Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (304)

Search Parameters:
Keywords = polysaccharide-protein complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 449 KiB  
Review
Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation
by Therys Senna de Castro Oliveira, Jhonathan Valente Ferreira Gusmão, Thaís Caroline Buttow Rigolon, Daiana Wischral, Pedro Henrique Campelo, Evandro Martins and Paulo Cesar Stringheta
Micro 2025, 5(3), 36; https://doi.org/10.3390/micro5030036 (registering DOI) - 31 Jul 2025
Abstract
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for [...] Read more.
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for encapsulation. Animal-derived proteins, such as whey and casein, exhibit superior performance in stabilizing lipophilic compounds, whereas plant proteins, including soy and pea protein, demonstrate greater affinity for hydrophilic bioactives. Advances in protein modification and the formation of protein–polysaccharide complexes have further improved encapsulation efficiency, particularly for heat- and pH-sensitive compounds. This review explores the physicochemical characteristics of proteins used in encapsulation, the interactions between proteins and bioactives, and the main encapsulation techniques, including spray drying, complex coacervation, nanoemulsions, and electrospinning. Furthermore, the potential applications of encapsulated bioactives in functional foods, pharmaceuticals, and nutraceuticals are discussed, highlighting the role of emerging technologies in optimizing delivery systems. Understanding the synergy between proteins, bioactives, and encapsulation methods is essential for developing more stable, bioavailable, and sustainable functional products. Full article
(This article belongs to the Section Microscale Biology and Medicines)
19 pages, 3224 KiB  
Article
Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform
by Xian-Ni Su, Yu-Yang Wang, Muhammed Fahad Khan, Li-Na Zhu, Zhong-Liang Chen, Zhuo Wang, Bing-Bing Song, Qiao-Li Zhao, Sai-Yi Zhong and Rui Li
Foods 2025, 14(15), 2629; https://doi.org/10.3390/foods14152629 - 26 Jul 2025
Viewed by 287
Abstract
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a [...] Read more.
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a self-assembling peptide, 9-Fluorenylmethoxycarbonyl-phenylalanine-arginine-glycine-aspartic acid-phenylalanine (Fmoc-FRGDF), and hyaluronic acid (HA). The stability of this hydrogel as a quercetin (Que) delivery carrier was systematically investigated. Furthermore, the impact of Que co-assembly on the microstructural evolution and physicochemical properties of the hydrogel was characterized. Concurrently, the encapsulation efficiency (EE%) and controlled release kinetics of Que were quantitatively evaluated. Results: The findings indicated that HA significantly reduced the storage modulus (G′) from 256.5 Pa for Fmoc-FRGDF to 21.1 Pa with the addition of 0.1 mg/mL HA. Despite this reduction, HA effectively slowed degradation rates; specifically, residue rates of 5.5% were observed for Fmoc-FRGDF alone compared to 14.1% with 0.5 mg/mL HA present. Notably, Que enhanced G′ within the ternary complex, increasing it from 256.5 Pa in Fmoc-FRGDF to an impressive 7527.0 Pa in the Que/HA/Fmoc-FRGDF hydrogel containing 0.1 mg/mL HA. The interactions among Que, HA, and Fmoc-FRGDF involved hydrogen bonding, electrostatic forces, and hydrophobic interactions; furthermore, the co-assembly process strengthened the β-sheet structure while significantly promoting supramolecular ordering. Interestingly, the release profile of Que adhered to the Korsmeyer–Peppas pharmacokinetic equations. Conclusions: Overall, this study examines the impact of polyphenol on the rheological properties, microstructural features, secondary structure conformation, and supramolecular ordering within peptide–polysaccharide–polyphenol ternary complexes, and the Fmoc-FRGDF/HA hydrogel system demonstrates a superior performance as a delivery vehicle for maintaining quercetin’s bioactivity, thereby establishing a multifunctional platform for bioactive agent encapsulation and controlled release. Full article
Show Figures

Figure 1

20 pages, 25333 KiB  
Article
Regulatory Effects of Codonopsis pilosula Alkali-Extracted Polysaccharide Induced Intestinal Lactobacillus Enrichment on Peripheral Blood Proteomics in Tumor-Bearing Mice
by Yuting Fan, Chenqi Yang, Yiran Zhao, Xiao Han, Hongfei Ji, Zhuohao Ren, Wenjie Ding and Haiyu Ji
Microorganisms 2025, 13(8), 1750; https://doi.org/10.3390/microorganisms13081750 - 26 Jul 2025
Viewed by 232
Abstract
Codonopsis pilosula polysaccharides have demonstrated multiple biological activities including immune regulation, antitumor, and antioxidant properties. The rapid development and integrated application of multi-omics can facilitate the unraveling of the complex network of immune system regulation. In this study, C. pilosula alkali-extracted polysaccharide (CPAP) [...] Read more.
Codonopsis pilosula polysaccharides have demonstrated multiple biological activities including immune regulation, antitumor, and antioxidant properties. The rapid development and integrated application of multi-omics can facilitate the unraveling of the complex network of immune system regulation. In this study, C. pilosula alkali-extracted polysaccharide (CPAP) were prepared, and their effects on gut microbiota compositions, metabolic pathways, and protein expressions in peripheral blood and solid tumors in mice were further evaluated. The 16S rDNA sequencing results showed that CPAP could effectively promote the enrichment of intestinal Lactobacillus in tumor-bearing mice. In addition, it could be inferred from peripheral blood and solid tumor proteomics results that CPAP might activate T cell-mediated antitumor immune functions by regulating purine metabolism and alleviate tumor-caused inflammation by promoting neutrophil degranulation, finally inducing apoptosis in tumor cells by increasing oxidative stress. These results will provide a theoretical foundation and data support for the further development of CPAP as dietary adjuvants targeting immune deficiency-related diseases. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

25 pages, 1428 KiB  
Article
Comparative Analysis of Polysaccharide and Nutritional Composition of Biological and Industrial-Scale Cultivated Pleurotus ostreatus Mushrooms for Functional Food and Nutraceutical Applications
by Helena Araújo-Rodrigues, Manuela Amorim, Victor de Freitas, João B. Relvas, Freni K. Tavaria and Manuela Pintado
Polysaccharides 2025, 6(3), 62; https://doi.org/10.3390/polysaccharides6030062 - 13 Jul 2025
Viewed by 401
Abstract
This study chemically characterized three Pleurotus ostreatus fruiting bodies cultivated in the Iberian Peninsula under different conditions (biological and industrial), with emphasis on polysaccharide analysis. Comprehensive comparative data on cultivation-dependent nutritional variations will potentially improve their nutritional and therapeutic applications. Industrial mushrooms (POC [...] Read more.
This study chemically characterized three Pleurotus ostreatus fruiting bodies cultivated in the Iberian Peninsula under different conditions (biological and industrial), with emphasis on polysaccharide analysis. Comprehensive comparative data on cultivation-dependent nutritional variations will potentially improve their nutritional and therapeutic applications. Industrial mushrooms (POC and POA) contained significantly higher carbohydrate content (74%), while the biologically cultivated mushroom (POL) exhibited more protein (22.6%), fat (4.2%), and ashes (8.0%). Monosaccharide analysis showed glucose dominance (28.7–45.5%), with mannose, galactose, xylose, and arabinose also present. Trehalose was the primary free sugar (4.8–14.9%). The (1→3)(1→6)-β-glucans varied significantly across samples (POL: 20.5%; POC: 29.3%; POA: 34.3%). Nuclear magnetic resonance analysis suggested complex polysaccharide arrangements. Water-soluble carbohydrates and proteins showed molecular weight distributions of 0.18–21 kDa and 0.20–75 kDa, respectively. All mushrooms were rich in essential amino acids, phosphorus (2.79–3.07%), potassium (0.56–0.68%), linoleic acid (0.82–1.14%), and oleic acid (0.22–0.31%). Fourier transform infrared confirmed a mushroom-specific biochemical profile. These findings corroborate the high nutritional value of POL, POC, and POA, with a significant contribution to the daily requirements of fiber, protein, and minerals (phosphorus, potassium, magnesium, iron, zinc, copper, and selenium), making them suitable for functional foods and nutraceuticals with cultivation-dependent nutritional profiles. Full article
Show Figures

Graphical abstract

44 pages, 11501 KiB  
Review
Tissue Regeneration of Radiation-Induced Skin Damages Using Protein/Polysaccharide-Based Bioengineered Scaffolds and Adipose-Derived Stem Cells: A Review
by Stefana Avadanei-Luca, Isabella Nacu, Andrei Nicolae Avadanei, Mihaela Pertea, Bogdan Tamba, Liliana Verestiuc and Viorel Scripcariu
Int. J. Mol. Sci. 2025, 26(13), 6469; https://doi.org/10.3390/ijms26136469 - 4 Jul 2025
Viewed by 457
Abstract
Radiation therapy, a highly effective cancer treatment that targets cancer cells, may produce challenging side effects, including radiation-induced skin tissue injuries. The wound healing process involves complex cellular responses, with key phases including hemostasis, inflammation, proliferation, and remodeling. However, radiation-induced injuries disrupt this [...] Read more.
Radiation therapy, a highly effective cancer treatment that targets cancer cells, may produce challenging side effects, including radiation-induced skin tissue injuries. The wound healing process involves complex cellular responses, with key phases including hemostasis, inflammation, proliferation, and remodeling. However, radiation-induced injuries disrupt this process, resulting in delayed healing, excessive scarring, and compromised tissue integrity. This review explores innovative approaches related to wound healing in post-radiotherapy defects, focusing on the integration of adipose-derived stem cells (ADSCs) in protein/polysaccharide bioengineered scaffolds. Such scaffolds, like hydrogels, sponges, or 3D-printed/bioprinted materials, provide a biocompatible and biomimetic environment that supports cell-to-cell and cell-to-matrix interactions. Various proteins and polysaccharides are discussed for beneficial properties and limitations, and their compatibility with ADSCs in wound healing applications. The potential of ADSCs-polymeric scaffold combinations in radiation-induced wound healing is investigated, alongside the mechanisms of cell proliferation, inflammation reduction, angiogenesis promotion, collagen formation, integrin binding, growth factor signaling, and activation of signaling pathways. New strategies to improve the therapeutic efficacy of ADSCs by integration in adaptive polymeric materials and designed scaffolds are highlighted, providing solutions for radiation-induced wounded skin, personalized care, faster tissue regeneration, and, ultimately, enhanced quality of the patients’ lives. Full article
(This article belongs to the Special Issue Medical Applications of Polymer Materials)
Show Figures

Graphical abstract

17 pages, 2818 KiB  
Review
Metabolic Responses, Uptake, and Export of Copper in Cyanobacteria
by Jean Coutinho Oder, Thamires Emidio Sateles, Laila Barros de Souza, Adriano Nunes-Nesi, Wagner L. Araújo and Luna Alvarenga-Lucius
Biology 2025, 14(7), 798; https://doi.org/10.3390/biology14070798 - 1 Jul 2025
Viewed by 429
Abstract
Copper (Cu) is an essential micronutrient for cyanobacteria, where it functions as a cofactor in key proteins involved in photosynthesis and antioxidant defense. However, at elevated concentrations, Cu becomes toxic, exhibiting algicidal effects by disrupting metal homeostasis and competing for metal-binding sites on [...] Read more.
Copper (Cu) is an essential micronutrient for cyanobacteria, where it functions as a cofactor in key proteins involved in photosynthesis and antioxidant defense. However, at elevated concentrations, Cu becomes toxic, exhibiting algicidal effects by disrupting metal homeostasis and competing for metal-binding sites on critical cellular proteins. Due to the considerable morphological and physiological diversity within the phylum Cyanobacteria, the thresholds for Cu deficiency or toxicity vary considerably among strains. Maintaining Cu homeostasis in cyanobacterial cells is a complex process involving multiple layers of regulation. It begins at the extracellular polysaccharide layer, involves specialized membrane-bound proteins (in the outer, plasma, and thylakoid membranes), and results in transcriptional regulation in response to intracellular Cu status. This review summarizes the current understanding of Cu uptake and efflux pathways in cyanobacteria and explores how these mechanisms contribute to maintaining cellular Cu balance. The knowledge gained may contribute to the application of cyanobacteria in bioremediation strategies and/or the targeted use of Cu in the control of harmful cyanobacterial blooms. Full article
Show Figures

Figure 1

25 pages, 2127 KiB  
Article
Isolation, Preliminary Structural Insights, Characterization, and Antioxidant Potential of a New High-Molecular Weight Complex Phenolic Polymer Developed from Olive Mill Wastewater
by Antonio Lama-Muñoz, Alejandra Bermúdez-Oria, Fátima Rubio-Senent, Guillermo Rodríguez-Gutiérrez, África Fernández-Prior and Juan Fernández-Bolaños
Antioxidants 2025, 14(7), 791; https://doi.org/10.3390/antiox14070791 - 27 Jun 2025
Viewed by 465
Abstract
Olive mill wastewater (OMW), a byproduct of the olive oil industry, is a potential source of natural bioactive phenolic polymers. In this work, a column chromatography technique was used for the isolation of a new complex polymer (named OMW-2000XAD) from OMW via fractionation [...] Read more.
Olive mill wastewater (OMW), a byproduct of the olive oil industry, is a potential source of natural bioactive phenolic polymers. In this work, a column chromatography technique was used for the isolation of a new complex polymer (named OMW-2000XAD) from OMW via fractionation on Amberlite® XAD16 resin. The developed procedure was simple and proved to be reproducible using OMW from two different sources. OMW-2000XAD was further characterized by elemental, glycosidic, and amino acid composition analysis, as well as spectroscopic techniques. The polymer’s molecular size, which was estimated via gel filtration chromatography, was 1960 kDa, which is significantly larger than other high-molecular weight fractions previously isolated from OMW or other agro-industrial wastes. OMW-2000XAD was mainly composed of phenolic compounds (89.8%). It also contained polysaccharides (16.1%) and proteins (10.3%), with glucose (12.25%) and cysteine (1.71%) being the most abundant sugar and amino acid, respectively, as well as metals (1.29%, primarily potassium). However, due to its low solubility, complexity, and heterogeneous composition, it was not possible to identify all phenolic compounds or elucidate a definitive structure via MS, FTIR, and NMR. OMW-2000XAD exhibited strong radical scavenging antioxidant capacity (ABTS•+, DPPH and peroxyl radicals), with results up to 7415 µmol Trolox equivalent/mol (ORAC method), but showed no antiproliferative effects, highlighting the need for further research. Full article
Show Figures

Figure 1

21 pages, 3549 KiB  
Review
Functional Modification and Applications of Rice Starch Emulsion Systems Based on Interfacial Engineering
by Pingyuan Ge, Ye Tian, Heng Yan, Qingqing Li, Tianle Yao, Jie Yao, Liuyu Xiao, Meng Zhu and Yu Han
Foods 2025, 14(13), 2228; https://doi.org/10.3390/foods14132228 - 24 Jun 2025
Viewed by 461
Abstract
Rice starch, as one of the most abundant and renewable polysaccharide resources in nature, holds great potential for applications in the food, pharmaceutical, and industrial fields due to its wide availability, low cost, and biodegradability. However, its inherent limitations—such as susceptibility to retrogradation [...] Read more.
Rice starch, as one of the most abundant and renewable polysaccharide resources in nature, holds great potential for applications in the food, pharmaceutical, and industrial fields due to its wide availability, low cost, and biodegradability. However, its inherent limitations—such as susceptibility to retrogradation and poor emulsifying capacity—have hindered its development into high-value-added products. Emulsion technology presents a promising strategy to overcome these challenges by constructing stable oil–water interfacial systems using various stabilizers. This review highlights recent advances in the functional modification of rice starch through emulsion-based techniques, with a particular focus on four key approaches: polysaccharide–protein complexation, chemical and physical modifications, Pickering emulsions, and microcapsule formation. These strategies significantly improve the emulsifying ability of rice starch, inhibit retrogradation, and expand its potential applications in sustained drug delivery, functional foods, and intelligent packaging. Overall, interfacial engineering of rice starch offers an innovative and effective pathway for its high-value utilization, demonstrating substantial promise for future industrial applications. Full article
Show Figures

Figure 1

12 pages, 1360 KiB  
Article
Pharmacological Effect of Water-Extractable (Poly)Phenolic Polysaccharide–Protein Complexes from Prunus spinosa L. Wild Fruits
by Šutovská Martina, Miroslava Molitorisová, Jozef Mažerik, Iveta Uhliariková and Peter Capek
Int. J. Mol. Sci. 2025, 26(13), 5993; https://doi.org/10.3390/ijms26135993 - 22 Jun 2025
Viewed by 351
Abstract
Wild fruits are distributed worldwide, but are consumed mainly in developing countries, where they are an important part of the diet. Still, in many other countries, they are consumed only locally. Blackthorn (Prunus spinosa L.) is an underutilized species rich in fibres [...] Read more.
Wild fruits are distributed worldwide, but are consumed mainly in developing countries, where they are an important part of the diet. Still, in many other countries, they are consumed only locally. Blackthorn (Prunus spinosa L.) is an underutilized species rich in fibres and phenolic compounds, making it suitable as a potential functional food for supporting human health. Cold (Cw) and hot (Hw) water-extracted (poly)phenolic polysaccharide–protein complexes, differing in carbohydrate, phenolic and protein contents, were isolated from blackthorn fruits and characterized. The complexes exhibited molecular weights of 235,200 g/mol (Cw) and 218,400 g/mol (Hw), and were rich in pectic polymers containing galacturonic acid, arabinose, galactose and rhamnose, indicating a dominance of homogalacturonan (HG) [→4)-α-D-GalA(1→4)-α-D-GalA(1→]n and a low content of RGI [→2)-α-L-Rha(1→4)-α-D-GalA(1→2)-α-L-Rha(1→]n sequences associated with arabinan or arabinogalactan. Minor content of glucan, probably starch-derived, was also solubilized. Pectic polysaccharides were highly esterified and partly acetylated. Pharmacological testing was performed in male Dunkin–Hartley guinea pigs, a model with human-like airway reflexes. Both complexes affected airway defense mechanisms. Particularly, Hw significantly suppressed citric acid-induced cough, similar to codeine, and reduced bronchoconstriction comparably to salbutamol in a dose-dependent manner. These findings support further exploration of Hw as a natural antitussive and bronchodilatory agent. Full article
Show Figures

Figure 1

46 pages, 735 KiB  
Review
Plant-Derived Phytobiotics as Emerging Alternatives to Antibiotics Against Foodborne Pathogens
by Kamila Rachwał and Klaudia Gustaw
Appl. Sci. 2025, 15(12), 6774; https://doi.org/10.3390/app15126774 - 16 Jun 2025
Viewed by 877
Abstract
Growing consumer awareness of clean labels is driving demand for preservative-free products yet concerns about foodborne pathogens and microbiological safety remain significant. Plant-derived compounds with bioactive properties—phytobiotics—have emerged as promising alternatives or complements to conventional antimicrobial agents. This review discusses phytobiotics, including essential [...] Read more.
Growing consumer awareness of clean labels is driving demand for preservative-free products yet concerns about foodborne pathogens and microbiological safety remain significant. Plant-derived compounds with bioactive properties—phytobiotics—have emerged as promising alternatives or complements to conventional antimicrobial agents. This review discusses phytobiotics, including essential oils, polyphenols, alkaloids, and organosulfur compounds, highlighting their structural diversity and antimicrobial potential. Phytobiotics combat foodborne pathogens by disrupting cell structures, inhibiting biofilms and quorum sensing, and interfering with genetic and protein synthesis. Importantly, some phytobiotics exhibit synergistic effects when combined with antibiotics or other natural agents, enhancing overall antimicrobial efficacy. The impact of phytobiotics on the microbiota of food products and the gastrointestinal tract is also addressed, with attention to both beneficial modulation and possible unintended effects. Practical applications in food preservation and supplementation are analyzed, as well as challenges related to composition variability, stability, and interactions with food matrices. Nevertheless, modern technologies such as nanoencapsulation, complexation with polysaccharides, and advanced extraction methods are being developed to address these challenges and enhance the stability and bioavailability of phytobiotics. Continued investment in research and innovation is essential to fully harness the potential of phytobiotics in ensuring safe, natural, and sustainable food systems. Full article
(This article belongs to the Special Issue Advances in Food Safety and Microbial Control)
Show Figures

Figure 1

15 pages, 2420 KiB  
Review
Applications of Surface Plasmon Resonance in Heparan Sulfate Interactome Research
by Payel Datta, Jonathan S. Dordick and Fuming Zhang
Biomedicines 2025, 13(6), 1471; https://doi.org/10.3390/biomedicines13061471 - 14 Jun 2025
Viewed by 484
Abstract
Surface plasmon resonance (SPR) is a powerful tool for analyzing biomolecular interactions and is widely used in basic biomedical research and drug discovery. Heparan sulfate (HS) is a linear complex polysaccharide and a key component of the extracellular matrix and cell surfaces. HS [...] Read more.
Surface plasmon resonance (SPR) is a powerful tool for analyzing biomolecular interactions and is widely used in basic biomedical research and drug discovery. Heparan sulfate (HS) is a linear complex polysaccharide and a key component of the extracellular matrix and cell surfaces. HS plays a pivotal role in maintaining cellular functions and tissue homeostasis by interacting with numerous proteins, making it essential for normal physiological processes and disease states. Deciphering the interactome of HS unlocks the mechanisms underlying its biological functions and the potential for novel HS-related therapeutics. This review presents an overview of the recent advances in the application of SPR technology to HS interactome research. We discuss methodological developments, emerging trends, and key findings that illustrate how SPR is expanding our knowledge of HS-mediated molecular interactions. Additionally, we highlight the potential of SPR-based approaches in identifying novel therapeutic targets and developing HS-mimetic drugs, thereby opening new avenues for intervention in HS-related diseases. Full article
Show Figures

Figure 1

38 pages, 5968 KiB  
Article
Marine Jellyfish Collagen and Other Bioactive Natural Compounds from the Sea, with Significant Potential for Wound Healing and Repair Materials
by Ana-Maria Pesterau, Antoanela Popescu, Rodica Sirbu, Emin Cadar, Florica Busuricu, Ana-Maria Laura Dragan, Carolina Pascale, Ana-Maria Ionescu, Claudia Florina Bogdan-Andreescu, Marius-Daniel Radu and Cezar Laurentiu Tomescu
Mar. Drugs 2025, 23(6), 252; https://doi.org/10.3390/md23060252 - 13 Jun 2025
Viewed by 1008
Abstract
Skin health must be ensured at all times in the case of wounds when the skin is subjected to traumatic actions that require multiple wound-healing measures. Wound healing is a complex, multi-phase biological process critical for restoring skin integrity after trauma. This study [...] Read more.
Skin health must be ensured at all times in the case of wounds when the skin is subjected to traumatic actions that require multiple wound-healing measures. Wound healing is a complex, multi-phase biological process critical for restoring skin integrity after trauma. This study investigates the development and evaluation of a novel composite hydrogel formulated from collagen peptides extracted from the jellyfish Rhizostoma pulmo and hydroethanolic extracts from the brown alga Cystoseira barbata, both sourced from the Romanian Black Sea coast. Throughout the work, the characteristics due to the biochemical compositions of the extracts from the brown alga C. barbata and from the jellyfish R. pulmo are highlighted as important, emphasizing the content of polysaccharides, proteins, and lipids. Total phenol content was analyzed for three extracts from natural products. The biochemical composition, antioxidant, antimicrobial, and in vitro wound-healing properties of the components and their composite (JPC-ALG) were assessed. The rheological behavior and optical microscopy studies of collagen hydrogels were prepared. The general mechanisms of wound healing with the involvement of polysaccharides and collagen peptides existing in all categories of extracts were highlighted. The study of the effects of JPC-ALG composites and individual extracts on fibroblast and keratocyte cell lines is also presented. Results demonstrated that the composite exhibited synergistic effects, enhancing fibroblast and keratinocyte migration and proliferation, key factors in wound closure. The findings support the potential application of this marine-derived bioactive composite as a promising biomaterial for wound-healing therapies. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds for Skin Health)
Show Figures

Graphical abstract

18 pages, 2158 KiB  
Article
Biosynthesis of Two Types of Exogenous Antigenic Polysaccharides in a Single Escherichia coli Chassis Cell
by Jingjing Hao, Haoqian Liao, Shuhong Meng, Yan Guo, Li Zhu, Hengliang Wang and Yufei Lyu
Life 2025, 15(6), 858; https://doi.org/10.3390/life15060858 - 26 May 2025
Viewed by 533
Abstract
Escherichia coli and Klebsiella pneumoniae are major contributors to the global challenge of antimicrobial resistance, posing serious threats to public health. Among current preventive strategies, conjugate vaccines that utilize bacterial surface polysaccharides have emerged as a promising and effective approach to counter multidrug-resistant [...] Read more.
Escherichia coli and Klebsiella pneumoniae are major contributors to the global challenge of antimicrobial resistance, posing serious threats to public health. Among current preventive strategies, conjugate vaccines that utilize bacterial surface polysaccharides have emerged as a promising and effective approach to counter multidrug-resistant strains. In this study, both the Wzy/Wzx-dependent and ABC transporter-dependent biosynthetic pathways for antigenic polysaccharides were introduced into E. coli W3110 cells. This dual-pathway engineering enabled the simultaneous biosynthesis of two structurally distinct polysaccharides within a single host, offering a streamlined and potentially scalable strategy for vaccine development. Experimental findings confirmed that both polysaccharide types were successfully produced in the engineered strains, although co-expression levels were moderately reduced. A weak competitive interaction was noted during the initial phase of induction, which may be attributed to competition for membrane space or the shared use of activated monosaccharide precursors. Interestingly, despite a reduction in plasmid copy number and transcriptional activity of the biosynthetic gene clusters over time, the overall polysaccharide yield remained stable with prolonged induction. This suggests that extended induction does not adversely affect final product output. Additionally, two glycoproteins were efficiently generated through in vivo bioconjugation of the synthesized polysaccharides with carrier proteins, all within the same cellular environment. This one-cell production system simplifies the workflow and enhances the feasibility of generating complex glycoprotein vaccines. Whole-cell proteomic profiling followed by MFUZZ clustering and Gene Ontology analysis revealed that core biosynthetic genes were grouped into two functional clusters. These genes were predominantly localized to the cytoplasm and were enriched in pathways related to translation and protein binding. Such insights not only validate the engineered biosynthetic routes but also provide a molecular basis for optimizing future constructs. Collectively, this study presents a robust synthetic biology platform for the co-expression of multiple polysaccharides in a single bacterial host. The approach holds significant promise for the rational design and production of multivalent conjugate vaccines targeting drug-resistant pathogens. Full article
(This article belongs to the Special Issue Microorganisms Engineering and Gene-Editing Methods)
Show Figures

Figure 1

19 pages, 2225 KiB  
Article
Fecal Microbiota and Performance of Dairy Cattle from a West Mexican Family Dairy Farm Supplemented with a Fiber-Degrading Enzymatic Complex
by José Martín Ruvalcaba-Gómez, Ramón Ignacio Arteaga-Garibay, Luis Miguel Anaya-Esparza, Lorena Jacqueline Gómez-Godínez, Jazmín Guadalupe Martínez-Sotelo, Elías Hernández-Cruz and Luis Eduardo Arias-Chávez
Vet. Sci. 2025, 12(6), 518; https://doi.org/10.3390/vetsci12060518 - 25 May 2025
Viewed by 667
Abstract
Non-starch polysaccharide-degrading enzymes are widely used as feed additives in monogastric and ruminant species, with positive effects reported. In this study, the commercial, fiber-degrading enzyme complex Hostazym® X, derived from Trichoderma citrinoviride (DSM34663), was included in the total mixed rations of 17 [...] Read more.
Non-starch polysaccharide-degrading enzymes are widely used as feed additives in monogastric and ruminant species, with positive effects reported. In this study, the commercial, fiber-degrading enzyme complex Hostazym® X, derived from Trichoderma citrinoviride (DSM34663), was included in the total mixed rations of 17 mid-lactating (135 ± 61 days in milk) Holstein cows for 10 weeks. A control group (n = 17) was included. Dry matter intake (DMI), milk yield, 4% fat-corrected milk, solid yield, and milk fatty acid profile were assessed. The structure and composition of fecal bacterial communities, as well as PICRUSt2-based functional prediction of bacterial communities, were also evaluated. Higher DMI and milk yield scores were observed in the supplemented group (27.20 vs. 26.59 kgDM/cow/d; and 39.01 vs. 36.70 L/cow/d, respectively). No effects were observed in fat yield, contrary to lactose and protein, which were greater in the supplemented group compared to the control group (1.18 vs. 1.13 and 1.83 vs. 1.75 kg/cow/d, respectively; p < 0.05). Palmitic and oleic acids, in addition to monounsaturated fat in milk, were increased in the supplemented group (p > 0.05). Enzyme supplementation increased the Patescibacteria (p < 0.5) and Actinobacteriota (p > 0.05) in feces, but slightly reduced the Bacteroidota and Firmicutes. The Turicibacter genus remained at a lower relative abundance after supplementation but Candidatus_Saccharimonas, Clostridioides, Prevotellaceae UCG 003, Corynebacterium, Akkermansia, Syntrophococcus, Erysipelotrichaceae UCG 008, other Lachnospiraceae, other members of the Eubacterium_coprostanoligenes_group, Bifidobacterium, Rumminococcus, Akkermansia, and other Spirochaetaceae increased, modifying the functional predicted profile of bacterial communities. In conclusion, a positive effect on performance and milk composition were observed through modulation of microbiota induced by enzyme supplementation. The enzyme complex could be a viable supplement alternative in the feeding of dairy cows in semi-intensive productive systems, mainly when an ad libitum feeding scheme is used. Full article
Show Figures

Graphical abstract

20 pages, 4093 KiB  
Article
Unraveling the Immobilization Mechanisms of Biochar and Humic Acid on Heavy Metals: DOM Insights from EEMs-PARAFAC and 2D-COS Analysis
by Qiuyao Shang, Zhixian Li, Jianwu Wang, Li Zou, Zhenan Xing, Jiaqi Ni, Xiling Liu, Guoliang Chen, Zhang Chen and Zhichao Jiang
Appl. Sci. 2025, 15(11), 5803; https://doi.org/10.3390/app15115803 - 22 May 2025
Cited by 1 | Viewed by 370
Abstract
The structural complexity and variability of dissolved organic matter (DOM) significantly affect its binding capacity with heavy metals (HMs). This study evaluated the remediation efficacy of biochar (BC) and humic acid (HA) on Mn- and Cu-contaminated soils using four maize pot treatments: 3% [...] Read more.
The structural complexity and variability of dissolved organic matter (DOM) significantly affect its binding capacity with heavy metals (HMs). This study evaluated the remediation efficacy of biochar (BC) and humic acid (HA) on Mn- and Cu-contaminated soils using four maize pot treatments: 3% BC (YB3), 6% BC (YB6), 3% BC + 1% HA (YB3H), and 6% BC + 1% HA (YB6H). The results showed that compared to the control (Y), Results showed Mn and Cu concentrations in rhizosphere soil decreased by 11.08–17.76%, while DOM content increased by 44.2–103.83%. BC enhanced DOM aromaticity and humification, further intensified by HA, leading to a more complex and stable DOM structure. PARAFAC identified four DOM components in BC (BC-DOM): C1 (fulvic-like), C2/C3 (humic-like), and C4 (protein-like), and in BC + HA (BC + H-DOM), an enhanced structural complexity with additional aromatic C–H groups was observed. 2D-COS analysis revealed that in BC-DOM, polysaccharides primarily interacted with Mn and Cu, followed by carboxylic acids and phenolic hydroxyl groups, but in BC + H-DOM, aromatic C–H groups preferentially bound Cu before polysaccharides, showing weaker affinity for Mn. These results elucidate the DOM-mediated immobilization mechanisms of BC and HA for HMs, offering insights for soil remediation and carbon sequestration strategies. Full article
Show Figures

Figure 1

Back to TopTop