Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = pollution layer resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2417 KB  
Article
Electrochemical Study of the Influence of H2S on Atmospheric Corrosion of Zinc in Sargassum-Affected Tropical Environments
by Mahado Said Ahmed and Mounim Lebrini
Metals 2026, 16(1), 31; https://doi.org/10.3390/met16010031 - 27 Dec 2025
Viewed by 99
Abstract
This study investigates the atmospheric corrosion behavior of zinc in tropical marine environments affected by hydrogen sulfide (H2S), particularly from the decomposition of stranded Sargassum algae. Four exposure sites in Martinique with varying levels of H2S and marine chlorides [...] Read more.
This study investigates the atmospheric corrosion behavior of zinc in tropical marine environments affected by hydrogen sulfide (H2S), particularly from the decomposition of stranded Sargassum algae. Four exposure sites in Martinique with varying levels of H2S and marine chlorides were selected. Gravimetric analysis showed that zinc thickness loss reached up to 45 µm after one year at the most impacted site (Frégate Est), compared to only 3–10 µm at less contaminated locations. This degradation level classifies the site as “extremely corrosive” according to ISO 9223. Electrochemical impedance spectroscopy (EIS) and linear polarization measurements revealed distinct corrosion behaviors. After 12 months of exposure, the polarization resistance and corrosion current density reached Rp = 916 Ω·cm2 and Icorr = 28 µA·cm2 at the Frégate Est site and Rp = 1835 Ω·cm2 and Icorr = 6 µA·cm2 at the Vauclin site. In H2S-poor environments (Diamant, Vert-Pré, Vauclin), corrosion resistance increased over time due to the formation of protective layers such as hydrozincite and simonkolleite. In contrast, H2S-rich environments favored the formation of sulfur-based compounds like elemental sulfur and zinc sulfide (ZnS), which exhibit poor protective properties and result in lower polarization resistance and higher corrosion current densities. Polarization curves confirmed a general decrease in anodic and cathodic currents over time, with less significant improvements in passivation at H2S-impacted sites. The corrosion mechanism is influenced by both pollutant type and exposure duration. Overall, this study highlights the synergistic effect of H2S and chlorides on accelerating zinc corrosion and underscores the need for adapted protection strategies in tropical coastal zones affected by Sargassum proliferation. Full article
Show Figures

Figure 1

19 pages, 4202 KB  
Article
Bacterial Diversity of Arctic Soils with Long-Standing Pollution by Petroleum Products and Heavy Metals
by Ekaterina M. Semenova, Tamara L. Babich, Diyana S. Sokolova, Vladimir A. Myazin, Maria V. Korneykova and Tamara N. Nazina
Microorganisms 2026, 14(1), 55; https://doi.org/10.3390/microorganisms14010055 - 26 Dec 2025
Viewed by 208
Abstract
Long-standing and chronic soil pollution in the Polar Regions is the most persistent. Simultaneous contamination with petroleum products and heavy metals puts additional load on the soil microbial community. The purpose of this work was to determine the composition of prokaryotes in the [...] Read more.
Long-standing and chronic soil pollution in the Polar Regions is the most persistent. Simultaneous contamination with petroleum products and heavy metals puts additional load on the soil microbial community. The purpose of this work was to determine the composition of prokaryotes in the soils of Mount Kaskama with long-standing contamination with petroleum products and heavy metals (Murmansk region, Russia) and outside this zone and the potential ability of bacteria to participate in the self-purification of these soils. Using high-throughput sequencing of 16S rRNA gene V3–V4 fragments, an increase in the proportion of bacteria of the phyla Pseudomonadota, Verrucomicrobiota, Cyanobacteriota, and Bacillota was shown with an increase in soil contamination. Bacteria of the genera Bacillus, Caballeronia, Cytobacillus, Paenibacillus, Paraburkholderia, Pseudomonas, and Rhodanobacter were isolated from soil samples. Bacteria of the genus Paenibacillus capable of hydrocarbon oxidation and iron reduction were isolated from the subsurface contaminated layers. Under aerobic conditions, Fe(II) oxidation by bacteria of the genus Pseudomonas and biodegradation of hydrocarbons by isolated bacteria are possible. The isolated strains grew at low temperatures, used diesel fuel components, and were resistant to Cu(II), Ni(II), and Pb(II). The data obtained indicates the adaptation of bacterial communities to environmental conditions and the ability to participate in the process of soil self-healing. Full article
(This article belongs to the Special Issue Polar Microbiome Facing Climate Change)
Show Figures

Figure 1

26 pages, 8789 KB  
Article
Study on Preparation and Properties of Phosphogypsum-Based Lightweight Thermal Insulation Materials
by Yunpeng Chu, Tianyong Jiang, Han Huang, Gangxin Yi and Binyang Huang
Materials 2025, 18(24), 5476; https://doi.org/10.3390/ma18245476 - 5 Dec 2025
Viewed by 362
Abstract
At present, phosphogypsum, as an industrial by-product, is a solid waste in phosphoric acid production, and its accumulation has caused serious environmental pollution. Furthermore, due to the insufficient insulation properties of traditional wall materials, the issue of a rising proportion of building energy [...] Read more.
At present, phosphogypsum, as an industrial by-product, is a solid waste in phosphoric acid production, and its accumulation has caused serious environmental pollution. Furthermore, due to the insufficient insulation properties of traditional wall materials, the issue of a rising proportion of building energy consumption in total social energy consumption has become increasingly pressing. The study investigated vitrified beads as a light aggregate and phosphogypsum, mineral powder, and quicklime as an inorganic composite cementitious system to prepare the phosphogypsum-based lightweight thermal insulation material. The effect mechanism of the initial material ratio on the mechanical properties and micro-morphology of insulation materials was studied by macroscale mechanical property testing, X-ray diffraction, and scanning electron microscopy. Meanwhile, in order to meet the performance indexes specified in relevant standards, insulation materials were modified by adding sulfate aluminate cement, basalt fibers, and a waterproof agent to improve the strength, toughness, and water resistance. Based on the single-factor experimental design, the optimal dosage of various admixtures was obtained. The results indicated that the optimal properties of the sample were achieved when the binder–bead ratio was 1:4, the water–binder ratio was 1.6, the dosage of hydroxypropyl methylcellulose was 0.1%, and the solid content of waterborne acrylic emulsion was 24%. The optimal dosages of cement and fibers were 8% and 0.9%, respectively. The cement hydration products and gypsum crystals lapped through each other, filling the pores in the matrix and increasing the strength of the sample. In addition, the fibers could form a disordered network structure inside the matrix, disperse external force, weaken the stress concentration at the tip of internal cracks, and significantly improve the toughness of the modified sample. By incorporating 2.0% paraffin emulsion in the mortar and spraying 5 dilutions of sodium methyl silicate on the external surface, dense protective layers were formed both inside and outside the modified sample. The water absorption rate reduced from 30.27% to 23.30%, and the water resistance was increased to satisfy the specified requirement for the insulation material. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 2779 KB  
Article
Study on the Adsorption of Tetracycline Hydrochloride in Water by Modified Highland Barley Straw Biochar
by Jiacheng Song, Huijun Xi, Xiaogang Gu and Jian Xiong
Water 2025, 17(23), 3335; https://doi.org/10.3390/w17233335 - 21 Nov 2025
Viewed by 694
Abstract
Global antibiotic pollution (represented by tetracycline hydrochloride, TCH) threatens water environmental safety, and resource recovery of agricultural waste remains a key challenge for sustainable development. Given that utilizing biochar for adsorption is widely recognized as a circular economy-compliant method, this study aimed to [...] Read more.
Global antibiotic pollution (represented by tetracycline hydrochloride, TCH) threatens water environmental safety, and resource recovery of agricultural waste remains a key challenge for sustainable development. Given that utilizing biochar for adsorption is widely recognized as a circular economy-compliant method, this study aimed to verify its applicability in TCH pollution control while recycling agricultural waste by preparing modified biochar from the Xi Zang highland barley straw via chemical activation (KOH, H3PO4, NaHCO3, and ZnCl2) and pyrolysis at 750 °C. Among the products, H3PO4-modified (P-BC) and ZnCl2-modified (Zn-BC) biochars performed best: their abundant micro/mesoporous structures and surface functional groups (–OH/–COOH) enabled excellent TCH adsorption, with the mechanism involving synergy of physical adsorption (dominated by pore filling) and chemical adsorption (hydrogen bonding, electrostatic attraction, cation bridging), alongside multi-layer adsorption. Adsorption was pH-dependent—acidic conditions favored it, while Zn-BC restored efficiency at pH = 9 via Zn2+ bridging. The two biochars were complementary: Zn-BC had higher adsorption capacity, while P-BC showed better stability and ionic interference resistance. Thus, Zn-BC suits high-concentration, low-ionic-strength TCH wastewater, and P-BC is ideal for complex high-ionic-strength water (e.g., industrial/aquaculture wastewater). This study provides theoretical and technical support for high-value utilization of regional agricultural waste and targeted TCH pollution control. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

22 pages, 2436 KB  
Article
Assessing BME688 Sensor Performance Under Controlled Outdoor-like Environmental Conditions
by Enza Panzardi, Ada Fort, Valerio Vignoli, Irene Cappelli, Luigi Gaioni, Matteo Verzeroli, Salvatore Dello Iacono and Alessandra Flammini
Sensors 2025, 25(23), 7102; https://doi.org/10.3390/s25237102 - 21 Nov 2025
Viewed by 1395
Abstract
Low-cost miniaturized gas sensors are increasingly considered for outdoor air quality monitoring, yet their performance under real-world environmental conditions remains insufficiently characterized. This work evaluates the dynamic gas response of the Bosch BME688 sensor, whose metal oxide sensing layer is based on tin [...] Read more.
Low-cost miniaturized gas sensors are increasingly considered for outdoor air quality monitoring, yet their performance under real-world environmental conditions remains insufficiently characterized. This work evaluates the dynamic gas response of the Bosch BME688 sensor, whose metal oxide sensing layer is based on tin dioxide (SnO2) material, focusing on its sensitivity, selectivity, and dynamic response to four representative air pollutants: nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and isobutylene. This study provides both quantitative performance metrics and a physicochemical interpretation of the sensing mechanism. Controlled experiments were conducted in a custom test chamber to facilitate the precise regulation of temperature, humidity, and gas concentrations in the ppm to sub-ppm range. Despite large variability in the baseline resistance across devices, normalization yields consistent behavior, enabling cross-sensor comparability. The results show that the optimum operating temperatures fall in the range of 360–400 °C, where response and recovery times are reduced to a few minutes, compatible with mobile sensing requirements. Moreover, humidity strongly influences sensor behavior: it generally decreases sensitivity but improves kinetics, and in the case of CO, it enables enhanced responses through additional hydroxyl-mediated pathways. These findings confirm the feasibility of deploying BME688 sensors in distributed outdoor monitoring platforms, provided that humidity and temperature effects are properly addressed through calibration or compensation strategies. In addition, the variability observed in baseline resistance highlights the need for normalization and, consequently, individual calibration steps for each sensor under reference conditions in order to ensure cross-sensor comparability. The findings provided in this study provide support for the design of robust, low-cost air monitoring networks. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

17 pages, 5189 KB  
Article
Total Solution-Processed Zr: HfO2 Flexible Memristor with Tactile Sensitivity: From Material Synthesis to Application in Wearable Electronics
by Luqi Yao and Yunfang Jia
Sensors 2025, 25(20), 6429; https://doi.org/10.3390/s25206429 - 17 Oct 2025
Viewed by 770
Abstract
In the pursuit of advanced non-volatile memory technologies, ferroelectric memristors have attracted great attention. However, traditional perovskite ferroelectric materials are hampered by environmental pollution, limited applicability, and the complexity and high cost of conventional vacuum deposition methods. This has spurred the exploration of [...] Read more.
In the pursuit of advanced non-volatile memory technologies, ferroelectric memristors have attracted great attention. However, traditional perovskite ferroelectric materials are hampered by environmental pollution, limited applicability, and the complexity and high cost of conventional vacuum deposition methods. This has spurred the exploration of alternative materials and fabrication strategies. Herein, a flexible Pt/Zr: HfO2 (HZO)/graphene oxide (GO)/mica memristor is successfully fabricated using the total solution-processed method. The interfacial oxygen competition mechanism between the HZO layer and the GO bottom electrode facilitates the formation of the HZO ferroelectric phase. The as-prepared device exhibits a switching ratio of approximately 150 and can maintain eight distinct resistance levels, and it can also effectively simulate neural responses. By integrating the ferroelectric polarization principle and the piezoelectric effect of HZO, along with the influence of GO, the performance variations of the as-prepared device under mechanical and thermal influences are further explored. Notably, Morse code recognition is achieved by utilizing the device’s pressure properties and setting specific press rules. The as-prepared device can accurately convert and store information, opening new avenues for non-volatile memory applications in silent communication and promoting the development of wearable electronics. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

17 pages, 2118 KB  
Article
Enhancing CO2 Fixation and Wastewater Treatment Performance by Assembling MgFe-LDH on Chlorella pyrenoidosa
by Huanan Xu, Hao Zhou, Yinfeng Hua, Weihua Chen, Jian Wu, Zhenwu Long, Liang Zhao, Lumei Wang, Guoqing Shen and Qincheng Chen
Sustainability 2025, 17(20), 8970; https://doi.org/10.3390/su17208970 - 10 Oct 2025
Viewed by 543
Abstract
Microalgae are considered to be a dual solution for CO2 fixation and biogas slurry purification due to their high photosynthetic efficiency and strong environmental adaptability. However, their application is constrained by the low solubility of CO2 in the solution environment, which [...] Read more.
Microalgae are considered to be a dual solution for CO2 fixation and biogas slurry purification due to their high photosynthetic efficiency and strong environmental adaptability. However, their application is constrained by the low solubility of CO2 in the solution environment, which restricts microalgal growth, resulting in low biomass production and poor slurry purification efficiency. In this study, we developed MgFe layered double hydroxide (LDH) that spontaneously combined with Chlorella pyrenoidosa to help it concentrate CO2, thereby increasing biomass yield and purification capacity for food waste biogas slurry. The prepared MgFe-LDH exhibited a typical layered structure with a CO2 adsorption capacity of 4.44 mmol/g. MgFe-LDH and C. pyrenoidosa carried opposite charges, enabling successful self-assembly via electrostatic interaction. Compared with the control, the addition of 200 ppm MgFe-LDH increased C. pyrenoidosa biomass and pigment content by 36.82% and 63.05%, respectively. The removal efficiencies of total nitrogen, total phosphorus, and ammonia nitrogen in the slurry were enhanced by 20.04%, 31.54% and 14.57%, respectively. The addition of LDH effectively alleviated oxidative stress in C. pyrenoidosa and stimulated the secretion of extracellular polymeric substances, thereby enhancing the stress resistance and pollutant adsorption capabilities. These findings provided a new strategy for the industrial application of microalgal technology in CO2 fixation and wastewater treatment. Full article
Show Figures

Figure 1

18 pages, 5589 KB  
Article
Integrated Investigation Approach for Solid Waste Landfill Hazards—A Case Study of Two Decommissioned Industrial Sites
by Xiaoyu Zhang, Aijing Yin, Yuanyuan Lu, Zhewei Hu, Li Sun, Wenbing Ji, Qi Li, Caiyi Zhao, Yanhong Feng, Lingya Kong and Rongrong Ying
Toxics 2025, 13(10), 807; https://doi.org/10.3390/toxics13100807 - 23 Sep 2025
Viewed by 1057
Abstract
Historical chemical production sites often harbor irregularly distributed solid waste landfills, posing significant environmental risks. Traditional drilling methods, while accurate, are inefficient for comprehensive characterization due to high costs and spatial limitations. This study aims to develop an integrated geophysical drilling approach to [...] Read more.
Historical chemical production sites often harbor irregularly distributed solid waste landfills, posing significant environmental risks. Traditional drilling methods, while accurate, are inefficient for comprehensive characterization due to high costs and spatial limitations. This study aims to develop an integrated geophysical drilling approach to accurately delineate the spatial distribution and volume of landfilled solid waste (predominantly organic pollutants) at two decommissioned chemical plant sites (total area: 8954 m2). Methods: We combined (1) geophysical surveys (transient electromagnetic (TEM, 50 profiles, 2936 points), high-density resistivity (HDR, 2 profiles, 192 points), and ground-penetrating radar (GPR, 22 profiles, 1072.1 m)) and (2) systematic drilling verification (136 boreholes, ≤10 m × 10 m density). Anomalies were interpreted through integrating geophysical responses, historical records, and borehole validation. Spatial modeling was conducted using Kriging interpolation in EVS software. The results show that (1) the anomalies exhibited a “sparse multi-point distribution” across zones A2 (primary waste concentration), A4, and A6, which were differentiated into solid waste, foundations, contaminated soil, voids, and cracks; (2) drilling confirmed solid waste at nine locations (A2: “multi-point, small-quantity” residues; A6: contaminated clay layers with garbage) with irregular thicknesses (0.2–1.3 m); (3) TEM identified diagnostic medium–high-resistivity anomalies (e.g., 28–37 m in A4L3), while GPR detected 17 shallow anomalies (only one validated as waste); and (4) the total waste volume was quantified as 266.9 m3. The methodology reduced the field effort by ∼35% versus drilling-only approaches, resolved geophysical limitations (e.g., HDR’s volume effect overestimating the thickness), and provided a validated framework for efficient characterization of complex historical landfills. Full article
(This article belongs to the Special Issue Novel Remediation Strategies for Soil Pollution)
Show Figures

Figure 1

18 pages, 2852 KB  
Article
Manganese(II) Enhanced Ferrate(VI) Pretreatment: Effects on Membrane Fouling and Pollutants Interception
by Chengbiao Xu, Lu Wang, Jun Ma and Yulei Liu
Water 2025, 17(18), 2757; https://doi.org/10.3390/w17182757 - 18 Sep 2025
Viewed by 638
Abstract
To mitigate membrane fouling in the ultrafiltration process of surface water, this study focused on the source water from the Songhua River, systematically investigating the efficacy and mechanism of combined ferrate(VI) (Fe(VI)) and manganese(II) (Mn(II)) pretreatment in controlling ultrafiltration membrane fouling. Emphasis was [...] Read more.
To mitigate membrane fouling in the ultrafiltration process of surface water, this study focused on the source water from the Songhua River, systematically investigating the efficacy and mechanism of combined ferrate(VI) (Fe(VI)) and manganese(II) (Mn(II)) pretreatment in controlling ultrafiltration membrane fouling. Emphasis was placed on analyzing the impacts of pretreatment on membrane fouling performance, physicochemical properties of influent and effluent, membrane surface characteristics, and interfacial interactions. The results showed that the combined pretreatment with Fe(VI) and Mn(II) outperformed individual pretreatments and the untreated group significantly. When Fe(VI)/Mn(II) was 2/3, the normalized flux reached 0.66, a 35% increase compared to the untreated group; meanwhile, the pollutants retention was enhanced to 41.5%, with reversible and irreversible fouling resistances reduced by 75% and 77%, respectively. At this optimal ratio, the reaction products of Fe(VI) and Mn(II) coagulation acted as the core mechanism. It enhances pollutant particle repulsion, reduces particle size to form a loose structure, leading to a porous, hydrophilic membrane surface fouling layer with low roughness, thus minimizing membrane pore blockage. The combined pretreatment maintained a repulsive total interaction energy between pollutants and the membrane throughout the process, significantly reducing irreversible adsorption, which further verified the effectiveness of fouling mitigation. This study demonstrated that combined Fe(VI)/Mn(II) pretreatment at a molar ratio of 2:3 could efficiently control ultrafiltration membrane fouling by regulating pollutant characteristics and interfacial interactions, providing a theoretical basis and technical support for advanced treatment of surface water. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 1893 KB  
Article
Spatial Differentiation of Heavy Metals/Metalloids, Microbial Risk Genes and Soil Microbiota in a Sulfur-Contaminated Landscape
by Lina Li, Jiayin Zhao, Chang Liu, Yiyan Deng, Yunpeng Du, Yu Liu, Yuncheng Wu, Wenwei Wu and Xuejun Pan
Microorganisms 2025, 13(9), 2010; https://doi.org/10.3390/microorganisms13092010 - 28 Aug 2025
Viewed by 1017
Abstract
Legacy sulfur smelting has left behind complex contamination landscapes, yet the spatial structuring of microbial risks and adaptation strategies across soil profiles remains insufficiently understood. Microbial risk genes, including those conferring resistance to antibiotic resistance (ARGs), biocide and metal resistance (BRGs/MRGs), and virulence [...] Read more.
Legacy sulfur smelting has left behind complex contamination landscapes, yet the spatial structuring of microbial risks and adaptation strategies across soil profiles remains insufficiently understood. Microbial risk genes, including those conferring resistance to antibiotic resistance (ARGs), biocide and metal resistance (BRGs/MRGs), and virulence (VFGs), are increasingly recognized as co-selected under heavy metal stress, posing both ecological and public health concerns. In this study, we integrated geochemical analyses with metagenomic sequencing and functional annotation to jointly characterize the vertical (0–7 m) and horizontal (~2 km) distribution of heavy metals/metalloids, microbial communities, and functional risk genes at a historic smelting site in Zhenxiong, Yunnan. Heavy metals and metalloids such as arsenic (As), chromium (Cr), copper (Cu), and lead (Pb) showed clear accumulation with depth, while significantly lower concentrations were observed in both upstream and downstream locations, revealing persistent vertical and horizontal pollution gradients. Correspondingly, resistance and virulence genes were co-enriched at contaminated sites, suggesting potential co-selection under prolonged stress. LEfSe analysis revealed distinct ecological patterns: vertically, upper layers were dominated by nutrient-cycling and mildly stress-tolerant taxa, while deeper layers favored metal-resistant, oligotrophic, and potentially pathogenic microorganisms; horizontally, beneficial and diverse microbes characterized low-contamination zones, whereas heavily polluted areas were dominated by resistant and stress-adapted genera. These findings provide new insights into microbial resilience and ecological risk under long-term smelting stress. Full article
(This article belongs to the Special Issue Soil Environment and Microorganisms)
Show Figures

Figure 1

22 pages, 7389 KB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Cited by 2 | Viewed by 1033
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

15 pages, 4276 KB  
Article
Effects of Stacking Configuration on Impact Resistance of Electric Locomotive Coupling Protective Covers Reinforced by CFRP, GFRP, and Their Hybrids
by Yanhui Xu, Jiyong Chen, Mingzhu Guan, Shoune Xiao, Guangwu Yang and Dongdong Chen
Materials 2025, 18(13), 3133; https://doi.org/10.3390/ma18133133 - 2 Jul 2025
Cited by 1 | Viewed by 615
Abstract
In the context of global environmental pollution and energy shortages, the use of lightweight designs of railway vehicles has become a key technological approach to improve energy efficiency and reduce carbon emissions. The use of lightweight and high-strength materials such as carbon-fiber-reinforced composites [...] Read more.
In the context of global environmental pollution and energy shortages, the use of lightweight designs of railway vehicles has become a key technological approach to improve energy efficiency and reduce carbon emissions. The use of lightweight and high-strength materials such as carbon-fiber-reinforced composites to replace traditional metal vehicle structures holds great application potential. In this study, random track loads and ballast impact loads that may occur during service were considered, and a finite-element model of the electric locomotive coupling protective cover was established. The impact resistance of CFRP, GFRP, and their interlayer hybrid configurations (C/G/C and G/C/G) against structural and ballast impacts were investigated. The calculation results showed that the CFRP protective cover exhibited the best structural impact resistance (with the lowest Tsai–Wu strength failure values), but it also had the largest maximum deformation displacement (2.36 mm) under ballast impact conditions. In contrast, the GFRP protective cover had a higher Tsai–Wu strength failure value, indicating that it had worse structural impact resistance, but it had a lower maximum deformation displacement (2.20 mm) under ballast impact conditions, demonstrating superior ballast impact resistance. The impact resistances of the hybrid-layered protective covers fell between those of the CFRP and GFRP in terms of the structural impact, while their ballast-impact resistance surpassed those of single-fiber configurations. Full article
(This article belongs to the Special Issue Engineering Materials and Structural Integrity)
Show Figures

Figure 1

16 pages, 3867 KB  
Article
Ultralow-Resistance High-Voltage Loaded Woven Air Filter for Fine Particle/Bacteria Removal
by Weisi Fan, Sanqiang Wei, Ziyun Zhang, Lulu Shi, Jun Wang, Wenlan Hao, Kun Zhang and Qiuran Jiang
Polymers 2025, 17(13), 1765; https://doi.org/10.3390/polym17131765 - 26 Jun 2025
Cited by 1 | Viewed by 955
Abstract
Conventional filters for air filtration typically feature compact nonwoven structures, which not only lead to high pressure drop, significant energy consumption, and a decay in filtration efficacy, but are also uncleanable, resulting in substantial pollution upon disposal. In this study, filters with high-voltage [...] Read more.
Conventional filters for air filtration typically feature compact nonwoven structures, which not only lead to high pressure drop, significant energy consumption, and a decay in filtration efficacy, but are also uncleanable, resulting in substantial pollution upon disposal. In this study, filters with high-voltage electrostatic loading capability were developed with a dopamine binding layer to facilitate the establishment of an Ag conductive layer on the surface of ultraloose woven structure fabrics (pore size: 73.7 μm). The high-voltage-loaded woven structure filtration (VLWF) system was constructed with a negative-ion zone, a high-voltage filtration zone, and a grounded filter. The morphological, chemical, and electrical properties of the filters and the filtration performance of the VLWF system were evaluated. The single-pass filtration efficiencies for PM2.5 and E. coli were 67.4% and 97.0%, respectively. Notably, the pressure drop was reduced to 6.2 Pa, and the quality factor reached 0.1810 Pa−1 with no detectable ozone release. After three cycles of ultrasonic cleaning, approximately 58.4% of filtration efficiency was maintained without any increase in air resistance. The removal of PM2.5 and microorganisms by this system was not solely reliant on blocking and electrostatic attraction but may also involve induced repulsion and biostructure inactivation. By integrating the ultraloose woven structure with high-voltage assistance, this VLWF system effectively balanced the requirements for high filtration efficacy and low air resistance. More importantly, this VLWF system provided a cleanable filter model that reduced the pollution associated with conventional disposable filters and lowered costs for customers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

22 pages, 5832 KB  
Article
Carbonized Dual-Layer Balsa Wood Membrane for Efficient Oil–Water Separation in Kitchen Applications
by Mamadou Souare, Changqing Dong, Xiaoying Hu, Junjiao Zhang, Juejie Xue and Quanjun Zheng
Membranes 2025, 15(6), 160; https://doi.org/10.3390/membranes15060160 - 24 May 2025
Viewed by 2108
Abstract
Wood-based membranes have garnered increasing attention due to their structural advantages and durability in the efficient treatment of oily kitchen wastewater. However, conventional fabrication methods often rely on toxic chemicals or synthetic processes, generating secondary pollutants and suffering from fouling, which reduces performance [...] Read more.
Wood-based membranes have garnered increasing attention due to their structural advantages and durability in the efficient treatment of oily kitchen wastewater. However, conventional fabrication methods often rely on toxic chemicals or synthetic processes, generating secondary pollutants and suffering from fouling, which reduces performance and increases resource loss. In this study, an innovative bilayer membrane was developed from balsa wood by combining a hydrophilic longitudinal layer for water transport with a polydimethylsiloxane (PDMS)-impregnated carbonized transverse layer to enhance hydrophobicity, resulting in increased separation efficiency and a reduction in fouling by 98.38%. The results show a high permeation flux of 1176.86 Lm–2 h–1 and a separation efficiency of 98.60%, maintaining low fouling resistance (<3%) over 20 cycles. Mechanical tests revealed a tensile strength of 10.92 MPa and a fracture elongation of 10.42%, ensuring robust mechanical properties. Wettability measurements indicate a 144° contact angle and a 7° sliding angle with water on the carbonized side, and a 163.7° contact angle with oil underwater and a 5° sliding angle on the hydrophilic side, demonstrating excellent selective wettability. This study demonstrates the potential of carbonized wood-based membranes as a sustainable, effective alternative for large-scale wastewater treatment. Full article
Show Figures

Graphical abstract

27 pages, 13268 KB  
Article
A Simple Thermoelectrical Surface Approach for Numerically Studying Dry Band Formation on Polluted Insulators
by Marc-Alain Andoh, Christophe Volat and Gbah Koné
Energies 2025, 18(10), 2412; https://doi.org/10.3390/en18102412 - 8 May 2025
Viewed by 641
Abstract
This paper presents a simple thermoelectrical temporal surface method for numerically studying the appearance of a dry band on a polluted insulator. The proposed method combines an empirical expression of the pollution layer surface conductivity, expressed as a function of the temperature and [...] Read more.
This paper presents a simple thermoelectrical temporal surface method for numerically studying the appearance of a dry band on a polluted insulator. The proposed method combines an empirical expression of the pollution layer surface conductivity, expressed as a function of the temperature and equivalent salt deposit density (ESDD), and a surface approach for modeling the pollution layer, using thermoelectrical temporal simulations based on the finite element method (FEM). Using different material substrates, pollution layer thicknesses, and ESDD levels, the reliability and limitations of the simple thermoelectrical numerical model have been studied. The numerical results obtained demonstrated that the proposed thermoelectrical model can dynamically simulate the dry band appearance in accordance with the experimental results in terms of the temporal evolution of the temperature and the pollution layer resistance, as well as the evolution of the voltage drop and E-field along the dry band formation zone. The results also demonstrate the influence of the material substrate and the pollution layer thickness, which directly influence the thermal aspect of the dry band formation. The simple thermoelectrical numerical surface model was used to study the dry band appearance on a uniformly polluted 69 kV insulator. The results obtained enabled a dynamic simulation of the appearance of the first dry band, which appeared in the middle of the insulator, and to deeply investigate the evolution of the surface temperature, electric potential, and E-field distributions along the insulator. The proposed simple thermoelectrical model combined with the empirical model is able to simulate the influence of a non-uniform pollution layer. Hence, the proposed model provides a simple numerical tool for studying the evolution of the potential and E-field distributions along uniformly and non-uniformly polluted insulation equipment to identify the probability of a region of high dry band appearance relative to the insulator material and geometry. This can aid in the development of new types of mitigation methods to improve the performance of all types of insulators under polluted conditions. Full article
Show Figures

Figure 1

Back to TopTop