Reservoir Properties and Gas Potential of the Carboniferous Deep Coal Seam in the Yulin Area of Ordos Basin, North China
Abstract
1. Introduction
2. Geological Setting
2.1. Tectonic Characteristics
2.2. Stratigraphic and Sedimentary Characteristics
3. Coal Petrology and Quality
3.1. Experiments and Methodology
3.2. Coal Petrological Characteristics
3.3. Coal Quality Characteristics
4. Physical Properties of Deep Coal Reservoir
4.1. Pore Structure Characteristics
4.1.1. Pore Structure Characterization Based on Field Emission Scanning Electron Microscopy
4.1.2. Pore Structure Characterization Based on Low-Temperature Liquid Nitrogen Adsorption
4.1.3. Pore Structure Characterization Based on High-Pressure Mercury Intrusion
4.1.4. Full-Scale Pore Joint Characterization
4.1.5. Heterogeneity Characteristics
4.2. Fracture Structure Characteristics
4.2.1. Fracture Development Characteristics
4.2.2. Fracture Connectivity Analysis
4.3. Permeability and Porosity of Deep Coal
5. Gas-Bearing Characteristics and Development Potential Evaluation
5.1. Gas Content and Adsorption Behaviors Characteristics
5.2. Development Potential Analysis and Evaluation
6. Conclusions
- The pores in the deep 8# coal are mostly closed-end slit/parallel plate-shaped pores and open-type breathable pores, which are conducive to the desorption and production of CBM. Micro-pores of <2 nm are the most developed, and the increase in pore volume shows an ‘N’ shaped change. The total pore volume of coal first increases, then decreases, and then increases with burial depth, but the proportion of micro-pores with a size of <2 nm gradually increases. The full-scale pore heterogeneity (fractal dimension) increases from 2.6829 to 2.7302 with increasing burial depth.
- Fractures are well-developed in coal reservoirs, with macroscopic fractures mostly found in bright coal bands, which are significantly influenced by tectonic movements. Microscopic fractures are more developed in Vitrinite-rich bands with higher dehydration and obvious matrix shrinkage. There is a positive correlation between fracture density and Vitrinite content. Three-dimensional reconstruction results indicate good fracture connectivity (>60%), facilitating the permeation and production of coal seam gas.
- The permeability and porosity of coal decrease with increasing confining pressure and undergo irreversible damage due to plastic deformation. Under reservoir conditions, the porosity (1.72% to 2.69%) and permeability (0.0054 mD to 0.0163 mD) of the 8# coal are comparable to those in the Daning–Jixian block. The coal seam has a high gas content (11.71 m3/t to 24.93 m3/t) but is mostly in a supersaturated state, with a significant proportion of free gas, demonstrating good development prospects. During the desorption process, the methane volume proportion initially increases and then decreases, with carbon isotope ratios gradually increasing with burial depth.
- There is a critical depth of gas-bearing characteristics in deep CBM reservoirs, which is between 2400 and 2600 m. Comparative results of resource conditions, preservation conditions, and reservoir adaptability show that the development potential of the deep 8# coal seam gas reservoir in the research area is comparable to that of the Linxing block but weaker than that of the Daning–Jixian block and Baijiahai uplift. Vertically, the upper and middle parts of the coal seam are favorable intervals, and overall, it exhibits promising prospects for scaled development.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhai, C.; Yu, X.; Xiang, X.; Li, Q.; Wu, S.; Xu, J. Experimental study of pulsating water pressure propagation in CBM reservoirs during pulse hydraulic fracturing. J. Nat. Gas Sci. Eng. 2015, 25, 15–22. [Google Scholar] [CrossRef]
- Zhang, X.D.; Du, Z.G.; Li, P.P. Physical characteristics of high-rank coal reservoirs in different coal-body structures and the mechanism of coalbed methane production. Sci. China Earth Sci. 2017, 60, 246–255. [Google Scholar] [CrossRef]
- Lu, W.; Chen, X.; Ho, D.C.W.; Wang, H. Recent advances and prospects in polymeric nanofluids application for enhanced oil recovery. J. Ind. Eng. Chem. 2018, 66, 1306. [Google Scholar] [CrossRef]
- Li, S.; Tang, S.H.; Pan, Z.J.; Xu, H.; Tao, S.; Liu, Y.F.; Ren, P.F. Geological conditions of deep coalbed methane in the eastern margin of the Ordos Basin, China: Implications for coalbed methane development. J. Nat. Gas. Sci. Eng. 2018, 53, 394–402. [Google Scholar] [CrossRef]
- Li, G.Y.; Yao, Y.B.; Wang, H.; Meng, L.; Li, P.; Zhang, Y.; Wang, Y.; Ma, L. Geological characteristics and development potential of deep CBM resources in Shenmu–Jiaxian Block, Ordos Basin, China. Coal Geol. Explor. 2023, 52, 70–80. (In Chinese) [Google Scholar] [CrossRef]
- Wang, T.; Tian, F.; Deng, Z.; Hu, H. The characteristic development of micropores in deep coal and its relationship with adsorption capacity on the eastern margin of the Ordos Basin, China. Minerals 2023, 13, 302. [Google Scholar] [CrossRef]
- Zhang, L.; Bian, L.H.; Hou, W.; Li, Y.; Li, Y.; Wu, P.; Li, W.; Li, X.; Li, C. Pore structure characteristics and exploration significance of deep coal reservoirs: A case study of Daning–Jixian block in the eastern margin of Ordos Basin. Acta Pet. Sin. 2023, 44, 1867–1878. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.; Tang, D.Z.; Pan, Z.J.; Xu, H.; Huang, W. Characterization of the stress sensitivity of pores for different rank coals by nuclear magnetic resonance. Fuel 2013, 111, 746–754. [Google Scholar] [CrossRef]
- Wu, S.; Tang, D.; Li, S.; Wu, H.; Hu, X.; Zhu, X. Effects of geological pressure and temperature on permeability behaviors of middle-low volatile bituminous coals in eastern Ordos Basin, China. J. Pet. Sci. Eng. 2017, 153, 372–384. [Google Scholar] [CrossRef]
- Ma, D.; Miao, X.X.; Chen, Z.Q.; Mao, X.B. Experimental investigation of seepage properties of fractured rocks under different confining pressures. Rock Mech. Rock Eng. 2013, 46, 1135–1144. [Google Scholar] [CrossRef]
- Li, S.; Qin, Y.; Tang, D.; Shen, J.; Wang, J.; Chen, S. A comprehensive review of deep CBM and recent developments in China. Int. J. Coal Geol. 2023, 279, 104369. [Google Scholar] [CrossRef]
- Liu, A.; Fu, X.; Wang, K.; An, H.; Wang, G. Investigation of CBM potential in low-rank coal reservoirs –free and soluble gas contents. Fuel 2013, 112, 14–22. [Google Scholar] [CrossRef]
- Liu, D.; Jia, Q.; Cai, Y.; Gao, C.; Qiu, F.; Zhao, Z.; Chen, S. A new insight into CBM occurrence and accumulation in the Qinshui Basin, China. Gondwana Res. 2022, 111, 280–297. [Google Scholar] [CrossRef]
- Gao, P.; Xiao, X.; Hu, D.; Lash, G.G.; Liu, R.; Cai, Y.; Wang, Z.; Zhang, B.; Yuan, T.; Liu, S. Effect of silica diagenesis on porosity evolution of deep gas shale reservoir of the Lower Paleozoic Wufeng-Longmaxi formations, Sichuan Basin. Mar. Pet. Geol. 2022, 145, 105873. [Google Scholar] [CrossRef]
- Wang, J.M.; Wang, J.Y. Low-amplitude structures and oil-gas enrichment on the Yishaan Slope, Ordos Basin. Pet. Explor. Dev. 2013, 40, 52–60. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, D.; Xu, H.; Li, Y.; Meng, Y. Structural controls on CBM accumulation and high production models in the eastern margin of Ordos Basin, China. J. Nat. Gas Sci. Eng. 2015, 23, 524–537. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, P.; Cheng, Y.; Shu, L.; Liu, Y.; Zhang, Z.; Zhou, H.; Wang, L. A new technology to enhance gas drainage in the composite coal seam with tectonic coal sublayer. J. Nat. Gas Sci. Eng. 2022, 106, 104760. [Google Scholar] [CrossRef]
- Xu, H.; Tang, D.; Liu, D.; Tang, S.; Yang, F.; Chen, X.; He, W.; Deng, C. Study on CBM accumulation characteristics and favorable areas in the Binchang area, southwestern Ordos Basin, China. Int. J. Coal Geol. 2012, 95, 1–11. [Google Scholar] [CrossRef]
- Cao, D.; Wang, A.; Ning, S.; Li, H.; Guo, A.; Chen, L.; Liu, K.; Tan, J.; Zheng, Z. Coalfield structure and structural controls on coal in China. Int. J. Coal Sci. Technol. 2020, 7, 220–239. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Tang, D.; Liu, J.; Lin, W.; Feng, X.; Ye, J. Geological and engineering controls on the differential productivity of CBM wells in the Linfen block, southeastern Ordos Basin, China: Insights from geochemical analysis. J. Pet. Sci. Eng. 2022, 211, 110159. [Google Scholar] [CrossRef]
- Guan, Y.; Guo, Q.; Pu, R.; Gao, X.; Chen, S.; Ji, T. Distribution of upper paleozoic coal seams in the southeastern Ordos Basin. Energies 2022, 15, 5110. [Google Scholar] [CrossRef]
- Niu, X.B.; Zhao, W.B.; Shi, Y.H.; Hu, X.; Du, X. Natural gas accumulation conditions and exploration potential of Benxi Formation in Ordos Basin. Acta Pet. Sin. 2023, 44, 1240–1257. [Google Scholar] [CrossRef]
- Wang, X.; Pan, J.; Wang, K.; Mou, P.; Li, J. Fracture variation in high–rank coal induced by hydraulic fracturing using X–ray computer tomography and digital volume correlation. Int. J. Coal Geol. 2020, 252, 103942. [Google Scholar] [CrossRef]
- Mishra, D.P.; Verma, S.K.; Bhattacharjee, R.M.; Upadhyay, R.; Sahu, P. Geological and microstructural characterisation of coal seams for methane drainage from underground coal mines. Bull. Eng. Geol. Environ. 2023, 82, 341. [Google Scholar] [CrossRef]
- Palmer, I. CBM completions: A world view. Int. J. Coal Geol. 2010, 82, 184–195. [Google Scholar] [CrossRef]
- Salmachi, A.; Rajabi, M.; Reynolds, P.; Yarmohammadtooski, Z.; Wainman, C. The effect of magmatic intrusions on CBM reservoir characteristics: A case study from the Hoskissons coalbed, Gunnedah Basin, Australia. Int. J. Coal Geol. 2016, 165, 278–289. [Google Scholar] [CrossRef]
- Song, D.; Wang, T.; Li, P.; Yan, J.; Zheng, X. Petrology and geochemistry of the Carboniferous cutinite-rich coals from the Hequ area of Shanxi Province, China. Sci. China Earth Sci. 2022, 65, 2018–2032. [Google Scholar] [CrossRef]
- Hou, H.H.; Shao, L.Y.; Tang, Y.; Li, Z.; Zhao, S.; Yao, M.; Wang, X.; Zhang, J. Pore structure characterization of middle and high ranked coal reservoirs in northern China. AAPG Bull. 2023, 107, 213–241. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, D.; Pan, Z.; Yao, Y.; Li, J.; Qiu, Y. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel 2013, 103, 258–268. [Google Scholar] [CrossRef]
- Zhang, D.; Li, C.; Zhang, J.; Lun, Z.; Jia, S.; Luo, C.; Jiang, W. Influences of dynamic entrainer–blended supercritical CO2 fluid exposure on high–pressure methane adsorption on coals. J. Nat. Gas Sci. Eng. 2019, 66, 180–191. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L.; Ge, Z.; Zhou, Z.; Deng, K.; Zuo, S. Fracture and pore structure dynamic evolution of coals during hydraulic fracturing. Fuel 2020, 259, 116272. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.; Liu, J.; Wei, M.; Cui, D.; Gao, S. Coal permeability behaviors and non–uniform deformations under various boundary conditions: Part 1–experimental observations. Fuel 2023, 341, 127649. [Google Scholar] [CrossRef]
- Yan, J.W.; Meng, Z.P.; Zhang, K.; Yao, H.; Hao, H. Pore distribution characteristics of various rank coals matrix and their influences on gas adsorption. J. Pet. Sci. Eng. 2020, 189, 107041. [Google Scholar] [CrossRef]
- Wen, H.-T.; Yang, R.-Y.; Jing, M.-Y.; Huang, Z.-W.; Hong, C.-Y.; Chen, J.-X.; Cong, R.-C. Rock mechanical properties of coal in cryogenic condition. Pet. Sci. 2023, 20, 407–423. [Google Scholar] [CrossRef]
- Wang, T.; Deng, Z.; Hu, H.; Ding, R.; Tian, F.; Zhang, T.; Ma, Z.; Wang, D. Pore structure of deep coal of different ranks and its effect on coalbed methane adsorption. Int. J. Hydrogen Energy 2024, 59, 144–158. [Google Scholar] [CrossRef]
- Sing, K. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure Appl. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Guo, X.Q.; Yao, Y.B.; Liu, D.M. Characteristics of Coal Matrix Compressibility: An investigation by mercury intrusion porosimetry. Energy Fuels 2014, 28, 3673–3678. [Google Scholar] [CrossRef]
- Cai, Y.D.; Li, Q.; Liu, D.M.; Zhou, Y.; Lv, D. Insights into matrix compressibility of coals by mercury intrusion porosimetry and N2 adsorption. Int. J. Coal Geol. 2018, 200, 199–212. [Google Scholar] [CrossRef]
- Li, J.; Liu, D.; Yao, Y.; Cai, Y.; Guo, X. Physical characterization of the pore-fracture system in coals, Northeastern China. Energy Explor. Exploit. 2013, 31, 267–285. [Google Scholar] [CrossRef]
- Fu, H.; Tang, D.; Xu, T.; Xu, H.; Tao, S.; Li, S.; Yin, Z.; Chen, B.; Zhang, C.; Wang, L. Characteristics of pore structure and fractal dimension of low–rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel 2017, 193, 254–264. [Google Scholar] [CrossRef]
- Wang, F.M.; Li, S.F. Determination of the Surface Fractal Dimension for Porous Media by Capillary Condensation. Ind. Eng. Chem. Res. 1997, 36, 1609–1613. [Google Scholar] [CrossRef]
- Laubach, S.; Marrett, R.; Olson, J.; Scott, A. Characteristics and origins of coal cleat: A review. Int. J. Coal Geol. 1998, 35, 175–207. [Google Scholar] [CrossRef]
- Xin, F.; Fang, C.; Wang, S.; Xiong, B.; Cao, C.; Liu, D.; Tang, D.; Xu, H. Influence of composition on differential evolution of pore–fracture systems and micro–mechanical properties of lignite during drying–wetting cycles. Nat. Resour. Res. 2024, 33, 365–388. [Google Scholar] [CrossRef]
- Wang, A.; Wei, Y.; Yuan, Y.; Li, C.; Li, Y.; Cao, D. Coalbed methane reservoirs pore–structure characterization different macrolithotypes in the southern Junggar Basin of Northwest China. Mar. Pet. Geol. 2017, 86, 675–688. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Sang, S.-X.; Hu, Q.-J.; Fang, H.-H. Characteristics of high-rank coal structure parallel and perpendicular to the bedding plane via NMR and X-ray CT. Pet. Sci. 2020, 17, 925–938. [Google Scholar] [CrossRef]
- Liu, J.; Kang, Y.; Chen, M.; You, L.; Cao, W.; Li, X. Effect of high-temperature treatment on the desorption efficiency of gas in coalbed methane reservoirs: Implication for formation heat treatment. Int. J. Hydrogen Energy 2022, 47, 10531–10546. [Google Scholar] [CrossRef]
- Li, H.; Chen, S.; Tang, D. Coal pore size distribution and adsorption capacity controlled by the coalification in China. Int. J. Hydrogen Energy 2024, 88, 594–603. [Google Scholar] [CrossRef]
- Li, S.G.; Wang, C.S.; Wang, H.N.; Wang, Y.; Xu, F.; Guo, Z.; Liu, X. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block. Coal Geo. Explor. 2022, 50, 59–67. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, S.H.; Tang, S.H.; Qian, Z.; Pan, Z.; Guo, Q. Evaluation of geological features for deep CBM reservoirs in the Dacheng Salient, Jizhong Depression, China. Int. J. Coal Geol. 2014, 133, 60–71. [Google Scholar] [CrossRef]
- Wang, Y.J.; Liu, D.M.; Cai, Y.D.; Yao, Y.; Pan, Z. Constraining CBM reservoir petrophysical and mechanical properties through a new coal structure index in the southern Qinshui Basin, northern China: Implications for hydraulic fracturing. AAPG Bull. 2020, 104, 1817–1842. [Google Scholar] [CrossRef]
- Kang, S.Y.; Yan, X.; Huangfu, Y.H.; Zhang, B.; Deng, Z. Concept and main characteristics of deep oversaturated CBM reservoir. Acta Pet. Sin. 2023, 44, 1781–1790. (In Chinese) [Google Scholar] [CrossRef]
- Wang, C.W.; Zhen, H.B.; Chen, G.J.; Chen, C.; Zhang, Y. Assessment of coal No. 8 reservoir features and fracturability in Da’ning-Jixian block deep part. Coal Geol. China 2022, 34, 1674–1803. (In Chinese) [Google Scholar] [CrossRef]
- Xu, F.; Wang, C.; Xiong, X.; Li, S.; Wang, Y.; Guo, G.; Yan, X.; Chen, G.; Yang, Y.; Wang, H.; et al. Deep (layer) CBM reservoir forming modes and key technical countermeasures-Taking the eastern margin of Ordos Basin as an example. China Offshore Oil Gas 2022, 34, 30–42. (In Chinese) [Google Scholar] [CrossRef]
- Ni, X.M.; Wang, Y.B.; Han, W.L.; Liu, D.; Li, Y.; Tao, C.; Gao, X.; Yhao, S. Division and application of development geological units for CBM. J. China Coal Soc. 2020, 45, 2562–2574. (In Chinese) [Google Scholar] [CrossRef]
- Tao, C.Q.; Li, Y.; Wang, Y.B.; Ni, X.; Wu, X.; Yhao, S. Characteristics of deep coal reservoir and key control factors of CBM accumulation in Linxing Area. Energies 2023, 16, 6085. [Google Scholar] [CrossRef]
- Chen, G.; Qin, Y.; Hu, Z.G.; Li, W. Characteristics of reservoir assemblage of deep CBM-bearing system in Baijiahai dome of Junggar Basin. J. China Coal Soc. 2016, 41, 80–86. (In Chinese) [Google Scholar] [CrossRef]
- Yang, M.F.; Sun, B.; Lu, J.; Tian, W. Comparative analysis on the enrichment patterns of deep and shallow CBM in Junggar Basin. J. China Coal Soc. 2019, 44, 601–609. (In Chinese) [Google Scholar] [CrossRef]
- Yu, Y.J.; Wang, Y.H. Characteristics of low-rank coal reservoir and exploration potential in Junggar Basin: New frontier of low-rank CBM exploration in China. J. Pet. Explor. Prod. Technol. 2020, 10, 2207–2223. [Google Scholar] [CrossRef]
- Fu, X.; Meng, Y.; Li, Z.; Kong, P.; Chang, S.; Yan, T.; Liu, Y.; Liang, C. CBM Potential Evaluation and Development Sweet Spot Prediction Based on the Analysis of Development Geological Conditions in Yangjiapo Block, Eastern Ordos Basin, China. Geofluids 2021, 2021, 8728005. [Google Scholar] [CrossRef]
- Li, J.; Lu, S.; Zhang, P.; Cai, J.; Li, W.; Wang, S.; Feng, W. Estimation of gas-in-place content in coal and shale reservoirs: A process analysis method and its preliminary application. Fuel 2020, 259, 116266. [Google Scholar] [CrossRef]
- Fu, H.; Tang, D.; Xu, T.; Xu, H.; Tao, S.; Zhao, J.; Chen, B.; Yin, Z. Preliminary research on CBM enrichment models of low-rank coal and its geological controls: A case study in the middle of the southern Junggar Basin, NW China. Mar. Pet. Geol. 2017, 83, 97–110. [Google Scholar] [CrossRef]
Well | Depth (m) | Pore Diameter (nm) | Pore Area (nm2) | Pore Perimeter (nm) | Pore Distribution | ||
---|---|---|---|---|---|---|---|
<10 nm | 10–100 nm | 1100–1000 nm | |||||
J2 | 2628.00 | 27.78–919.27 | 1157.40–352,623.50 | 69.44–3101.38 | / | 6.94 | 93.06 |
15.63–779.66 | 488.20–101,562.50 | 15.63–2542.26 | / | 15.41 | 84.59 | ||
11.11–408.74 | 246.80–29,296.80 | 11.11–911.89 | / | 16.84 | 83.16 | ||
J5 | 3100.76 | 5.00–587.04 | 100.00–30,450.00 | 9.99–1286.15 | 0.61 | 24.70 | 74.69 |
6.02–500.51 | 108.80–68,188.40 | 6.02–1187.96 | 0.90 | 18.91 | 80.19 | ||
7.41–888.86 | 109.70–1499.04 | 7.41–2939.32 | 1.34 | 7.75 | 90.92 |
Well | Depth | Specific Surface Area (m2/g) | Volume (10−3 cm3/g) | Aperture Diameter (nm) | Volume Percentage of Microporous (%) | Specific Surface Area Percentage of Microporous (%) | Curve Type |
---|---|---|---|---|---|---|---|
J1 | 2374.59 | 0.25 | 9.74 | 15.41 | 16.60 | 68.94 | H2 |
J2 | 2628.00 | 0.35 | 1.17 | 13.19 | 29.83 | 83.28 | H1 |
J4 | 2974.44 | 0.39 | 0.75 | 8.12 | 32.75 | 85.64 | H4 |
J5 | 3100.76 | 0.35 | 0.29 | 6.05 | 55.29 | 91.91 | H4 |
J6 | 3263.53 | 0.54 | 0.49 | 6.20 | 54.76 | 92.09 | H1 |
Sample | Depth (m) | Dm (<2 nm) | D1 (2–10 nm) | D2 (10–100 nm) | D3 (100–1000 nm) | D4 (>1000 nm) | D |
---|---|---|---|---|---|---|---|
J1 | 2374.59 | 2.6304 | 2.3036 | 2.5982 | 2.9714 | 2.9854 | 2.6829 |
J2 | 2628.00 | 2.6875 | 2.247 | 2.6153 | 2.9835 | 2.9781 | 2.7281 |
J3 | 2974.44 | 2.6765 | 2.3796 | 2.739 | 2.9786 | 2.9636 | 2.7022 |
J5 | 3100.76 | 2.6912 | 2.3386 | 2.6269 | 2.9582 | 2.9372 | 2.7186 |
J6 | 3263.53 | 2.7074 | 2.2362 | 2.635 | 2.962 | 2.9262 | 2.7302 |
Evaluation Parameters | Daning-Jixian [51,52,53] | Linxing [54,55] | Baijiahai Uplift [56,57,58] | |
---|---|---|---|---|
Preservation condition | Roof lithologic | Limestone | Sandstone or mudstone | Sandstone |
Depth | 2000~2520 m | 1700~2150 m | 2567~2828 m | |
Fluid pressure | 17.02~20.74 MPa | 10.5~20.6 MPa | 24.39–26.87 MPa | |
temperature | 61.3~73.4 °C | 35.9~60.5 °C | 80~85 °C | |
Resources condition | Thickness | 4~12 m, average 7.8 m | 2.5~16.24 m | 8–10 m |
Gas content | 18~30 m3/t | 13.02~24 m3/t | 13.34~16.11 m3/t | |
Isothermal adsorption | VL, 28.29 m3/t PL, 3.06 MPa | VL:10.53~29.28 m3/t PL:2.57~6.22 MPa | VL:7.2~8.77 m3/t PL:4.9~6.69 m3/t | |
Microscopic | Vitrinite 85.5% | Vitrinite 45.90~88.60% | Vitrinite 67.10% | |
Ro,max | 2.7% | 1.36% | 0.84% | |
Migration conditions | Porosity | 2.74~3.62% | 4.23~6.79% | 6.6~11.9% |
Permeability | 0.053~0.054 mD | <0.1 mD | 0.17~5.49 mD | |
Macroscopic | Mainly semi-bright/bright | Mainly semi-bright/bright | / | |
Coal structure | Primary | Primary | Primary |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Qiu, F.; Shu, L.; Huo, Z.; Li, Z.; Cai, Y. Reservoir Properties and Gas Potential of the Carboniferous Deep Coal Seam in the Yulin Area of Ordos Basin, North China. Energies 2025, 18, 3987. https://doi.org/10.3390/en18153987
Fang X, Qiu F, Shu L, Huo Z, Li Z, Cai Y. Reservoir Properties and Gas Potential of the Carboniferous Deep Coal Seam in the Yulin Area of Ordos Basin, North China. Energies. 2025; 18(15):3987. https://doi.org/10.3390/en18153987
Chicago/Turabian StyleFang, Xianglong, Feng Qiu, Longyong Shu, Zhonggang Huo, Zhentao Li, and Yidong Cai. 2025. "Reservoir Properties and Gas Potential of the Carboniferous Deep Coal Seam in the Yulin Area of Ordos Basin, North China" Energies 18, no. 15: 3987. https://doi.org/10.3390/en18153987
APA StyleFang, X., Qiu, F., Shu, L., Huo, Z., Li, Z., & Cai, Y. (2025). Reservoir Properties and Gas Potential of the Carboniferous Deep Coal Seam in the Yulin Area of Ordos Basin, North China. Energies, 18(15), 3987. https://doi.org/10.3390/en18153987