Pharmacological Effect of Water-Extractable (Poly)Phenolic Polysaccharide–Protein Complexes from Prunus spinosa L. Wild Fruits
Abstract
1. Introduction
2. Results and Discussion
2.1. Plant Material and Characterization of (Poly)Phenolic Polysaccharide–Protein Complexes
2.2. NMR of the (Poly)Phenolic Polysaccharide–Protein Complex Hw
2.3. The Evaluation of Cw and Hw Impact on the Defence Reflexes of the Airways
2.3.1. The Antitussive Effect of Cw and Hw Complexes
2.3.2. The Bronchodilatory Effect of Cw and Hw Complexes
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material and Isolation of (Poly)Phenolic Polysaccharide–Protein Complexes
3.3. General Methods
3.4. Experimental Animals
- Negative control group OVA-, which were administered saline orally at a dose of 1 mL/kg body weight (bw).
- Positive control group COD, which received codeine phosphate orally at a dose of 10 mg/kg bw.
- Positive control group SAL, which were treated with inhaled salbutamol (5 min treatment with 4 µM solution).
- Experimental group Cw 50, which were administered Cw glycoconjugate at a dose of 50 mg/kg bw.
- Experimental group Hw 50, which were treated with Hw sample at a dose of 50 mg/kg bw.
- Experimental group Hw 75, which received Hw glycoconjugate at a dose of 75 mg/kg bw.
- Experimental group Hw 100, which were treated with Hw at a dose of 100 mg/kg bw.
3.5. The Methodology for Evaluating the Effects of Cw and Hw on Airway Defence Reflexes
3.5.1. Assessment of Antitussive Effect
3.5.2. Assessment of the Bronchodilatory Effect
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | One-way analysis of variance |
Ara | Arabinose |
AG | Arabinogalactan |
ASM | Airway smooth muscle |
BC | Butamirate citrate |
CA | Citric acid |
COD | Codeine |
COPD | Chronic obstructive pulmonary disease |
Cw | Cold water extract |
D2O | Deuterium oxide |
EI | Electron ionization |
ERS | European Respiratory Society |
Gal | Galactose |
GC-MS | Gas chromatography–mass spectrometry |
Glc | Glucose |
He | Helium |
HPLC | High-performance liquid chromatography |
HG | Homogalacturonan |
Hw | Hot water extract |
HSQC | Heteronuclear single quantum coherence spectroscopy |
i.p. | Intraperitoneally |
Man | Mannose |
Mw | Molecular weight |
NaBH4 | Sodium borohydride |
NaNO3 | Sodium nitrate |
NMR | Nuclear magnetic resonance |
p.o. | Perorally |
Rha | Rhamnose |
RG-I | Rhamnogalacturonan |
RR | Respiratory rate |
SAL | Salbutamol |
SEC-HPLC | Size exclusion–high-performance liquid chromatography |
sRaw | Specific airway resistance |
References
- Popescu, I.; Caudullo, G. Prunus spinosa in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; p. 145. [Google Scholar]
- Marchelak, A.; Owczarek, A.; Matczak, M.; Pawlak, A.; Kolodziejczyk-Czepas, J.; Nowak, P.; Olszewska, M.A. Bioactivity potential of Prunus spinosa L. flower extracts: Phytochemical profiling, cellular safety, pro-inflammatory enzymes inhibition and protective effects against oxidative stress in vitro. Front. Pharmacol. 2017, 8, 680. [Google Scholar] [CrossRef] [PubMed]
- Marchelak, A.; Kolodziejczyk-Czepas, J.; Wasielewska, P.; Nowak, P.; Olszewska, M.A. The effects of Prunus spinosa L. flower extracts, model polyphenols and phenolic metabolites on oxidative/nitrative modifications of human plasma components with particular emphasis on fibrinogen in vitro. Antioxidants 2021, 10, 581. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Kumar, A.; Kumar Singh, A.; Singh, H.; Thareja, S.; Kumar, P. A comprehensive review on pharmacognosy, phytochemistry and pharmacological activities of 8 potent species of southeast Asia. J. Tradit. Chin. Med. 2024, 44, 620–628. [Google Scholar] [CrossRef]
- Capek, P.; Košťálová, Z. Isolation, chemical characterization and antioxidant activity of Prunus spinosa L. fruit phenolic polysaccharide-proteins. Carbohydr. Res. 2022, 515, 108547. [Google Scholar] [CrossRef]
- Negrean, O.R.; Farcas, A.C.; Pop, O.L.; Socaci, S.A. Blackthorn-A valuable source of phenolic antioxidants with potential health benefits. Molecules 2023, 28, 3456. [Google Scholar] [CrossRef]
- Veličković, I.; Žižak, Ž.; Rajčević, N.; Ivanov, M.; Soković, M.; Marin, P.D.; Grujić, S. Prunus spinosa L. leaf extracts: Polyphenol profile and bioactivities. Not. Bot. Horti Agrobot. 2021, 49, 12137. [Google Scholar] [CrossRef]
- Temiz, M.A.; Okumus, E.; Yaman, T.; Keles, O.F. Mixture of leaf and flower extract of Prunus spinosa L. alleviates hyperglycemia and oxidative stress in streptozotocin-induced diabetic rats. S. Afr. J. Bot. 2021, 141, 145–151. [Google Scholar] [CrossRef]
- Murati, T.; Miletić, M.; Štefanko, A.; Landeka Jurčević, I.; Elez Garofulić, I.; Dragović-Uzelac, V.; Kmetič, I. Comparative assessment of Prunus spinosa L. flower extract in non-neoplastic hepatocytes and hepatoblastoma cells. S. Afr. J. Bot. 2019, 123, 36–42. [Google Scholar] [CrossRef]
- Cetin, N.; Menevse, E.; Ceylan, C.; Celik, Z.E.; Akdam, N.; Rama, S.T.; Buyukyildirim, T.; Pasayeva, L.; Tugay, O.; Gumus, M. Histopathological and biochemical evaluation of the protective efficacy of Prunus spinosa L. extract in a rat model of indomethacin-induced gastric ulcer. Iran. J. Basic Med. Sci. 2024, 27, 1464–1474. [Google Scholar] [CrossRef]
- Magiera, A.; Czerwińska, M.E.; Owczarek, A.; Marchelak, A.; Granica, S.; Olszewska, M.A. Polyphenol-enriched extracts of Prunus spinosa fruits: Anti-Inflammatory and antioxidant effects in human immune cells ex vivo in relation to phytochemical profile. Molecules 2022, 27, 1691. [Google Scholar] [CrossRef]
- Capek, P.; Uhliariková, I. Antioxidant active polysaccharides extracted with oxalate from wild blackthorn fruits (Prunus spinosa L.). Int. J. Mol. Sci. 2024, 25, 4519. [Google Scholar] [CrossRef] [PubMed]
- Golovchenko, V.V.; Khlopin, V.A.; Patova, O.A.; Vityazev, F.V.; Dmitrenok, A.S.; Shashkov, A.S. Structural characterization of arabinogalactan-II and pectin from Urtica cannabina. Carbohydr. Polym. 2025, 348, 122868. [Google Scholar] [CrossRef]
- Patova, O.A.; Smirnov, V.V.; Golovchenko, V.V.; Vityazev, F.V.; Shashkov, A.S.; Popov, S.V. Structural, rheological and antioxidant properties of pectins from Equisetum arvense L. and Equisetum sylvaticum L. Carbohydr. Polym. 2019, 209, 239–249. [Google Scholar] [CrossRef]
- Sterusky, M.; Plevkova, J.; Grendar, M.; Buday, T. Female guinea pig model for cough studies and its response to most common tussive substances. Physiol. Res. 2020, 69 (Suppl. 1), S171–S179. [Google Scholar] [CrossRef] [PubMed]
- Canning, B.J.; Chang, A.B.; Bolser, D.C.; Smith, J.A.; Mazzone, S.B.; McGarvey, L. CHEST Expert Cough Panel. Anatomy and neurophysiology of cough: CHEST Guideline and Expert Panel report. Chest 2014, 146, 1633–1648. [Google Scholar] [CrossRef]
- Adner, M.; Canning, B.J.; Meurs, H.; Ford, W.; Ramos Ramírez, P.; van den Berg, M.P.M.; Birrell, M.A.; Stoffels, E.; Lundblad, L.K.A.; Nilsson, G.P.; et al. Back to the future: Re-establishing guinea pig in vivo asthma models. Clin. Sci. 2020, 134, 1219–1242. [Google Scholar] [CrossRef] [PubMed]
- Monga, N.; Sethi, G.S.; Kondepudi, K.K.; Naura, A.S. Lipid mediators and asthma: Scope of therapeutics. Biochem. Pharmacol. 2020, 179, 113925. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, D.W.; Davis, B.E. Mechanisms of airway hyperresponsiveness. J. Allergy Clin. Immunol. 2006, 118, 551–559. [Google Scholar] [CrossRef]
- Marques, L.; Vale, N. Salbutamol in the management of asthma: A review. Int. J. Mol. Sci. 2022, 23, 14207. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Sedmak, J.J.; Grossberg, S.E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 1977, 79, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Englyst, H.N.; Cummings, J.H. Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 1984, 109, 937–942. [Google Scholar] [CrossRef]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Off. J. Eur. Union 2010, L276, 33–79. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063 (accessed on 21 June 2025).
- Sutovska, M.; Nosalova, G.; Franova, S. The role of potassium ion channels in cough and other reflexes of the airways. J. Physiol. Pharmacol. 2007, 58 Pt 2 (Suppl. 5), 673–683. [Google Scholar]
- Kocmalova, M.; Oravec, M.; Adamkov, M.; Sadlonova, V.; Kazimierova, I.; Medvedova, I.; Joskova, M.; Franova, S.; Sutovska, M. Potassium ion channels and allergic asthma. Adv. Exp. Med. Biol. 2015, 838, 35–45. [Google Scholar] [CrossRef]
- Šutovská, M.; Capek, P.; Kazimierová, I.; Pappová, L.; Jošková, M.; Matulová, M.; Fraňová, S.; Pawlaczyk, I.; Gancarz, R. Echinacea complex-chemical view and anti-asthmatic profile. J. Ethnopharmacol. 2015, 175, 163–171. [Google Scholar] [CrossRef]
- Barboríková, J.; Šutovská, M.; Kazimierová, I.; Jošková, M.; Fraňová, S.; Kopecký, J.; Capek, P. Extracellular polysaccharide produced by Chlorella vulgaris—Chemical characterization and anti-asthmatic profile. Int. J. Biol. Macromol. 2019, 135, 1–11. [Google Scholar] [CrossRef]
- Turcotte, S.E.; Lougheed, M.D. Cough in asthma. Curr. Opin. Pharmacol. 2011, 11, 231–237. [Google Scholar] [CrossRef]
- Pennock, B.E.; Cox, C.P.; Rogers, R.M.; Cain, W.A.; Wells, J.H. A noninvasive technique for measurement of changes in specific airway resistance. J. Appl. Physiol. 1979, 46, 399–406. [Google Scholar] [CrossRef] [PubMed]
Fractions | Cw | Hw |
---|---|---|
(wt%) | (wt%) | |
Yields | 1.0 | 3.8 |
Carbohydrate | 26.4 | 32.2 |
Protein | 6.8 | 12.3 |
Phenolics | 6.2 | 10.7 |
Uronic acids | 33.7 | 39.3 |
Mw (g/mol) | 235,200 | 218,400 |
Neutral sugars a | ||
Rhamnose | 3.7 | 4.0 |
Fucose | 0.4 | 0.8 |
Arabinose | 13.0 | 11.5 |
Xylose | 1.1 | 1.1 |
Mannose | 1.3 | 2.2 |
Galactose | 3.6 | 8.7 |
Glucose | 3.3 | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martina, Š.; Molitorisová, M.; Mažerik, J.; Uhliariková, I.; Capek, P. Pharmacological Effect of Water-Extractable (Poly)Phenolic Polysaccharide–Protein Complexes from Prunus spinosa L. Wild Fruits. Int. J. Mol. Sci. 2025, 26, 5993. https://doi.org/10.3390/ijms26135993
Martina Š, Molitorisová M, Mažerik J, Uhliariková I, Capek P. Pharmacological Effect of Water-Extractable (Poly)Phenolic Polysaccharide–Protein Complexes from Prunus spinosa L. Wild Fruits. International Journal of Molecular Sciences. 2025; 26(13):5993. https://doi.org/10.3390/ijms26135993
Chicago/Turabian StyleMartina, Šutovská, Miroslava Molitorisová, Jozef Mažerik, Iveta Uhliariková, and Peter Capek. 2025. "Pharmacological Effect of Water-Extractable (Poly)Phenolic Polysaccharide–Protein Complexes from Prunus spinosa L. Wild Fruits" International Journal of Molecular Sciences 26, no. 13: 5993. https://doi.org/10.3390/ijms26135993
APA StyleMartina, Š., Molitorisová, M., Mažerik, J., Uhliariková, I., & Capek, P. (2025). Pharmacological Effect of Water-Extractable (Poly)Phenolic Polysaccharide–Protein Complexes from Prunus spinosa L. Wild Fruits. International Journal of Molecular Sciences, 26(13), 5993. https://doi.org/10.3390/ijms26135993