Electrochemical Study of the Influence of H2S on Atmospheric Corrosion of Zinc in Sargassum-Affected Tropical Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Exposure Sites and Analytical Techniques for H2S and Chloride Ions
2.2. Sample Preparation
2.3. Electrochemical Tests
3. Results
3.1. Evaluation of Zinc Thickness Loss and Corrosion Dynamics
3.2. Electrochemical Impedance Spectroscopy
3.3. The Polarization Curves
- -
- Diamant: Eoc shifts from −1100 mV (3 months) to −599 mV (12 months), Rp increases from 125 Ω·cm2 to 1084 Ω·cm2, and Icorr decreases from 409 µA·cm−2 to 13 µA·cm−2, reflecting progressive surface passivation.
- -
- Frégate Est: Rp remains relatively low (96 Ω·cm2 at 3 months, 916 Ω·cm2 at 12 months), while Icorr decreases from 302 µA·cm−2 to 28 µA·cm−2. the formation of sulfur-containing corrosion products such as ZnS and elemental sulfur does not lead to effective passivation. These species may partially modify cathodic kinetics through surface coverage and adsorption effects, which can locally inhibit oxygen reduction. Simultaneously, sulfur species promote localized anodic dissolution and the continuous renewal of poorly adherent corrosion layers, explaining the persistence of relatively low polarization resistance values despite an apparent decrease in current density.
- -
- Vert-Pré: Rp increases from 23 Ω·cm2 (3 months) to 1069 Ω·cm2 (12 months), and Icorr decreases from 815 µA·cm−2 to 24 µA·cm−2, indicating more effective passivation.
- -
- Vauclin: Shows the highest Rp (1835 Ω·cm2) and lowest Icorr (6 µA·cm−2) after 12 months, demonstrating very effective passivation in a less aggressive environment.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Tianzhen, T.; Wang, Z.; Wang, C. Corrosion behaviour of zinc exposed to an extreme tropical marine atmospheric environment for 3 years. Corros. Eng. Sci. Technol. 2022, 57, 397–407. [Google Scholar] [CrossRef]
- Babutzka, M.; Lehmann, J.; Burkert, A. Field exposure study under sheltered and open exposure conditions at different test sites in Germany: First-year corrosion rate and atmospheric corrosivity. Mater. Corros. 2023, 74, 694–703. [Google Scholar] [CrossRef]
- de la Fuente, D.; Castaño, J.G.; Morcillo, M. Long term atmospheric corrosion of zinc. Corros. Sci. 2007, 49, 1420–1436. [Google Scholar] [CrossRef]
- De Kerf, T.; Zahiri, Z.; Scheunders, P.; Vanlanduit, S. Corrosion monitoring on zinc electroplated steel using shortwave infrared hyperspectral imaging. arXiv 2022. [Google Scholar] [CrossRef]
- Hageman, T.; Andrade, C.; Martínez-Pañeda, E. Corrosion rates under charge-conservation conditions. arXiv 2023. [Google Scholar] [CrossRef]
- Fuentes, M.; de la Fuente, D.; Chico, B.; Llorente, I.; Jiménez, J.A.; Morcillo, M. Atmospheric corrosion of zinc in coastal atmospheres. Mater. Corros. 2019, 70, 1005–1015. [Google Scholar] [CrossRef]
- Odnevall Wallinder, I.; Leygraf, C. A Critical Review on Corrosion and Runoff from Zinc and Zinc-Based Alloys in Atmospheric Environments. Corrosion 2017, 73, 1060–1077. [Google Scholar] [CrossRef]
- Thierry, D.; Persson, D.; Luckeneder, G.; Stellnberger, K.-H. Atmospheric corrosion of ZnAlMg coated steel during long-term atmospheric weathering at different worldwide exposure sites. Corros. Sci. 2019, 148, 338–354. [Google Scholar] [CrossRef]
- Haruna, S.; Ogawa, Y.; Sakata, T.; Shiozawa, D.; Sakagami, T.; Yokoi, Y.; Sugiyama, T. Deterioration detection of heavy-duty anticorrosion coating using near-infrared hyperspectral imaging. Eng. Proc. 2023, 51, 13. [Google Scholar]
- Keane, A.; Murray, P.; Zabalza, J.; Di Buono, A.; Cockbain, N.; Bernard, R. Hyperspectral imaging analysis of corrosion products on metals in the UV-VIS-NIR range. SPIE Proc. 2023, 12338, 44–53. [Google Scholar] [CrossRef]
- Odnevall, I.; Leygraf, C. Atmospheric corrosion of zinc in urban and industrial environments. Corros. Sci. 1993, 34, 1213–1228. [Google Scholar] [CrossRef]
- Odnevall, I.; Leygraf, C. Atmospheric corrosion of zinc in marine and industrial atmospheres. Corros. Sci. 1994, 36, 1077–1090. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Lebrini, M.; Lescop, B.; Pellé, J.; Rioual, S.; Amintas, O.; Boullanger, C.; Roos, C. Corrosion behaviour of zinc-based materials in atmospheric environments. Metals 2023, 13, 982. [Google Scholar] [CrossRef]
- Salas, B.V.; Wiener, M.S.; Badilla, G.L.; Beltran, M.C.; Zlatev, R.; Stoycheva, M.; Gaynor, J.T. H2S pollution and its effect on corrosion of electronic components. In Corrosion in Electronics; IntechOpen: London, UK, 2012; pp. 263–278. [Google Scholar]
- Lambert, P.; Said-Ahmed, M.; Lescop, B.; Rioual, S.; Lebrini, M. Protection against atmospheric corrosion of zinc in marine environment rich in H2S using self-assembled monolayers based on Sargassum fluitans III extract. Coatings 2024, 14, 988. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Lebrini, M.; Pellé, J.; Rioual, S.; Amintas, O.; Boulanger, C.; Lescop, B.; Roos, C. Study of atmospheric corrosion of zinc in a tropical marine environment rich in H2S, resulting from the decomposition of Sargassum algae. Mater. Corros. 2024, 75, 1133–1141. [Google Scholar] [CrossRef]
- ISO 9223:2012; Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation. International Organization for Standardization: Geneva, Switzerland, 2012.
- Growcock, F.B.; Jasinski, R.J. Time-resolved impedance spectroscopy of mild steel in concentrated hydrochloric acid. J. Electrochem. Soc. 1989, 136, 2310–2314. [Google Scholar] [CrossRef]
- Li, P.; Lin, J.Y.; Tan, K.L.; Lee, J.Y. Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine. Electrochim. Acta 1997, 42, 605–615. [Google Scholar] [CrossRef]
- Lopez, D.A.; Simison, S.N.; de Sanchez, S.R. The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole. Electrochim. Acta 2003, 48, 845–854. [Google Scholar] [CrossRef]
- Stoynov, Z. Impedance modelling and data processing: Structural and parametrical estimation. Electrochim. Acta 1990, 35, 1493–1499. [Google Scholar] [CrossRef]
- Macdonald, J.R. Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. J. Electroanal. Chem. 1987, 223, 25–50. [Google Scholar] [CrossRef]
- Perry, S.; Denuault, G. The oxygen reduction reaction (ORR) on reduced metals: Evidence for a unique relationship between the coverage of adsorbed oxygen species and adsorption energy. Phys. Chem. Chem. Phys. 2016, 18, 10218–10223. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, W.J.; Mansfeld, F. Determination of corrosion rates by electrochemical DC and AC methods. Corros. Sci. 1981, 21, 647–672. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Bordbar-Khiabani, A.; Yarmand, B. Immobilization of rGO/ZnO hybrid composites on the Zn substrate for enhanced photocatalytic activity and corrosion stability. J. Alloys Compd. 2020, 845, 156219. [Google Scholar] [CrossRef]









| Parameters | Blank | Diamant | Vert-Pré | ||||
|---|---|---|---|---|---|---|---|
| 3 months | 6 months | 12 months | 3 months | 6 months | 12 months | ||
| Re (Ω·cm2) | 6 | 75 | 79 | 52 | 22 | 171 | 95 |
| R1 (Ω·cm2) | 488 | 2256 | 2109 | 3289 | 445 | 1898 | 7202 |
| n1 | 0.5826 | 0.6247 | 0.7629 | 0.7912 | 0.4479 | 0.4634 | 0.6649 |
| Q1 10−4 (Ω−1cm−2sn1) | 5.2 | 6.3 | 2.5 | 1.55 | 11 | 6 | 5 |
| R2 (Ω·cm2) | 49 | 1217 | 3233 | 9543 | |||
| n2 | 0.6469 | 0.5570 | 0.6741 | 0.8230 | |||
| Q2 10−4 (Ω−1cm−2sn2) | 5.15 | 2.53 | 1.35 | 1.3 | |||
| Rtotal (R1 + R2) (Ω·cm2) | 537 | 2256 | 2109 | 3289 | 1662 | 5131 | 16,745 |
| Parameters | Blank | Frégate Est | Vauclin | ||||
|---|---|---|---|---|---|---|---|
| 3 months | 6 months | 12 months | 3 months | 6 months | 12 months | ||
| Re (Ω·cm2) | 6 | 20 | 20 | 25 | 54 | 160 | 208 |
| R1 (Ω·cm2) | 488 | 92 | 302 | 812 | 3515 | 3721 | 375 |
| n1 | 0.5826 | 0.6948 | 0.6723 | 0.7781 | 0.7298 | 0.7523 | 0.5831 |
| Q1 10−4 (Ω−1cm−2sn1) | 5.2 | 3.8 | 12.5 | 2.15 | 1.8 | 1.6 | 8.3 |
| R2 (Ω·cm2) | 49 | 178 | 6433 | ||||
| n2 | 0.6469 | 0.7305 | 0.7802 | ||||
| Q2 10−4 (Ω−1cm−2sn2) | 5.15 | 2.9 | 1.1 | ||||
| Rtotal (Ω·cm2) | 537 | 92 | 480 | 812 | 3515 | 3721 | 6808 |
| Parameters | Time Exposure | Ecorr (mV/ECS) | Rp (Ω·cm2) | Icorr (µA.cm−2) |
|---|---|---|---|---|
| Blank | −1127 | 1041 ± 12 | 25 ± 1 | |
| Diamant | 3 months | −1100 | 125 ± 11 | 409 ± 4 |
| 6 months | −728 | 923 ± 21 | 28 ± 0.7 | |
| 12 months | −599 | 1084± 04 | 13 ± 0.2 | |
| Frégate Est | 3 months | −990 | 96 ± 0.2 | 302 ± 12 |
| 6 months | −1099 | 213 ± 10 | 122 ± 8 | |
| 12 months | −542 | 916 ± 17 | 28 ± 0.4 | |
| Vert-Pré | 3 months | −1072 | 23 ± 0.8 | 815 ± 21 |
| 6 months | −500 | 1356 ± 31 | 20 ± 0.3 | |
| 12 months | −404 | 1069 ± 10 | 24 ± 0.2 | |
| Vauclin | 3 months | −1081 | 420 ± 8 | 595 ± 14 |
| 6 months | −624 | 1444 ± 41 | 10 ± 0.1 | |
| 12 months | −391 | 1835 ± 14 | 6 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Said Ahmed, M.; Lebrini, M. Electrochemical Study of the Influence of H2S on Atmospheric Corrosion of Zinc in Sargassum-Affected Tropical Environments. Metals 2026, 16, 31. https://doi.org/10.3390/met16010031
Said Ahmed M, Lebrini M. Electrochemical Study of the Influence of H2S on Atmospheric Corrosion of Zinc in Sargassum-Affected Tropical Environments. Metals. 2026; 16(1):31. https://doi.org/10.3390/met16010031
Chicago/Turabian StyleSaid Ahmed, Mahado, and Mounim Lebrini. 2026. "Electrochemical Study of the Influence of H2S on Atmospheric Corrosion of Zinc in Sargassum-Affected Tropical Environments" Metals 16, no. 1: 31. https://doi.org/10.3390/met16010031
APA StyleSaid Ahmed, M., & Lebrini, M. (2026). Electrochemical Study of the Influence of H2S on Atmospheric Corrosion of Zinc in Sargassum-Affected Tropical Environments. Metals, 16(1), 31. https://doi.org/10.3390/met16010031

