Spatial Differentiation of Heavy Metals/Metalloids, Microbial Risk Genes and Soil Microbiota in a Sulfur-Contaminated Landscape
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sample Collection
2.2. Soil Physicochemical Analysis
2.3. Metagenome Sequencing and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Distribution of Heavy Metals/Metalloids and Soil Properties
3.2. Profiles of Resistance and Virulence Genes
3.3. Patterns of Microbial Community Structure and Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Li, R.; Bibi, S. Research progress on heavy metals pollution in the soil of smelting sites in China. Toxics 2022, 10, 231. [Google Scholar] [CrossRef]
- Luo, X.; Wu, C.; Lin, Y.; Li, W.; Deng, M.; Tan, J.; Xue, S. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. J. Environ. Sci. 2023, 125, 662–677. [Google Scholar] [CrossRef] [PubMed]
- Van Pelt, R.S.; Shekhter, E.G.; Barnes, M.A.W.; Duke, S.E.; Gill, T.E.; Pannell, K.H. Spatial and temporal patterns of heavy metal deposition resulting from a smelter in El Paso, Texas. J. Geochem. Explor. 2020, 210, 106414. [Google Scholar] [CrossRef]
- Li, H.; Yao, J.; Min, N.; Duran, R. Comprehensive assessment of environmental and health risks of metal (loid) s pollution from non-ferrous metal mining and smelting activities. J. Clean. Prod. 2022, 375, 134049. [Google Scholar] [CrossRef]
- Li, S.; Zhao, B.; Jin, M.; Hu, L.; Zhong, H.; He, Z. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J. Hazard. Mater. 2020, 400, 123255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Xu, Y.; Huang, Q.; Sun, G.; Qin, X.; Wang, L. Effects of mercapto-palygorskite application on cadmium accumulation of soil aggregates at different depths in Cd-contaminated alkaline farmland. Environ. Res. 2023, 216, 114448. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1353–1376. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Lv, Y.; Liu, X.; Zhong, J.; Cui, X.; Zhang, M.; Ma, D.; Yan, X.; Zhu, X. Effects of Heavy Metals/Metalloids and Soil Properties on Microbial Communities in Farmland in the Vicinity of a Metals Smelter. Front. Microbiol. 2021, 12, 707786. [Google Scholar] [CrossRef]
- Liu, B.; Yao, J.; Ma, B.; Chen, Z.; Zhao, C.; Zhu, X.; Li, M.; Cao, Y.; Pang, W.; Li, H. Microbial community profiles in soils adjacent to mining and smelting areas: Contrasting potentially toxic metals and co-occurrence patterns. Chemosphere 2021, 282, 130992. [Google Scholar] [CrossRef]
- Shamsuddin, M. Sulfide smelting. In Physical Chemistry of Metallurgical Processes, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 69–106. [Google Scholar]
- Graedel, T. Chemical Compounds in the Atmosphere; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Bhandari, P.; Choudhary, S. Insights on the role of sulfur oxidizing bacteria in acid mine drainage biogeochemistry. Geomicrobiol. J. 2022, 39, 270–281. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, J.; Gu, Y.; Wu, Y.; Liu, Y.; Tang, Z.; Xu, Y.; Mao, X.; Zhang, J.; Tian, W. Deciphering the mechanism of rhizosphere microecosystem in modulating rice cadmium accumulation via integrating metabolomics and metagenomics. Sci. Total Environ. 2025, 959, 178181. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, T.; Zhou, L.; Lou, W.; Zeng, W.; Liu, T.; Yin, H.; Liu, H.; Liu, X.; Mathivanan, K. Soil microbial community assembly model in response to heavy metal pollution. Environ. Res. 2022, 213, 113576. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Zhou, S.; Wang, Q.; Cheng, J.; Zeng, B. Assessment of metal pollution and effects of physicochemical factors on soil microbial communities around a landfill. Ecotoxicol. Environ. Saf. 2024, 271, 115968. [Google Scholar] [CrossRef]
- Nnaji, N.D.; Anyanwu, C.U.; Miri, T.; Onyeaka, H. Mechanisms of Heavy Metal Tolerance in Bacteria: A Review. Sustainability 2024, 16, 11124. [Google Scholar] [CrossRef]
- Du, S.; Feng, J.; Bi, L.; Hu, H.W.; Hao, X.; Huang, Q.; Liu, Y.R. Tracking soil resistance and virulence genes in rice-crayfish co-culture systems across China. Environ. Int. 2023, 172, 107789. [Google Scholar] [CrossRef]
- Sun, S.; Wang, M.; Xiang, J.; Shao, Y.; Li, L.; Sedjoah, R.-C.A.-A.; Wu, G.; Zhou, J.; Xin, Z. BON domain-containing protein-mediated co-selection of antibiotic and heavy metal resistance in bacteria. Int. J. Biol. Macromol. 2023, 238, 124062. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhao, J.; Liu, Y.; Huang, S.; Zhao, C.; Jiang, Z.; Gu, Y.; Xiao, J.; Wu, Y.; Ying, R.; et al. Deciphering soil resistance and virulence gene risks in conventional and organic farming systems. J. Hazard. Mater. 2024, 468, 133788. [Google Scholar] [CrossRef]
- Du, Y.; Liu, Y.; Yu, C.; Hu, X.; Ma, S.; Zou, J.; Lin, R.; Hou, Y.; Wang, M.; Zhang, N. Distribution of and associations between ARGs and pathogenic bacteria in soils affected by heavy metal contamination in mining areas. J. Environ. Chem. Eng. 2025, 13, 117337. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Liu, B.; Xu, H.; Guo, X.; Wang, J.; Zhang, Y. Distribution and relationship of heavy metals, microbial communities and antibiotic resistance genes in the riparian soils of Daye Lake, China. Environ. Geochem. Health 2025, 47, 151. [Google Scholar] [CrossRef]
- Zhao, C.; Yao, J.; Knudsen, T.Š.; Hu, W.; Cao, Y. Combined modified montmorillonite and microbial consortium enhanced the remediation effect of As and Cd-contaminated soil in a smelting area. J. Clean. Prod. 2025, 501, 145329. [Google Scholar] [CrossRef]
- Adnan, M.; Zhao, P.; Xiao, B.; Ali, M.U.; Xiao, P. Heavy metal pollution and source analysis of soils around abandoned Pb/Zn smelting sites: Environmentalrisks and fractionation analysis. Environ. Technol. Innov. 2025, 38, 104084. [Google Scholar] [CrossRef]
- Yan, J.; Kong, N.; Liu, Q.; Wang, M.; Lv, K.; Zeng, H.; Chen, W.; Luo, J.; Lou, H.; Song, L.; et al. Ti(3)C(2)Tx MXene nanosheets enhance the tolerance of Torreya grandis to Pb stress. J. Hazard. Mater. 2023, 445, 130647. [Google Scholar] [CrossRef]
- Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2023, 2, e107. [Google Scholar] [CrossRef]
- Li, D.; Luo, R.; Liu, C.-M.; Leung, C.-M.; Ting, H.-F.; Sadakane, K.; Yamashita, H.; Lam, T.-W. MEGAHIT v1. 0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 2016, 102, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.; Chen, G.-L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W.J.B. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef] [PubMed]
- Pal, C.; Bengtsson-Palme, J.; Rensing, C.; Kristiansson, E.; Larsson, D.G.J. BacMet: Antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014, 42, D737–D743. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022, 50, D912–D917. [Google Scholar] [CrossRef]
- Yan, J.; Wang, M.; Zeng, H.; Yang, H.; Lv, K.; Zhou, Z.; Hou, Y.; Zhang, J.; Kong, N.; Wu, J. Ti3C2Tx MXene nanosheets protect Torreya grandis against root rot disease. Chem. Eng. J. 2024, 481, 148687. [Google Scholar] [CrossRef]
- Huang, S.-h.; Bing, P.; Yang, Z.-h.; Chai, L.-y.; XU, Y.-z.; SU, C.-q. Spatial distribution of chromium in soils contaminated by chromium-containing slag. Trans. Nonferrous Met. Soc. China 2009, 19, 756–764. [Google Scholar] [CrossRef]
- Qi, F.; Lamb, D.; Naidu, R.; Bolan, N.S.; Yan, Y.; Ok, Y.S.; Rahman, M.M.; Choppala, G. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci. Total Environ. 2018, 610, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Pinelli, E.; Dumat, C. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J. Hazard. Mater. 2012, 219, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Manceau, A.; Matynia, A. The nature of Cu bonding to natural organic matter. Geochim. Et. Cosmochim. Acta 2010, 74, 2556–2580. [Google Scholar] [CrossRef]
- Zhao, Q.; Qiu, Y.; Lan, T.; Li, J.; Li, B.; Wu, Z.; Chen, L.; Liu, R.; Zhou, Y.; Wu, W. Comparison of lead adsorption characteristics onto soil-derived particulate organic matter versus humic acid. J. Soils Sediments 2021, 21, 2589–2603. [Google Scholar] [CrossRef]
- Li, H.; Yao, J.; Liu, J.; Min, N.; Sunahara, G.; Men, D.; Duran, R. Effects of soil metal(loid)s pollution on microbial activities and environmental risks in an abandoned chemical smelting site. J. Environ. Sci. 2024, 143, 60–70. [Google Scholar] [CrossRef]
- Jiang, H.; Li, T.; Han, X.; Yang, X.; He, Z. Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils. Environ. Monit. Assess. 2012, 184, 6325–6335. [Google Scholar] [CrossRef]
- Oburger, E.; Jones, D.L.; Wenzel, W.W. Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant Soil. 2011, 341, 363–382. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Z.; Jiang, L.; Sarkodie, E.K.; Li, K.; Shi, J.; Deng, Y.; Zhang, Z.; Liu, H.; Liang, Y. Cadmium, lead and arsenic contamination in an abandoned nonferrous metal smelting site in southern China: Chemical speciation and mobility. Ecotoxicol. Environ. Saf. 2022, 239, 113617. [Google Scholar] [CrossRef]
- Jia, Z.; Li, S.; Liu, Q.; Jiang, F.; Hu, J. Distribution and partitioning of heavy metals in water and sediments of a typical estuary (Modaomen, South China): The effect of water density stratification associated with salinity. Environ. Pollut. 2021, 287, 117277. [Google Scholar] [CrossRef]
- Hemati, S.; Heidari, M.; Momenbeik, F.; Fadaei, A.; Farhadkhani, M.; Mohammadi-Moghadam, F. Co-occurrence of polycyclic aromatic hydrocarbons and heavy metals in various environmental matrices of a chronic petroleum polluted region in Iran; Pollution characterization, and assessment of ecological and human health risks. J. Hazard. Mater. 2024, 478, 135504. [Google Scholar] [CrossRef] [PubMed]
- Palansooriya, K.N.; Li, J.; Dissanayake, P.D.; Suvarna, M.; Li, L.; Yuan, X.; Sarkar, B.; Tsang, D.C.; Rinklebe, J.; Wang, X. Prediction of soil heavy metal immobilization by biochar using machine learning. Environ. Sci. Technol. 2022, 56, 4187–4198. [Google Scholar] [CrossRef]
- Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.; Du, D. The soil pH and heavy metals revealed their impact on soil microbial community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef]
- Gondal, A.H.; Hussain, I.; Ijaz, A.B.; Zafar, A.; Ch, B.I.; Zafar, H.; Sohail, M.D.; Niazi, H.; Touseef, M.; Khan, A.A. Influence of soil pH and microbes on mineral solubility and plant nutrition: A review. Int. J. Agric. Biol. Sci. 2021, 5, 71–81. [Google Scholar]
- Ni, B.; Zhang, T.-L.; Cai, T.-G.; Xiang, Q.; Zhu, D. Effects of heavy metal and disinfectant on antibiotic resistance genes and virulence factor genes in the plastisphere from diverse soil ecosystems. J. Hazard. Mater. 2024, 465, 133335. [Google Scholar] [CrossRef]
- Gillieatt, B.F.; Coleman, N.V. Unravelling the mechanisms of antibiotic and heavy metal resistance co-selection in environmental bacteria. FEMS Microbiol. Rev. 2024, 48, fuae017. [Google Scholar] [CrossRef]
- Li, Y.-J.; Yuan, Y.; Tan, W.-B.; Xi, B.-D.; Wang, H.; Hui, K.-L.; Chen, J.-B.; Zhang, Y.-F.; Wang, L.-F.; Li, R.-F. Antibiotic resistance genes and heavy metals in landfill: A review. J. Hazard. Mater. 2024, 464, 132395. [Google Scholar] [CrossRef]
- Xie, S.-T.; Zhu, D.; Song, Y.-Q.; Zhu, Y.-G.; Ding, L.-J. Unveiling potential roles of earthworms in mitigating the presence of virulence factor genes in terrestrial ecosystems. J. Hazard. Mater. 2024, 476, 135133. [Google Scholar] [CrossRef]
- Montes-Montes, G.; Muñoz-Ramírez, Z.Y.; Cortes-Palacios, L.; Carrillo-Campos, J.; Ramírez-Sánchez, O.; Ortiz-Aguirre, I.; Muñoz-Castellanos, L.N.; González-Escobedo, R. Microbial Diversity and Heavy Metal Resistome in Slag-Contaminated Soils from an Abandoned Smelter in Chihuahua, Mexico. Soil. Syst. 2025, 9, 30. [Google Scholar] [CrossRef]
- Dulanto Chiang, A.; Dekker, J.P. Efflux pump-mediated resistance to new beta lactam antibiotics in multidrug-resistant gram-negative bacteria. Commun. Med. 2024, 4, 170. [Google Scholar] [CrossRef] [PubMed]
- Nor Amdan, N.A.; Shahrulzamri, N.A.; Hashim, R.; Mohamad Jamil, N. Understanding the evolution of macrolides resistance: A mini review. J. Glob. Antimicrob. Resist. 2024, 38, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Mitman, S.L.; Amato, H.K.; Saraiva-Garcia, C.; Loayza, F.; Salinas, L.; Kurowski, K.; Marusinec, R.; Paredes, D.; Cárdenas, P.; Trueba, G. Risk factors for third-generation cephalosporin-resistant and extended-spectrum β-lactamase-producing Escherichia coli carriage in domestic animals of semirural parishes east of Quito, Ecuador. PLoS Glob. Public Health 2022, 2, e0000206. [Google Scholar] [CrossRef]
- Kunz Coyne, A.J.; El Ghali, A.; Holger, D.; Rebold, N.; Rybak, M.J. Therapeutic strategies for emerging multidrug-resistant Pseudomonas aeruginosa. Infect. Dis. Ther. 2022, 11, 661–682. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Xia, J.; Sun, H.; Zhang, X.; Ye, L. Phenolic compounds promote the horizontal transfer of antibiotic resistance genes in activated sludge. Sci. Total Environ. 2021, 800, 149549. [Google Scholar] [CrossRef]
- Gains, A.; Lambert, D.; Stafford, G. Identification of a Czc-like operon of the periodontal pathobiont Porphyromonas gingivalis involved in metal ion efflux. Anaerobe 2023, 80, 102696. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhao, J.; Gao, J.; Cai, S.; Gu, Y.; Liu, Y.; Gao, L.; Xu, Y.; Wu, Y.; Zhou, Z. Deciphering the potential of Bacillus cereus HS-9 in cadmium bioremediation and ensuring rice safety. J. Environ. Sci. 2025, in press. [Google Scholar] [CrossRef]
- Parrilli, E.; Tutino, M.L.; Marino, G. Biofilm as an adaptation strategy to extreme conditions. Rend. Lincei. Sci. Fis. E Nat. 2022, 33, 527–536. [Google Scholar] [CrossRef]
- Tan, Y.-S.; Zhang, R.-K.; Liu, Z.-H.; Li, B.-Z.; Yuan, Y.-J. Microbial adaptation to enhance stress tolerance. Front. Microbiol. 2022, 13, 888746. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, J.; Lu, J.; Sun, Y. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicol. Environ. Saf. 2019, 170, 218–226. [Google Scholar] [CrossRef]
- Tipayno, S.C.; Truu, J.; Samaddar, S.; Truu, M.; Preem, J.K.; Oopkaup, K.; Espenberg, M.; Chatterjee, P.; Kang, Y.; Kim, K. The bacterial community structure and functional profile in the heavy metal contaminated paddy soils, surrounding a nonferrous smelter in South Korea. Ecol. Evol. 2018, 8, 6157–6168. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Wang, W.; Sun, L.; Li, Y.; Sun, Z.; Gao, Z.; Zhang, J.; Li, Y.; Wei, D. Bacteria Affect the Distribution of Soil-Dissolved Organic Matter on the Slope: A Long-Term Experiment in Black Soil Erosion. Agriculture 2024, 14, 352. [Google Scholar] [CrossRef]
- Gomes, V.M.S.; Bulla, A.C.S.; Torres, P.H.M.; Leal da Silva, M. RND/HAE-1 members in the Pseudomonadota phylum: Exploring multidrug resistance. Biophys. Rev. 2025, 17, 1–13. [Google Scholar] [CrossRef]
- Kielak, A.M.; Cipriano, M.A.; Kuramae, E.E. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch. Microbiol. 2016, 198, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, O.S.; Fernandes, A.S.; Tupy, S.M.; Ferreira, T.G.; Almeida, L.N.; Creevey, C.J.; Santana, M.F. Insights into plant interactions and the biogeochemical role of the globally widespread Acidobacteriota phylum. Soil. Biol. Biochem. 2024, 192, 109369. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, X.; Li, Y.; Chen, J.; Wei, L.; Zhang, Y. Seasonal dynamics of soil microbiome in response to dry–wet alternation along the Jinsha River Dry-hot Valley. BMC Microbiol. 2024, 24, 496. [Google Scholar] [CrossRef]
- Govender, H.-T. Multi-Metal Tolerant Actinomycetes from Tin Tailings of an Ex-Mining Area. In Actinomycetes in Marine and Extreme Environments; CRC Press: Boca Raton, FL, USA, 2024; pp. 187–208. [Google Scholar]
- Huang, J.; Gao, K.; Yang, L.; Lu, Y. Successional action of Bacteroidota and Firmicutes in decomposing straw polymers in a paddy soil. Environ. Microbiome 2023, 18, 76. [Google Scholar] [CrossRef]
- Ward, L.M.; Li-Hau, F.; Kakegawa, T.; McGlynn, S.E. Complex history of aerobic respiration and phototrophy in the Chloroflexota class Anaerolineae revealed by high-quality draft genome of Ca. Roseilinea mizusawaensis AA3_104. Microbes Environ. 2021, 36, ME21020. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.; Zhang, C.; Liu, Y.; Li, M. Biogeographical distribution and community assembly of Myxococcota in mangrove sediments. Environ. Microbiome 2024, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Rohilla, R.; Raina, D.; Singh, M.; Pandita, A.K.; Patwal, S. Evaluation of Sphingomonas paucimobilis as an emerging nosocomial pathogen in a teaching hospital in Uttarakhand. Iran. J. Microbiol. 2021, 13, 617. [Google Scholar] [CrossRef]
- Huang, Y.; Dai, Z.; Tang, C.; Xu, J. Labile and recalcitrant carbon inputs differ in their effects on microbial phosphorus transformation in a flooded paddy soil with rice (Oryza sativa L.). Appl. Soil. Ecol. 2024, 198, 105372. [Google Scholar] [CrossRef]
- Chantavorakit, T.; Muangham, S.; Aaron, T.W.F.; Duangmal, K.; Hong, K. Actinoallomurus soli sp. nov. and Actinoallomurus rhizosphaericola sp. nov., two novel actinobacteria isolated from rhizosphere soil of Oryza rufipogon Griff. Int. J. Syst. Evol. Microbiol. 2023, 73, 006177. [Google Scholar] [CrossRef] [PubMed]
- Tarantini, F.S.; Brunati, M.; Taravella, A.; Carrano, L.; Parenti, F.; Hong, K.W.; Williams, P.; Chan, K.G.; Heeb, S.; Chan, W.C. Actinomadura graeca sp. nov.: A novel producer of the macrocyclic antibiotic zelkovamycin. PLoS ONE 2021, 16, e0260413. [Google Scholar] [CrossRef]
- Whatmough, B.; Holmes, N.A.; Wilkinson, B.; Hutchings, M.I.; Parra, J.; Duncan, K.R. Microbe Profile: Pseudonocardia: Antibiotics for every niche. Microbiology 2024, 170, 001501. [Google Scholar] [CrossRef]
- Lin, L.; Yang, Z.; Tao, M.; Shen, D.; Cui, C.; Wang, P.; Wang, L.; Jing, M.; Qian, G.; Shao, X. Lysobacter enzymogenes prevents Phytophthora infection by inhibiting pathogen growth and eliciting plant immune responses. Front. Plant Sci. 2023, 14, 1116147. [Google Scholar] [CrossRef]
- De Sousa, T.; Hébraud, M.; Dapkevicius, M.L.E.; Maltez, L.; Pereira, J.E.; Capita, R.; Alonso-Calleja, C.; Igrejas, G.; Poeta, P. Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2021, 22, 12892. [Google Scholar] [CrossRef]
- Sarao, S.K.; Boothe, V.; Das, B.K.; Gonzalez-Hernandez, J.L.; Brözel, V.S. Bradyrhizobium and the soybean rhizosphere: Species level bacterial population dynamics in established soybean fields, rhizosphere and nodules. Plant Soil. 2024, 508, 515–530. [Google Scholar] [CrossRef]
- Parra, J.; Beaton, A.; Seipke, R.F.; Wilkinson, B.; Hutchings, M.I.; Duncan, K.R. Antibiotics from rare actinomycetes, beyond the genus Streptomyces. Curr. Opin. Microbiol. 2023, 76, 102385. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, T.; Xing, X.; Bi, Z.; Qi, P.; Hu, C.; Xu, G.; Chen, C.; Ma, K.; Chen, J. Inhibiting the increase of antibiotic resistance genes during drinking water distribution by superior microbial interface using Fe modified granular activated carbon. J. Clean. Prod. 2022, 335, 130225. [Google Scholar] [CrossRef]
- Sharma, P.; Chaturvedi, P.; Chandra, R.; Kumar, S. Identification of heavy metals tolerant Brevundimonas sp. from rhizospheric zone of Saccharum munja L. and their efficacy in in-situ phytoremediation. Chemosphere 2022, 295, 133823. [Google Scholar] [CrossRef]
- Martínez-Servat, S.; Pinyol-Escala, L.; Daura-Pich, O.; Almazán, M.; Hernández, I.; López-García, B.; Fernández, C. Characterization of Lysobacter enzymogenes B25, a potential biological control agent of plant-parasitic nematodes, and its mode of action. AIMS Microbiol. 2023, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, A.; Vattiringal Jayadradhan, R.K.; Pillai, D.; Prasannan Geetha, P.; Joseph, V.; Isaac Sarojini, B.S. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. J. Basic. Microbiol. 2021, 61, 88–109. [Google Scholar] [CrossRef]
- Liu, L.; Liu, M.; Jiang, Y.; Lin, W.; Luo, J. Production and excretion of polyamines to tolerate high ammonia, a case study on soil ammonia-oxidizing archaeon “Candidatus Nitrosocosmicus agrestis”. Msystems 2021, 6, e01003-20. [Google Scholar] [CrossRef]
- Li, P.; Chen, T.; An, M.; Zhang, Y.; Li, Y.; Li, Y.; Wang, J. Effects of different types of human disturbance on total and nitrogen-transforming bacteria in Haihe River. Life 2022, 12, 2081. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, X.; Zheng, T.-L. Responses of bacterial and archaeal communities to nitrate stimulation after oil pollution in mangrove sediment revealed by Illumina sequencing. Mar. Pollut. Bull. 2016, 109, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zheng, Q.; Noll, L.; Zhang, S.; Wanek, W. Direct measurement of the in situ decomposition of microbial-derived soil organic matter. Soil. Biol. Biochem. 2020, 141, 107660. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, L.; Xing, W.; Chen, P.; Zhang, Y.; Wang, W. Acidithiobacillus ferrooxidans and its potential application. Extremophiles 2018, 22, 563–579. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Y.; Zhao, J.; Liu, Y.; Gao, L.; Jiang, Z.; Zhang, J.; Tian, W. Comparison of composting factors, heavy metal immobilization, and microbial activity after biochar or lime application in straw-manure composting. Bioresour. Technol. 2022, 363, 127872. [Google Scholar] [CrossRef]
- Bertini, I.; Turano, P. Metal ions and Proteins: Binding, stability, and folding. In Biological Inorganic Chemistry: Structure and Reactivity; University Science Books: Melville, NY, USA, 2007; pp. 31–41. [Google Scholar]
Group | As (mg/kg) | Cr (mg/kg) | Cd (mg/kg) | Cu (mg/kg) | Ni (mg/kg) | Pb (mg/kg) |
---|---|---|---|---|---|---|
D1 | 12.85 ± 0.44 c | 107.42 ± 4.83 bc | 0.34 ± 0.01 c | 158.67 ± 14.05 a | 22.96 ± 0.59 c | 47.64 ± 3.51 a |
D2 | 18.96 ± 1.44 c | 105.34 ± 11.55 c | 0.38 ± 0.02 c | 149.46 ± 7.29 ab | 16.76 ± 0.50 d | 50.49 ± 4.61 a |
D3 | 31.55 ± 3.28 b | 133.42 ± 14.06 ab | 0.54 ± 0.03 b | 131.09 ± 4.60 bc | 42.56 ± 1.32 b | 26.14 ± 2.05 b |
D4 | 53.96 ± 3.91 a | 153.79 ± 8.84 a | 1.24 ± 0.07 a | 118.67 ± 12.21 c | 68.09 ± 2.81 a | 26.58 ± 0.66 b |
L1 | 13.69 ± 0.52 b | 63.26 ± 6.10 c | 0.13 ± 0.02 c | 89.67 ± 2.25 c | 16.39 ± 1.64 c | 23.44 ± 0.79 c |
L2 | 28.90 ± 2.58 a | 112.03 ± 11.68 a | 0.32 ± 0.01 bc | 169.31 ± 11.38 a | 59.75 ± 3.08 b | 53.76 ± 5.19 a |
L3 | 14.19 ± 1.21 b | 84.62 ± 7.07 bc | 2.36 ± 0.17 a | 138.07 ± 9.46 b | 57.92 ± 1.62 b | 41.22 ± 4.5 b |
L4 | 15.89 ± 1.28 b | 91.84 ± 6.70 ab | 0.41 ± 0.03 b | 126.43 ± 13.56 b | 87.87 ± 7.93 a | 28.15 ± 1.05 c |
Group | pH | OM (g/kg) | TN (g/kg) | TP (mg/kg) | TK (mg/kg) | AN (mg/kg) | AP (mg/kg) |
---|---|---|---|---|---|---|---|
D1 | 4.33 ± 0.51 a | 23.17 ± 2.29 a | 1.03 ± 0.05 b | 1365.53 ± 11.03 a | 2291.76 ± 205.99 b | 134.06 ± 10.35 a | 114.14 ± 8.51 c |
D2 | 4.03 ± 0.43 a | 21.66 ± 1.56 a | 1.07 ± 0.06 b | 1486.72 ± 53.92 a | 2888.83 ± 234.29 a | 102.19 ± 9.34 b | 118.86 ± 6.76 bc |
D3 | 4.41 ± 0.48 a | 21.55 ± 1.49 a | 1.47 ± 0.12 a | 1573.79 ± 80.44 a | 1858.57 ± 156.6 b | 108.53 ± 11.75 ab | 136.58 ± 12.92 ab |
D4 | 5.02 ± 0.21 a | 23.28 ± 2.36 a | 1.12 ± 0.05 b | 1418.03 ± 85.47 a | 1941.7 ± 120.46 b | 85.04 ± 8.86 b | 157.67 ± 7.27 a |
L1 | 4.88 ± 0.49 a | 24.9 ± 2.57 a | 1.44 ± 0.1 b | 1236.15 ± 44.21 b | 4960.25 ± 446.28 b | 146.98 ± 7.74 b | 141.43 ± 14.88 b |
L2 | 4.07 ± 0.24 b | 24.61 ± 2.27 a | 0.48 ± 0.05 d | 1540.53 ± 70.04 a | 2387.23 ± 185.92 c | 38.78 ± 2.78 d | 181.21 ± 4.75 a |
L3 | 6.04 ± 0.38 a | 23.59 ± 2.21 a | 2.36 ± 0.08 a | 1537.33 ± 142.28 a | 7470.56 ± 664.58 a | 235.8 ± 23.73 a | 205.03 ± 18.84 a |
L4 | 6.46 ± 0.38 a | 24.7 ± 1.01 a | 0.99 ± 0.04 c | 1136.46 ± 89.9 b | 3916.87 ± 330.51 b | 96.77 ± 6.46 c | 112.98 ± 7.4 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhao, J.; Liu, C.; Deng, Y.; Du, Y.; Liu, Y.; Wu, Y.; Wu, W.; Pan, X. Spatial Differentiation of Heavy Metals/Metalloids, Microbial Risk Genes and Soil Microbiota in a Sulfur-Contaminated Landscape. Microorganisms 2025, 13, 2010. https://doi.org/10.3390/microorganisms13092010
Li L, Zhao J, Liu C, Deng Y, Du Y, Liu Y, Wu Y, Wu W, Pan X. Spatial Differentiation of Heavy Metals/Metalloids, Microbial Risk Genes and Soil Microbiota in a Sulfur-Contaminated Landscape. Microorganisms. 2025; 13(9):2010. https://doi.org/10.3390/microorganisms13092010
Chicago/Turabian StyleLi, Lina, Jiayin Zhao, Chang Liu, Yiyan Deng, Yunpeng Du, Yu Liu, Yuncheng Wu, Wenwei Wu, and Xuejun Pan. 2025. "Spatial Differentiation of Heavy Metals/Metalloids, Microbial Risk Genes and Soil Microbiota in a Sulfur-Contaminated Landscape" Microorganisms 13, no. 9: 2010. https://doi.org/10.3390/microorganisms13092010
APA StyleLi, L., Zhao, J., Liu, C., Deng, Y., Du, Y., Liu, Y., Wu, Y., Wu, W., & Pan, X. (2025). Spatial Differentiation of Heavy Metals/Metalloids, Microbial Risk Genes and Soil Microbiota in a Sulfur-Contaminated Landscape. Microorganisms, 13(9), 2010. https://doi.org/10.3390/microorganisms13092010