosene, or alkanes with matched apparent viscosity may not comprehensively replicate the imbibition behavior of resin–asphaltene-rich crude oils. These simplified systems fail to capture the pore-scale occurrence characteristics of resins/asphaltenes, their influence on pore wettability alteration, and may consequently overestimate the intrinsic imbibition displacement efficiency in reservoir formations. (2) Surfactant optimization must holistically address the intrinsic coupling between interfacial tension reduction, wettability modification, and pore-scale crude oil mobilization mechanisms. The alteration of overall wettability exhibits higher priority over interfacial tension in governing displacement dynamics. (3) Imbibition displacement exhibits selective mobilization characteristics for oil phases in pores. Specifically, when the oil phase contains complex hydrocarbon components, lighter fractions in larger pores are preferentially mobilized; when the oil composition is homogeneous, oil in smaller pores is mobilized first. Full article
(This article belongs to the Special Issue New Progress in Unconventional Oil and Gas Development: 2nd Edition)
Show Figures

Figure 1

18 pages, 2981 KiB  
Article
Development and Evaluation of Mesoporous SiO2 Nanoparticle-Based Sustained-Release Gel Breaker for Clean Fracturing Fluids
by Guiqiang Fei, Banghua Liu, Liyuan Guo, Yuan Chang and Boliang Xue
Polymers 2025, 17(15), 2078; https://doi.org/10.3390/polym17152078 - 30 Jul 2025
Viewed by 180
Abstract
To address critical technical challenges in coalbed methane fracturing, including the uncontrollable release rate of conventional breaker agents and incomplete gel breaking, this study designs and fabricates an intelligent controlled-release breaker system based on paraffin-coated mesoporous silica nanoparticle carriers. Three types of mesoporous [...] Read more.
To address critical technical challenges in coalbed methane fracturing, including the uncontrollable release rate of conventional breaker agents and incomplete gel breaking, this study designs and fabricates an intelligent controlled-release breaker system based on paraffin-coated mesoporous silica nanoparticle carriers. Three types of mesoporous silica (MSN) carriers with distinct pore sizes are synthesized via the sol-gel method using CTAB, P123, and F127 as structure-directing agents, respectively. Following hydrophobic modification with octyltriethoxysilane, n-butanol breaker agents are loaded into the carriers, and a temperature-responsive controlled-release system is constructed via paraffin coating technology. The pore size distribution was analyzed by the BJH model, confirming that the average pore diameters of CTAB-MSNs, P123-MSNs, and F127-MSNs were 5.18 nm, 6.36 nm, and 6.40 nm, respectively. The BET specific surface areas were 686.08, 853.17, and 946.89 m2/g, exhibiting an increasing trend with the increase in pore size. Drug-loading performance studies reveal that at the optimal loading concentration of 30 mg/mL, the loading efficiencies of n-butanol on the three carriers reach 28.6%, 35.2%, and 38.9%, respectively. The release behavior study under simulated reservoir temperature conditions (85 °C) reveals that the paraffin-coated system exhibits a distinct three-stage release pattern: a lag phase (0–1 h) caused by paraffin encapsulation, a rapid release phase (1–8 h) induced by high-temperature concentration diffusion, and a sustained release phase (8–30 h) attributed to nano-mesoporous characteristics. This intelligent controlled-release breaker demonstrates excellent temporal compatibility with coalbed methane fracturing processes, providing a novel technical solution for the efficient and clean development of coalbed methane. Full article
Show Figures

Figure 1

19 pages, 8240 KiB  
Article
Numerical Simulation of Fracture Sequence on Multiple Hydraulic Fracture Propagation in Tight Oil Reservoir
by Yu Tang, Jin Zhang, Heng Zheng, Bowei Shi and Ruiquan Liao
Processes 2025, 13(8), 2409; https://doi.org/10.3390/pr13082409 - 29 Jul 2025
Viewed by 277
Abstract
Horizontal well fracturing is vital for low-permeability tight oil reservoirs, but multi-fracture effectiveness is hampered by stress shadowing and fluid-rock interactions, particuarly in optimizing fracture geometry and conductivity under different sequencing strategies. While previous studies have addressed aspects of pore pressure and stress [...] Read more.
Horizontal well fracturing is vital for low-permeability tight oil reservoirs, but multi-fracture effectiveness is hampered by stress shadowing and fluid-rock interactions, particuarly in optimizing fracture geometry and conductivity under different sequencing strategies. While previous studies have addressed aspects of pore pressure and stress effects, a comprehensive comparison of sequencing strategies using fully coupled models capturing the intricate seepage–stress–damage interactions remains limited. This study employs a novel 2D fully coupled XFEM model to quantitatively evaluate three fracturing approaches: simultaneous, sequential, and alternating. Numerical results demonstrate that sequential and alternating strategies alleviate stress interference, increasing cumulative fracture length by 20.6% and 26.1%, respectively, versus conventional simultaneous fracturing. Based on the research findings, fracture width reductions are 30.44% (simultaneous), 18.78% (sequential), and 7.21% (alternating). As fracture width directly governs conductivity—the critical parameter determining hydrocarbon flow efficiency—the alternating strategy’s superior width preservation (92.79% retention) enables optimal conductivity design. These findings provide critical insights for designing fracture networks with targeted dimensions and conductivity in tight reservoirs and offer a practical basis to optimize fracture sequencing design. Full article
Show Figures

Figure 1

20 pages, 11478 KiB  
Article
Pore Evolution and Fractal Characteristics of Marine Shale: A Case Study of the Silurian Longmaxi Formation Shale in the Sichuan Basin
by Hongzhan Zhuang, Yuqiang Jiang, Quanzhong Guan, Xingping Yin and Yifan Gu
Fractal Fract. 2025, 9(8), 492; https://doi.org/10.3390/fractalfract9080492 - 28 Jul 2025
Viewed by 253
Abstract
The Silurian marine shale in the Sichuan Basin is currently the main reservoir for shale gas reserves and production in China. This study investigates the reservoir evolution of the Silurian marine shale based on fractal dimension, quantifying the complexity and heterogeneity of the [...] Read more.
The Silurian marine shale in the Sichuan Basin is currently the main reservoir for shale gas reserves and production in China. This study investigates the reservoir evolution of the Silurian marine shale based on fractal dimension, quantifying the complexity and heterogeneity of the shale’s pore structure. Physical simulation experiments were conducted on field-collected shale samples, revealing the evolution of total organic carbon, mineral composition, porosity, and micro-fractures. The fractal dimension of shale pore was characterized using the Frenkel–Halsey–Hill and capillary bundle models. The relationships among shale components, porosity, and fractal dimensions were investigated through a correlation analysis and a principal component analysis. A comprehensive evolution model for porosity and micro-fractures was established. The evolution of mineral composition indicates a gradual increase in quartz content, accompanied by a decline in clay, feldspar, and carbonate minerals. The thermal evolution of organic matter is characterized by the formation of organic pores and shrinkage fractures on the surface of kerogen. Retained hydrocarbons undergo cracking in the late stages of thermal evolution, resulting in the formation of numerous nanometer-scale organic pores. The evolution of inorganic minerals is represented by compaction, dissolution, and the transformation of clay minerals. Throughout the simulation, porosity evolution exhibited distinct stages of rapid decline, notable increase, and relative stabilization. Both pore volume and specific surface area exhibit a trend of decreasing initially and then increasing during thermal evolution. However, pore volume slowly decreases after reaching its peak in the late overmature stage. Fractal dimensions derived from the Frenkel–Halsey–Hill model indicate that the surface roughness of pores (D1) in organic-rich shale is generally lower than the complexity of their internal structures (D2) across different maturity levels. Additionally, the average fractal dimension calculated based on the capillary bundle model is higher, suggesting that larger pores exhibit more complex structures. The correlation matrix indicates a co-evolution relationship between shale components and pore structure. Principal component analysis results show a close relationship between the porosity of inorganic pores, microfractures, and fractal dimension D2. The porosity of organic pores, the pore volume and specific surface area of the main pore size are closely related to fractal dimension D1. D1 serves as an indicator of pore development extent and characterizes the changes in components that are “consumed” or “generated” during the evolution process. Based on mineral composition, fractal dimensions, and pore structure evolution, a comprehensive model describing the evolution of pores and fractal dimensions in organic-rich shale was established. Full article
Show Figures

Figure 1

18 pages, 4456 KiB  
Article
Study on the Filling and Plugging Mechanism of Oil-Soluble Resin Particles on Channeling Cracks Based on Rapid Filtration Mechanism
by Bangyan Xiao, Jianxin Liu, Feng Xu, Liqin Fu, Xuehao Li, Xianhao Yi, Chunyu Gao and Kefan Qian
Processes 2025, 13(8), 2383; https://doi.org/10.3390/pr13082383 - 27 Jul 2025
Viewed by 366
Abstract
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their [...] Read more.
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their excellent oil solubility, temperature/salt resistance, and high strength. However, their application is limited by the efficient filling and retention in deep fractures. This study innovatively combines the OSR particle plugging system with the mature rapid filtration loss plugging mechanism in drilling, systematically exploring the influence of particle size and sorting on their filtration, packing behavior, and plugging performance in channeling fractures. Through API filtration tests, visual fracture models, and high-temperature/high-pressure (100 °C, salinity 3.0 × 105 mg/L) core flow experiments, it was found that well-sorted large particles preferentially bridge in fractures to form a high-porosity filter cake, enabling rapid water filtration from the resin plugging agent. This promotes efficient accumulation of OSR particles to form a long filter cake slug with a water content <20% while minimizing the invasion of fine particles into matrix pores. The slug thermally coalesces and solidifies into an integral body at reservoir temperature, achieving a plugging strength of 5–6 MPa for fractures. In contrast, poorly sorted particles or undersized particles form filter cakes with low porosity, resulting in slow water filtration, high water content (>50%) in the filter cake, insufficient fracture filling, and significantly reduced plugging strength (<1 MPa). Finally, a double-slug strategy is adopted: small-sized OSR for temporary plugging of the oil layer injection face combined with well-sorted large-sized OSR for main plugging of channeling fractures. This strategy achieves fluid diversion under low injection pressure (0.9 MPa), effectively protects reservoir permeability (recovery rate > 95% after backflow), and establishes high-strength selective plugging. This study clarifies the core role of particle size and sorting in regulating the OSR plugging effect based on rapid filtration loss, providing key insights for developing low-damage, high-performance channeling plugging agents and scientific gradation of particle-based plugging agents. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

31 pages, 14609 KiB  
Article
Reservoir Properties and Gas Potential of the Carboniferous Deep Coal Seam in the Yulin Area of Ordos Basin, North China
by Xianglong Fang, Feng Qiu, Longyong Shu, Zhonggang Huo, Zhentao Li and Yidong Cai
Energies 2025, 18(15), 3987; https://doi.org/10.3390/en18153987 - 25 Jul 2025
Viewed by 227
Abstract
In comparison to shallow coal seams, deep coal seams exhibit characteristics of high temperature, pressure, and in-situ stress, leading to significant differences in reservoir properties that constrain the effective development of deep coalbed methane (CBM). This study takes the Carboniferous deep 8# coal [...] Read more.
In comparison to shallow coal seams, deep coal seams exhibit characteristics of high temperature, pressure, and in-situ stress, leading to significant differences in reservoir properties that constrain the effective development of deep coalbed methane (CBM). This study takes the Carboniferous deep 8# coal seam in the Yulin area of Ordos basin as the research subject. Based on the test results from core drilling wells, a comprehensive analysis of the characteristics and variation patterns of coal reservoir properties and a comparative analysis of the exploration and development potential of deep CBM are conducted, aiming to provide guidance for the development of deep CBM in the Ordos basin. The research results indicate that the coal seams are primarily composed of primary structure coal, with semi-bright to bright being the dominant macroscopic coal types. The maximum vitrinite reflectance (Ro,max) ranges between 1.99% and 2.24%, the organic is type III, and the high Vitrinite content provides a substantial material basis for the generation of CBM. Longitudinally, influenced by sedimentary environment and plant types, the lower part of the coal seam exhibits higher Vitrinite content and fixed carbon (FCad). The pore morphology is mainly characterized by wedge-shaped/parallel plate-shaped pores and open ventilation pores, with good connectivity, which is favorable for the storage and output of CBM. Micropores (<2 nm) have the highest volume proportion, showing an increasing trend with burial depth, and due to interlayer sliding and capillary condensation, the pore size (<2 nm) distribution follows an N shape. The full-scale pore heterogeneity (fractal dimension) gradually increases with increasing buried depth. Macroscopic fractures are mostly found in bright coal bands, while microscopic fractures are more developed in Vitrinite, showing a positive correlation between fracture density and Vitrinite content. The porosity and permeability conditions of reservoirs are comparable to the Daning–Jixian block, mostly constituting oversaturated gas reservoirs with a critical depth of 2400–2600 m and a high proportion of free gas, exhibiting promising development prospects, and the middle and upper coal seams are favorable intervals. In terms of resource conditions, preservation conditions, and reservoir alterability, the development potential of CBM from the Carboniferous deep 8# coal seam is comparable to the Linxing block but inferior to the Daning–Jixian block and Baijiahai uplift. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

24 pages, 5866 KiB  
Article
Multiscale Characterization of Thermo-Hydro-Chemical Interactions Between Proppants and Fluids in Low-Temperature EGS Conditions
by Bruce Mutume, Ali Ettehadi, B. Dulani Dhanapala, Terry Palisch and Mileva Radonjic
Energies 2025, 18(15), 3974; https://doi.org/10.3390/en18153974 - 25 Jul 2025
Viewed by 245
Abstract
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were [...] Read more.
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were evaluated: an ultra-low-density ceramic (ULD), a resin-coated sand (RCS), and two quartz-based silica sands. Experiments were conducted under simulated EGS conditions at 130 °C with daily thermal cycling over a 25-day period, using diluted site-specific Utah FORGE geothermal fluids. Static batch reactions were followed by comprehensive multi-modal characterization, including scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and micro-computed tomography (micro-CT). Proppants were tested in both granular and powdered forms to evaluate surface area effects and potential long-term reactivity. Results indicate that ULD proppants experienced notable resin degradation and secondary mineral precipitation within internal pore networks, evidenced by a 30.4% reduction in intragranular porosity (from CT analysis) and diminished amorphous peaks in the XRD spectra. RCS proppants exhibited a significant loss of surface carbon content from 72.98% to 53.05%, consistent with resin breakdown observed via SEM imaging. While the quartz-based sand proppants remained morphologically intact at the macro-scale, SEM-EDS revealed localized surface alteration and mineral precipitation. The brown sand proppant, in particular, showed the most extensive surface precipitation, with a 15.2% increase in newly detected mineral phases. These findings advance understanding of proppant–fluid interactions under low-temperature EGS conditions and underscore the importance of selecting proppants based on thermo-chemical compatibility. The results also highlight the need for continued development of chemically resilient proppant formulations tailored for long-term geothermal applications. Full article
Show Figures

Figure 1

26 pages, 11154 KiB  
Article
The Pore Structure and Fractal Characteristics of Upper Paleozoic Coal-Bearing Shale Reservoirs in the Yangquan Block, Qinshui Basin
by Jinqing Zhang, Xianqing Li, Xueqing Zhang, Xiaoyan Zou, Yunfeng Yang and Shujuan Kang
Fractal Fract. 2025, 9(7), 467; https://doi.org/10.3390/fractalfract9070467 - 18 Jul 2025
Viewed by 324
Abstract
The investigation of the pore structure and fractal characteristics of coal-bearing shale is critical for unraveling reservoir heterogeneity, storage-seepage capacity, and gas occurrence mechanisms. In this study, 12 representative Upper Paleozoic coal-bearing shale samples from the Yangquan Block of the Qinshui Basin were [...] Read more.
The investigation of the pore structure and fractal characteristics of coal-bearing shale is critical for unraveling reservoir heterogeneity, storage-seepage capacity, and gas occurrence mechanisms. In this study, 12 representative Upper Paleozoic coal-bearing shale samples from the Yangquan Block of the Qinshui Basin were systematically analyzed through field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion, and gas adsorption experiments to characterize pore structures and calculate multi-scale fractal dimensions (D1D5). Key findings reveal that reservoir pores are predominantly composed of macropores generated by brittle fracturing and interlayer pores within clay minerals, with residual organic pores exhibiting low proportions. Macropores dominate the total pore volume, while mesopores primarily contribute to the specific surface area. Fractal dimension D1 shows a significant positive correlation with clay mineral content, highlighting the role of diagenetic modification in enhancing the complexity of interlayer pores. D2 is strongly correlated with the quartz content, indicating that brittle fracturing serves as a key driver of macropore network complexity. Fractal dimensions D3D5 further unveil the synergistic control of tectonic activity and dissolution on the spatial distribution of pore-fracture systems. Notably, during the overmature stage, the collapse of organic pores suppresses mesopore complexity, whereas inorganic diagenetic processes (e.g., quartz cementation and tectonic fracturing) significantly amplify the heterogeneity of macropores and fractures. These findings provide multi-scale fractal theoretical insights for evaluating coal-bearing shale gas reservoirs and offer actionable recommendations for optimizing the exploration and development of Upper Paleozoic coal-bearing shale gas resources in the Yangquan Block of the Qinshui Basin. Full article
Show Figures

Figure 1

23 pages, 6769 KiB  
Article
Prediction of Mud Weight Window Based on Geological Sequence Matching and a Physics-Driven Machine Learning Model for Pre-Drilling
by Yuxin Chen, Ting Sun, Jin Yang, Xianjun Chen, Laiao Ren, Zhiliang Wen, Shu Jia, Wencheng Wang, Shuqun Wang and Mingxuan Zhang
Processes 2025, 13(7), 2255; https://doi.org/10.3390/pr13072255 - 15 Jul 2025
Viewed by 326
Abstract
Accurate pre-drilling mud weight window (MWW) prediction is crucial for drilling fluid design and wellbore stability in complex geological formations. Traditional physics-based approaches suffer from subjective parameter selection and inadequate handling of multi-mechanism over-pressured formations, while machine learning methods lack physical constraints and [...] Read more.
Accurate pre-drilling mud weight window (MWW) prediction is crucial for drilling fluid design and wellbore stability in complex geological formations. Traditional physics-based approaches suffer from subjective parameter selection and inadequate handling of multi-mechanism over-pressured formations, while machine learning methods lack physical constraints and interpretability. This study develops a novel physics-guided deep learning framework integrating rock mechanics theory with deep neural networks for enhanced MWW prediction. The framework incorporates three key components: first, a physics-driven layer synthesizing intermediate variables from rock physics calculations to embed domain knowledge while preserving interpretability; second, a geological sequence-matching algorithm enabling precise stratigraphic correlation between offset and target wells, compensating for lateral geological heterogeneity; third, a long short-term memory network capturing sequential drilling characteristics and geological structure continuity. Case study results from 12 wells in northwestern China demonstrate significant improvements over traditional methods: collapse pressure prediction error reduced by 40.96%, pore pressure error decreased by 30.43%, and fracture pressure error diminished by 39.02%. The proposed method successfully captures meter-scale pressure variations undetectable by conventional approaches, providing critical technical support for wellbore design optimization, drilling fluid formulation, and operational safety enhancement in challenging geological environments. Full article
(This article belongs to the Special Issue Applications of Intelligent Models in the Petroleum Industry)
Show Figures

Figure 1

16 pages, 5222 KiB  
Article
Rock Physics Characteristics and Modeling of Deep Fracture–Cavity Carbonate Reservoirs
by Qifei Fang, Juntao Ge, Xiaoqiong Wang, Junfeng Zhou, Huizhen Li, Yuhao Zhao, Tuanyu Teng, Guoliang Yan and Mengen Wang
Energies 2025, 18(14), 3710; https://doi.org/10.3390/en18143710 - 14 Jul 2025
Viewed by 293
Abstract
The deep carbonate reservoirs in the Tarim Basin, Xinjiang, China, are widely developed with multi-scale complex reservoir spaces such as fractures, pores, and karst caves under the coupling of abnormal high pressure, diagenesis, karst, and tectonics and have strong heterogeneity. Among them, fracture–cavity [...] Read more.
The deep carbonate reservoirs in the Tarim Basin, Xinjiang, China, are widely developed with multi-scale complex reservoir spaces such as fractures, pores, and karst caves under the coupling of abnormal high pressure, diagenesis, karst, and tectonics and have strong heterogeneity. Among them, fracture–cavity carbonate reservoirs are one of the main reservoir types. Revealing the petrophysical characteristics of fracture–cavity carbonate reservoirs can provide a theoretical basis for the log interpretation and geophysical prediction of deep reservoirs, which holds significant implications for deep hydrocarbon exploration and production. In this study, based on the mineral composition and complex pore structure of carbonate rocks in the Tarim Basin, we comprehensively applied classical petrophysical models, including Voigt–Reuss–Hill, DEM (Differential Effective Medium), Hudson, Wood, and Gassmann, to establish a fracture–cavity petrophysical model tailored to the target block. This model effectively characterizes the complex pore structure of deep carbonate rocks and addresses the applicability limitations of conventional models in heterogeneous reservoirs. The discrepancies between the model-predicted elastic moduli, longitudinal and shear wave velocities (Vp and Vs), and laboratory measurements are within 4%, validating the model’s reliability. Petrophysical template analysis demonstrates that P-wave impedance (Ip) and the Vp/Vs ratio increase with water saturation but decrease with fracture density. A higher fracture density amplifies the fluid effect on the elastic properties of reservoir samples. The Vp/Vs ratio is more sensitive to pore fluids than to fractures, whereas Ip is more sensitive to fracture density. Regions with higher fracture and pore development exhibit greater hydrocarbon storage potential. Therefore, this petrophysical model and its quantitative templates can provide theoretical and technical support for predicting geological sweet spots in deep carbonate reservoirs. Full article
(This article belongs to the Special Issue New Progress in Unconventional Oil and Gas Development: 2nd Edition)
Show Figures

Figure 1

16 pages, 2758 KiB  
Article
Fractal Dimension and Classification Evaluation of Microfractured Tight Reservoirs in Yongjin Oilfield
by Chunguang Li, Dongqi Wang, Daiyin Yin and Yang Sun
Processes 2025, 13(7), 2228; https://doi.org/10.3390/pr13072228 - 12 Jul 2025
Viewed by 278
Abstract
The microfractured tight reservoirs in Yongjin Oilfield have low permeability and a complex pore structure. The development of microfractures in reservoirs is crucial for their impact on productivity. To understand the impact of pore structure and microfracture development on permeability and productivity, research [...] Read more.
The microfractured tight reservoirs in Yongjin Oilfield have low permeability and a complex pore structure. The development of microfractures in reservoirs is crucial for their impact on productivity. To understand the impact of pore structure and microfracture development on permeability and productivity, research on the fractal dimension and classification evaluation of microfractured tight reservoirs is proposed. Micropore and microfracture parameter characteristics are determined via CT scanning and mercury intrusion experiments. Based on the fractal theory and box counting dimension methods, the fractal dimension of pores and fractures in microfractured tight reservoirs are calculated, which can be used as an evaluation index. Then, a comprehensive quantitative evaluation method (REI) is conducted on the microfractured tight reservoir of Yongjin Oilfield to determine the classification boundary of evaluation indicators and reservoir classification results. The research results show that the microfractured tight reservoirs in Yongjin Oilfield can be classified into three types based on their development effect from good to poor. The comprehensive evaluation index (REI) of type I reservoirs is greater than 0.7, and the fractal dimension of pores and fractures is less than 2.4. The comprehensive evaluation index (REI) of type II reservoirs ranges from 0.4 to 0.7, and the fractal dimension of pores and fractures ranges from 2.4 to 2.6. The comprehensive evaluation index (REI) of type III reservoirs is less than 0.4, and the fractal dimension of pores and fractures is greater than 2.6. The classification results are consistent with the dynamic data, and this achievement can provide a scientific basis for rapid reservoir evaluation and development strategy formulation. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 11312 KiB  
Article
Effect of Thermomechanical Processing on Porosity Evolution and Mechanical Properties of L-PBF AISI 316L Stainless Steel
by Patrik Petroušek, Róbert Kočiško, Andrea Kasperkevičová, Dávid Csík and Róbert Džunda
Metals 2025, 15(7), 789; https://doi.org/10.3390/met15070789 - 12 Jul 2025
Viewed by 308
Abstract
Thermomechanical processing has a significant impact on the porosity and mechanical properties of AISI 316L stainless steel produced by laser powder bed fusion (L-PBF). This work evaluated the effect of three heat treatment conditions: as-built (HT0), annealed at 650 °C for 3 h [...] Read more.
Thermomechanical processing has a significant impact on the porosity and mechanical properties of AISI 316L stainless steel produced by laser powder bed fusion (L-PBF). This work evaluated the effect of three heat treatment conditions: as-built (HT0), annealed at 650 °C for 3 h with air cooling (HT1), and annealed at 1050 °C for 1 h followed by water quenching (HT2), combined with cold and hot rolling at different strain levels. The most pronounced improvement was observed after 20% hot rolling followed by water quenching (HR + WQ), which reduced porosity to 0.05% and yielded the most spherical pores, with a circularity factor (fcircle) of 0.90 and an aspect ratio (AsR) of 1.57. At elevated temperatures, the matrix becomes more pliable, which promotes pore closure and helps reduce stress concentrations. On the other hand, applying heat treatment without causing deformation resulted in the pores growing and increasing porosity in the build direction. The fractography supported these findings, showing a transition from brittle to more ductile fracture surfaces. Heat treatment combined with plastic deformation effectively reduced internal defects and improved both structural integrity and strength. Full article
(This article belongs to the Special Issue Metal Forming and Additive Manufacturing)
Show Figures

Figure 1

13 pages, 3867 KiB  
Article
Effect of Hot Isostatic Pressing on Mechanical Properties of K417G Nickel-Based Superalloy
by Fan Wang, Yuandong Wei, Yi Zhou, Wenqi Guo, Zexu Yang, Jinghui Jia, Shusuo Li and Haigen Zhao
Crystals 2025, 15(7), 643; https://doi.org/10.3390/cryst15070643 - 11 Jul 2025
Viewed by 219
Abstract
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as [...] Read more.
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as porosity in the K417G alloy, aiming to improve its mechanical properties. We investigated the microstructure and mechanical properties of K417G under two thermal conditions: solution heat treatment (SHT) and hot isostatic pressing (HIP). The results indicate that HIP significantly reduces microporosity. Compared to SHT, HIP improves the mechanical performance of K417G. The creep fracture mechanism shifts from intergranular brittle fracture (SHT) to ductile fracture (HIP). Consequently, HIP increases the alloy′s creep life approximately threefold and raises its fatigue limit by about 20 MPa. This improvement is attributed to pore density reduction, which decreases stress concentration zones and homogenizes the microstructure, thereby impeding fatigue crack nucleation and extending the crack incubation period. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

23 pages, 17945 KiB  
Article
Real-Time Temperature Effects on Dynamic Impact Mechanical Properties of Hybrid Fiber-Reinforced High-Performance Concrete
by Pengcheng Huang, Yan Li, Fei Ding, Xiang Liu, Xiaoxi Bi and Tao Xu
Materials 2025, 18(14), 3241; https://doi.org/10.3390/ma18143241 - 9 Jul 2025
Viewed by 257
Abstract
Metallurgical equipment foundations exposed to prolonged 300–500 °C environments are subject to explosion risks, necessitating materials that are resistant to thermo-shock-coupled loads. This study investigated the real-time dynamic compressive behavior of high-performance concrete (HPC) reinforced with steel fibers (SFs), polypropylene fibers (PPFs), polyvinyl [...] Read more.
Metallurgical equipment foundations exposed to prolonged 300–500 °C environments are subject to explosion risks, necessitating materials that are resistant to thermo-shock-coupled loads. This study investigated the real-time dynamic compressive behavior of high-performance concrete (HPC) reinforced with steel fibers (SFs), polypropylene fibers (PPFs), polyvinyl alcohol fibers (PVAFs), and their hybrid systems under thermo-shock coupling using real-time high-temperature (200–500 °C) SHPB tests. The results revealed temperature-dependent dynamic responses: SFs exhibited a V-shaped trend in compressive strength evolution (minimum at 400 °C), while PPFs/PVAFs showed inverted V-shaped trends (peaking at 300 °C). Hybrid systems demonstrated superior performance: SF-PVAF achieved stable dynamic strength at 200–400 °C (dynamic increase factor, DIF ≈ 1.65) due to synergistic toughening via SF bridging and PVAF melt-induced pore energy absorption. Microstructural analysis confirmed that organic fiber pores and SF crack-bridging collaboratively optimized failure modes, reducing brittle fracture. A temperature-adaptive design strategy is proposed: SF-PVAF hybrids are prioritized for temperatures of 200–400 °C, while SF-PPF combinations are recommended for 400–500 °C environments, providing critical guidance for explosion-resistant HPC in extreme thermal–industrial settings. Full article
Show Figures

Figure 1

37 pages, 9217 KiB  
Article
Permeability Jailbreak: A Deep Simulation Study of Hydraulic Fracture Cleanup in Heterogeneous Tight Gas Reservoirs
by Hamid Reza Nasriani and Mahmoud Jamiolahmady
Energies 2025, 18(14), 3618; https://doi.org/10.3390/en18143618 - 9 Jul 2025
Viewed by 279
Abstract
Ultra-tight gas reservoirs present severe flow constraints due to complex interactions between rock–fluid properties and hydraulic fracturing. This study investigates the impact of unconventional capillary pressure correlations and permeability jail effects on post-fracture cleanup in multiple-fractured horizontal wells (MFHWs) using high-resolution numerical simulations. [...] Read more.
Ultra-tight gas reservoirs present severe flow constraints due to complex interactions between rock–fluid properties and hydraulic fracturing. This study investigates the impact of unconventional capillary pressure correlations and permeability jail effects on post-fracture cleanup in multiple-fractured horizontal wells (MFHWs) using high-resolution numerical simulations. A novel modelling approach is applied to represent both weak and strong permeability jail phenomena in heterogeneous rock systems. A comprehensive suite of parametric simulations evaluates gas production loss (GPL) and produced fracture fluid (PFF) across varying fracture fluid volumes, shut-in times, drawdown pressures, and matrix permeabilities. The analysis leverages statistically designed experiments and response surface models to isolate the influence of rock heterogeneity and saturation-dependent flow restrictions on cleanup efficiency. The results reveal that strong jail zones drastically hinder fracture fluid recovery, while weak jail configurations interact with heterogeneity to produce non-linear cleanup trends. Notably, reducing the pore size distribution index in Pc models improves predictive accuracy for ultra-tight conditions. These findings underscore the need to integrate unconventional Kr and Pc behaviour in hydraulic fracturing design to optimise flowback and long-term gas recovery. This work provides critical insights for improving reservoir performance and supports ambitions in energy resilience and net-zero transition strategies. Full article
Show Figures

Figure 1

Back to TopTop