Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = platinum-iron nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3682 KiB  
Review
Advanced Nanomaterials Functionalized with Metal Complexes for Cancer Therapy: From Drug Loading to Targeted Cellular Response
by Bojana B. Zmejkovski, Nebojša Đ. Pantelić and Goran N. Kaluđerović
Pharmaceuticals 2025, 18(7), 999; https://doi.org/10.3390/ph18070999 - 3 Jul 2025
Viewed by 696
Abstract
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs [...] Read more.
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs that combine in vivo imaging (using fluorescent nanomaterials) with targeted drug delivery, aiming to maximize therapeutic efficacy while minimizing toxicity. These fascinating nanoscale “magic bullets” should be available in the near future. Inorganic nanovehicles are flexible carriers to deliver drugs to their biological targets. Most commonly, mesoporous nanostructured silica, carbon nanotubes, gold, and iron oxide nanoparticles have been thoroughly studied in recent years. Opposite to polymeric and lipid nanostructured materials, inorganic nanomaterial drug carriers are unique because they have shown astonishing theranostic (therapy and diagnostics) effects, expressing an undeniable part of future use in medicine. This review summarizes research from development to the most recent discoveries in the field of nanostructured materials and their applications in drug delivery, including promising metal-based complexes, platinum, palladium, ruthenium, titanium, and tin, to tumor cells and possible use in theranostics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Figure 1

35 pages, 2501 KiB  
Review
Polysaccharides from Agro-Industrial Waste and By-Products: An Overview on Green Synthesis of Metallic Nanoparticles—An Ecofriendly Approach
by Frida Lourdes García-Larez, Ariel Alain Vergel-Alfonso, Hylse Aurora Ruiz-Velducea, Karla Hazel Ozuna-Valencia, Miguel Ángel Urías-Torres, Dora Evelia Rodríguez-Félix, María Jesús Moreno-Vásquez, Carlos Gregorio Barreras-Urbina, Clara Rosalía Álvarez-Chávez, Betzabe Ebenhezer López-Corona, Idania Emedith Quintero-Reyes, Francisco Rodríguez-Félix and José Agustín Tapia-Hernández
Polysaccharides 2025, 6(2), 53; https://doi.org/10.3390/polysaccharides6020053 - 19 Jun 2025
Viewed by 695
Abstract
This review explores the eco-friendly synthesis of metallic nanoparticles derived from polysaccharides obtained from agricultural and food industry waste. Initially, it outlines the problem of agri-food waste, highlighting its abundance and the potential to extract valuable polysaccharides such as cellulose, hemicellulose, lignin, and [...] Read more.
This review explores the eco-friendly synthesis of metallic nanoparticles derived from polysaccharides obtained from agricultural and food industry waste. Initially, it outlines the problem of agri-food waste, highlighting its abundance and the potential to extract valuable polysaccharides such as cellulose, hemicellulose, lignin, and pectin. The focus is on green synthesis methods that use these polysaccharides to produce metallic nanoparticles, emphasizing the environmental benefits compared to conventional methods. The article reviews the physicochemical properties of key polysaccharides and details their extraction processes from various agricultural waste. The synthesis of diverse types of metallic nanoparticles, including monometallic (e.g., gold, silver, and platinum), bimetallic (e.g., gold–silver and gold–zinc), and oxide nanoparticles (e.g., zinc oxide and iron oxide), is extensively covered. Additionally, mechanisms of nanoparticle synthesis, such as nucleation, growth, stabilization, and capping, are examined, alongside examples from existing research. The article highlights the applications of these nanoparticles in diverse fields, including food safety, healthcare, agriculture, and environmental protection. It concludes by underscoring the potential of green synthesis to reduce waste and promote sustainable industrial practices and calls for further research to optimize these methods. Full article
(This article belongs to the Collection Current Opinion in Polysaccharides)
Show Figures

Figure 1

28 pages, 12614 KiB  
Article
Nanoparticles as New Antifungals in the Prevention of Bovine Mycotic Mastitis Caused by Candida spp. and Diutina spp.—In Vitro Studies
by Magdalena Kot, Agata Lange, Weronika Jabłońska, Aleksandra Kalińska, Barbara Nasiłowska, Wojciech Skrzeczanowski and Marcin Gołębiewski
Molecules 2025, 30(10), 2086; https://doi.org/10.3390/molecules30102086 - 8 May 2025
Viewed by 628
Abstract
Bacterial infections are the primary cause of mastitis in dairy cattle. Fungal mastitis occurs in 1–12% of cases. Antibiotic therapy, the standard treatment for mastitis, has led to antibiotic-resistant bacteria, reducing treatment efficacy and increasing fungal mastitis occurrence. Antibiotics lack biocidal effects [...] Read more.
Bacterial infections are the primary cause of mastitis in dairy cattle. Fungal mastitis occurs in 1–12% of cases. Antibiotic therapy, the standard treatment for mastitis, has led to antibiotic-resistant bacteria, reducing treatment efficacy and increasing fungal mastitis occurrence. Antibiotics lack biocidal effects on fungi, which often exhibit resistance to antifungal agents. This study evaluated the antifungal properties of nanoparticles (NPs) against Candida albicans, Candida glabrata, Candida parapsilosis, Diutina rugosa var. rugosa, Diutina catenulata, and Diutina rugosa. Tested NPs included gold (AuNPs), silver (AgNPs), copper (CuNPs), iron with hydrophilic carbon coating (FeCNPs) (1.56–25 mg/L), and platinum (PtNPs) (0.625–10 mg/L), along with their complexes. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) at 0.75–25 mg/L for AuNPs, AgNPs, CuNPs, and FeCNPs and 0.313–10 mg/L for PtNPs, as well as fungal sensitivity to standard antifungals, were determined. Each strain showed different sensitivities depending on the NPs used and their concentrations. C. glabrata was the most resistant to nanoparticles, while D. catenulata was the most susceptible. PtNPs and FeCNPs showed no or weak biocidal properties. Some mycotic-resistant strains were sensitive to nanoparticles. This study indicates a high in vitro antifungal potential for the application of nanoparticles, especially AgCuNPs, as a new effective non-antibiotic agent for the prevention and control of mycotic mastitis in dairy cattle. Full article
Show Figures

Figure 1

18 pages, 7953 KiB  
Article
Targeted Cancer Therapy with Gold–Iron Oxide Nanourchins: Inducing Oxidative Stress, Paraptosis, and Sensitizing Tumor Cells to Cisplatin
by Jessica Ruzzolini, Cecilia Anceschi, Martin Albino, Elena Balica, Beatrice Muzzi, Claudio Sangregorio, Elena Frediani, Noemi Formica, Francesca Margheri, Anastasia Chillà, Gabriella Fibbi and Anna Laurenzana
Antioxidants 2025, 14(4), 422; https://doi.org/10.3390/antiox14040422 - 31 Mar 2025
Viewed by 782
Abstract
Nanotechnology has revolutionized cancer therapy by enabling targeted drug delivery and overcoming limitations associated with conventional chemotherapy. In this study, we explored the anticancer potential of gold–iron oxide (Au-Fe3O4@PEG) nanourchins (NUs), a class of nanoparticles with unique shape, surface [...] Read more.
Nanotechnology has revolutionized cancer therapy by enabling targeted drug delivery and overcoming limitations associated with conventional chemotherapy. In this study, we explored the anticancer potential of gold–iron oxide (Au-Fe3O4@PEG) nanourchins (NUs), a class of nanoparticles with unique shape, surface features, and plasmonic properties. We tested NUs on several cancer cell lines, including A375 (melanoma), MCF7 (breast), A549 (lung), and MIA PaCa-2 (pancreatic), and observed significant dose-dependent cytotoxicity, with A549 cells exhibiting the highest resistance. Our findings also demonstrate that NUs induce oxidative stress, disrupt mitochondrial function, and activate autophagic and paraptotic cell death pathways in A549 lung cancer cells. Additionally, we explored the potential of NUs to enhance the efficacy of platinum-based chemotherapy, specifically cisplatin, in A549. The results provide valuable insights into the therapeutic potential of NUs in the context of cancer treatment, particularly for overcoming drug resistance and enhancing the effectiveness of conventional chemotherapy. Full article
Show Figures

Figure 1

10 pages, 1494 KiB  
Article
Platinum–Iron Nanoparticles for Oxygen-Enhanced Sonodynamic Tumor Cell Suppression
by Qianya Dong and Zhenqi Jiang
Inorganics 2024, 12(12), 331; https://doi.org/10.3390/inorganics12120331 - 18 Dec 2024
Cited by 87 | Viewed by 1356
Abstract
A type of nanoparticle has been developed to simultaneously alleviate tumor hypoxia and enhance the effectiveness of sonodynamic therapy aimed at improving cancer treatment outcomes. Small-sized iron–platinum nanoparticles were prepared using a thermal reduction method, and their particle size and crystal structure were [...] Read more.
A type of nanoparticle has been developed to simultaneously alleviate tumor hypoxia and enhance the effectiveness of sonodynamic therapy aimed at improving cancer treatment outcomes. Small-sized iron–platinum nanoparticles were prepared using a thermal reduction method, and their particle size and crystal structure were characterized. The ability of these nanoparticles to decompose hydrogen peroxide to produce oxygen and generate singlet oxygen under ultrasound irradiation was further tested. The effect of iron–platinum nanoparticles on inhibition of the proliferation of MCF-7 tumor cells under hypoxic conditions was also evaluated. The prepared iron–platinum nanoparticles effectively decomposed hydrogen peroxide to produce oxygen, reversing the hypoxic environment of tumors. Additionally, they generated singlet oxygen under ultrasound irradiation, which killed tumor cells and inhibited their proliferation. This study successfully developed small-sized iron–platinum nanoparticles that can alleviate tumor hypoxia by decomposing excess hydrogen peroxide in tumor cells to produce oxygen. Under ultrasound irradiation, these nanoparticles generate singlet oxygen, inhibiting tumor growth. The nanoparticles demonstrated good safety and are potentially valuable in enhancing oxygen-enhanced sonodynamic cancer therapy. Full article
Show Figures

Figure 1

24 pages, 5415 KiB  
Review
Plant-Based Extracts as Reducing, Capping, and Stabilizing Agents for the Green Synthesis of Inorganic Nanoparticles
by Zuamí Villagrán, Luis Miguel Anaya-Esparza, Carlos Arnulfo Velázquez-Carriles, Jorge Manuel Silva-Jara, José Martín Ruvalcaba-Gómez, Edward F. Aurora-Vigo, Ernesto Rodríguez-Lafitte, Noé Rodríguez-Barajas, Iván Balderas-León and Fernando Martínez-Esquivias
Resources 2024, 13(6), 70; https://doi.org/10.3390/resources13060070 - 26 May 2024
Cited by 58 | Viewed by 8817
Abstract
The synthesis of inorganic nanoparticles for diverse applications is an active research area that involves physical and chemical methods, which typically are expensive, involve hazardous chemical reagents, use complex equipment and synthesis conditions, and consume large amounts of time and energy. Thus, green [...] Read more.
The synthesis of inorganic nanoparticles for diverse applications is an active research area that involves physical and chemical methods, which typically are expensive, involve hazardous chemical reagents, use complex equipment and synthesis conditions, and consume large amounts of time and energy. Thus, green synthesis methods have emerged as eco-friendly and easy alternatives for inorganic nanoparticle synthesis, particularly the use of plant-based extracts from fruit juice, leaves, seeds, peel, stem, barks, and roots, which act as reducing, capping, and stabilizing agents, contributing to the Sustainable Development Goals and circular economy principles. Therefore, diverse inorganic nanoparticles have been synthesized using plant-based extracts, including gold, silver, titanium dioxide, zinc, copper, platinum, zirconium, iron, selenium, magnesium, nickel, sulfur, cobalt, palladium, and indium nanoparticles, which exhibit different biological activities such as antioxidant, antimicrobial, dye degradation, cytotoxic, analgesic, sedative, wound-healing, skin protection, sensor development, and plant-growth-promoting effects. Therefore, this review summarizes the advantages and limitations of plant-based extracts as reducing, capping, and stabilizing agents for inorganic nanoparticle green synthesis. Full article
(This article belongs to the Special Issue Alternative Use of Biological Resources)
Show Figures

Graphical abstract

10 pages, 2033 KiB  
Article
Goethite and Hematite Nanoparticles Show Promising Anti-Toxoplasma Properties
by Kosei Ishii, Eiji Akahoshi, Oluyomi Stephen Adeyemi, Hironori Bando, Yasuhiro Fukuda, Tomoyuki Ogawa and Kentaro Kato
Pharmaceutics 2024, 16(3), 413; https://doi.org/10.3390/pharmaceutics16030413 - 18 Mar 2024
Viewed by 2047
Abstract
Toxoplasma gondii is an intracellular parasitic protozoan with a high infection rate in mammals, including humans, and birds. There is no effective vaccine, and treatment relies on antiparasitic drugs. However, existing antiprotozoal drugs have strong side effects and other problems; therefore, new treatment [...] Read more.
Toxoplasma gondii is an intracellular parasitic protozoan with a high infection rate in mammals, including humans, and birds. There is no effective vaccine, and treatment relies on antiparasitic drugs. However, existing antiprotozoal drugs have strong side effects and other problems; therefore, new treatment approaches are needed. Metal nanoparticles have attracted increased interest in the biomedical community in recent years because of their extremely high surface area to volume ratio and their unique reactivity that could be exploited for medicinal purposes. Previously, we confirmed the anti-Toxoplasma effects of gold, silver, and platinum nanoparticles, in a growth inhibition test. Here, we asked whether the anti-Toxoplasma effect could be confirmed with less expensive metal nanoparticles, specifically iron oxide nanoparticles (goethite and hematite). To improve the selective action of the nanoparticles, we modified the surface with l-tryptophan as our previous findings showed that the bio-modification of nanoparticles enhances their selectivity against T. gondii. Fourier-Transform Infrared Spectroscopy (FTIR) analysis confirmed the successful coating of the iron oxide nanoparticles with l-tryptophan. Subsequently, cytotoxicity and growth inhibition assays were performed. L-tryptophan-modified nanoparticles showed superior anti-Toxoplasma action compared to their naked nanoparticle counterparts. L-tryptophan enhanced the selective toxicity of the iron oxide nanoparticles toward T. gondii. The bio-modified nanoparticles did not exhibit detectable host cell toxicity in the effective anti-Toxoplasma doses. To elucidate whether reactive oxygen species contribute to the anti-Toxoplasma action of the bio-modified nanoparticles, we added Trolox antioxidant to the assay medium and found that Trolox appreciably reduced the nanoparticle-induced growth inhibition. Full article
(This article belongs to the Special Issue Anti-parasitic Applications of Nanoparticles)
Show Figures

Figure 1

21 pages, 9759 KiB  
Article
Morphology and Phase Compositions of FePt and CoPt Nanoparticles Enriched with Noble Metal
by Yuri A. Zakharov, Anna N. Popova, Valery M. Pugachev, Nikita S. Zakharov, Irina N. Tikhonova, Dmitry M. Russakov, Vadim G. Dodonov, Denis G. Yakubik, Natalia V. Ivanova and Lilia R. Sadykova
Materials 2023, 16(23), 7312; https://doi.org/10.3390/ma16237312 - 24 Nov 2023
Cited by 2 | Viewed by 1708
Abstract
The article reveals for the first time the features of nanoparticle morphology, phase compositions, and their changes when heating FePt and CoPt nanoalloys. Nanoparticles were obtained by co-reduction of precursor solution mixtures with hydrazine hydrate. The features were found by a complex of [...] Read more.
The article reveals for the first time the features of nanoparticle morphology, phase compositions, and their changes when heating FePt and CoPt nanoalloys. Nanoparticles were obtained by co-reduction of precursor solution mixtures with hydrazine hydrate. The features were found by a complex of methods of X-ray diffraction (in situ XRD and X-ray scattering), TEM HR, and cyclic voltammetry. In addition, adsorbometry results were obtained, and the stability of different nanocluster structures was calculated by the molecular dynamics method. There were only FCC solid solutions in the X-ray patterns of the FePt and CoPt nanoalloys. According to XRD, in the case of nanoparticle synthesis with Fe and Co content less than 10 at. %, the composition of solid solutions was close to or practically equal to the composition of the as-synthesized nanoparticles quantified by inductively coupled plasma optical emission spectrometry. For systems synthesis with Fe and Co content greater than the above, the solubility limits (SLs) of Fe and Co in Pt were set 11.4 ± 0.7 at. % and 17.5 ± 0.6 at. %, respectively. Therefore, there were non-registered XRD extra-phases (XRNDPh-1) in the systems when CFe,Co ≥ SL. This statement was supported by the results of TEM HR and X-ray scattering: the smallest nanocrystals (1–2 nm) and amorphous particles were found, which qualitatively agreed with the sorbometry and SAXS results. Molecular dynamics calculations of stability for FePt and CoPt alloys claimed the structures of the most stable phase corresponded to phase diagrams (A1 and L12). Specific peculiarities of the morphology and compositions of the solid solutions of nanoalloys were established: structural blockiness (domain) and composition heterogeneity, namely, platinum enrichment of internal (deep) layers and homogenization of the nanoalloy compositions at relatively low temperatures (130–200 °C). The suggested model of the formation of nanoalloys during the synthesis, qualitatively, was compliant with the results of electrochemical deposition of FePt films on the surface of various electrodes. When nanocrystals of solid solutions (C(Fe, Co) < SL) were heated above specific temperatures, there were phase transformations with the formation of two-phase regions, with solid solutions enriched with platinum or iron (non-registered XRD phase XRNDPh-2). The newly formed phase was most likely intermetallic compounds, FePt3, CoPt3. As a result of the study, the model was developed, taking into account the nanoscale of the particles: XRDPh (A1, FeaPt1−a) → XRDPh (A1, Fem×a−xPtmm×a+x) + XRNDPh-2 (Fen×a+yPtnn×a−y) (here, m + n = 1, m ≤ 1, n ≤ 1). Full article
(This article belongs to the Special Issue Synthesis and Structure of Advanced Materials)
Show Figures

Figure 1

16 pages, 1846 KiB  
Article
Ultra-Low Loading of Iron Oxide and Platinum on CVD-Graphene Composites as Effective Electrode Catalysts for Solid Acid Fuel Cells
by Mhamad Hamza Hatahet, Hagen Bryja, Andriy Lotnyk, Maximilian Wagner and Bernd Abel
Catalysts 2023, 13(8), 1154; https://doi.org/10.3390/catal13081154 - 26 Jul 2023
Cited by 1 | Viewed by 2058
Abstract
We propose a new design for electrocatalysts consisting of two electrocatalysts (platinum and iron oxide) that are deposited on the surfaces of an oxidized graphene substrate. This design is based on a simple structure where the catalysts were deposited separately on both sides [...] Read more.
We propose a new design for electrocatalysts consisting of two electrocatalysts (platinum and iron oxide) that are deposited on the surfaces of an oxidized graphene substrate. This design is based on a simple structure where the catalysts were deposited separately on both sides of oxidized graphene substrate; while the iron oxide precipitated out of the etching solution on the bottom-side, the surface of the oxidized graphene substrate was decorated with platinum using the atomic layer deposition technique. The Fe2O3-decorated CVD-graphene composite exhibited better hydrogen electrooxidation performance (area-normalized electrode resistance (ANR) of ~600 Ω·cm2) and superior stability in comparison with bare-graphene samples (ANR of ~5800 Ω·cm2). Electrochemical impedance measurements in humidified hydrogen at 240 °C for (Fe2O3|Graphene|Platinum) electrodes show ANR of ~0.06 Ω·cm2 for a platinum loading of ~60 µgPt·cm2 and Fe2O3 loading of ~2.4 µgFe·cm2, resulting in an outstanding mass normalized activity of almost 280 S·mgPt−1, exceeding even state-of-the-art electrodes. This ANR value is ~30% lower than the charge transfer resistance of the same electrode composition in the absence of Fe2O3 nanoparticles. Detailed study of the Fe2O3 electrocatalytic properties reveals a significant improvement in the electrode’s activity and performance stability with the addition of iron ions to the platinum-decorated oxidized graphene cathodes, indicating that these hybrid (Fe2O3|Graphene|Platinum) materials may serve as highly efficient catalysts for solid acid fuel cells and beyond. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

16 pages, 4349 KiB  
Article
Benzene Oxidation over Pt Loaded on Fly Ash Zeolite X
by Yuri Kalvachev, Totka Todorova, Hristo Kolev, Daniel Merker and Cyril Popov
Catalysts 2023, 13(7), 1128; https://doi.org/10.3390/catal13071128 - 20 Jul 2023
Cited by 5 | Viewed by 1646
Abstract
In the present study, zeolite X (FANaX) was synthesized from coal fly ash (FA) by a two-step high-temperature method. In order to follow the effect of different contaminants in the starting coal ash, zeolite X was also synthesized from pure chemicals according to [...] Read more.
In the present study, zeolite X (FANaX) was synthesized from coal fly ash (FA) by a two-step high-temperature method. In order to follow the effect of different contaminants in the starting coal ash, zeolite X was also synthesized from pure chemicals according to a classical recipe (NaX). Iron was loaded on this reference zeolite with the amount which was contained in the coal FA. The final catalytic samples were obtained by wet impregnation of Pt nanoparticles on both types of zeolite crystals. The most active samples in the benzene oxidation were the platinum-modified ones and, among them, the Pt-impregnated FA zeolite (Pt FANaX). The comparison of the catalytic activity of Pt FANaX with the reference PtFe NaX zeolite showed a temperature difference of 10 °C in favor of Pt FANaX at 50% benzene conversion. From these results, it can be concluded that FA zeolites are a good, cheaper and environmentally friendly alternative to traditional zeolites, synthesized from pure chemicals, which can be applied in the preparation of catalysts for the purification of gaseous mixtures from harmful organic compounds. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

14 pages, 2037 KiB  
Article
Enhancement of Tumor Cell Immunogenicity and Antitumor Properties Derived from Platinum-Conjugated Iron Nanoparticles
by Ángela-Patricia Hernández, Laura Iglesias-Anciones, José Javier Vaquero-González, Rafael Piñol, Julio J. Criado, Emilio Rodriguez, Pablo Juanes-Velasco, Marina L. García-Vaquero, Carlota Arias-Hidalgo, Alberto Orfao, Ángel Millán and Manuel Fuentes
Cancers 2023, 15(12), 3204; https://doi.org/10.3390/cancers15123204 - 15 Jun 2023
Cited by 6 | Viewed by 2194
Abstract
From chemistry design to clinical application, several approaches have been developed to overcome platinum drawbacks in antitumoral therapies. An in-depth understanding of intracellular signaling may hold the key to the relationship of both conventional drugs and nanoparticles. Within these strategies, first, nanotechnology has [...] Read more.
From chemistry design to clinical application, several approaches have been developed to overcome platinum drawbacks in antitumoral therapies. An in-depth understanding of intracellular signaling may hold the key to the relationship of both conventional drugs and nanoparticles. Within these strategies, first, nanotechnology has become an essential tool in oncotherapy, improving biopharmaceutical properties and providing new immunomodulatory profiles to conventional drugs mediated by activation of endoplasmic reticulum (ER) stress. Secondly, functional proteomics techniques based on microarrays have proven to be a successful method for high throughput screening of proteins and profiling of biomolecule mechanisms of action. Here, we conducted a systematic characterization of the antitumor profile of a platinum compound conjugated with iron oxide nanoparticles (IONPs). As a result of the nano-conjugation, cytotoxic and proteomics profiles revealed a significant improvement in the antitumor properties of the starting material, providing selectivity in certain tumor cell lines tested. Moreover, cell death patterns associated with immunogenic cell death (ICD) response have also been identified when ER signaling pathways have been triggered. The evaluation in several tumor cell lines and the analysis by functional proteomics techniques have shown novel perspectives on the design of new cisplatin-derived conjugates, the high value of IONPs as drug delivery systems and ICD as a rewarding approach for targeted oncotherapy and onco-immunotherapies. Full article
(This article belongs to the Special Issue Advanced Cancer Nanotheranostics)
Show Figures

Figure 1

27 pages, 2322 KiB  
Review
Functionalized and Nonfunctionalized Nanosystems for Mitochondrial Drug Delivery with Metallic Nanoparticles
by Shashi Kiran Misra, Jessica M. Rosenholm and Kamla Pathak
Molecules 2023, 28(12), 4701; https://doi.org/10.3390/molecules28124701 - 12 Jun 2023
Cited by 4 | Viewed by 3066
Abstract
Background: The application of metallic nanoparticles as a novel therapeutic tool has significant potential to facilitate the treatment and diagnosis of mitochondria-based disorders. Recently, subcellular mitochondria have been trialed to cure pathologies that depend on their dysfunction. Nanoparticles made from metals and their [...] Read more.
Background: The application of metallic nanoparticles as a novel therapeutic tool has significant potential to facilitate the treatment and diagnosis of mitochondria-based disorders. Recently, subcellular mitochondria have been trialed to cure pathologies that depend on their dysfunction. Nanoparticles made from metals and their oxides (including gold, iron, silver, platinum, zinc oxide, and titanium dioxide) have unique modi operandi that can competently rectify mitochondrial disorders. Materials: This review presents insight into the recent research reports on exposure to a myriad of metallic nanoparticles that can alter the dynamic ultrastructure of mitochondria (via altering metabolic homeostasis), as well as pause ATP production, and trigger oxidative stress. The facts and figures have been compiled from more than a hundred PubMed, Web of Science, and Scopus indexed articles that describe the essential functions of mitochondria for the management of human diseases. Result: Nanoengineered metals and their oxide nanoparticles are targeted at the mitochondrial architecture that partakes in the management of a myriad of health issues, including different cancers. These nanosystems not only act as antioxidants but are also fabricated for the delivery of chemotherapeutic agents. However, the biocompatibility, safety, and efficacy of using metal nanoparticles is contested among researchers, which will be discussed further in this review. Full article
(This article belongs to the Special Issue Nanoparticles in Cellular Drug Delivery)
Show Figures

Graphical abstract

12 pages, 1620 KiB  
Article
Depth Dose Enhancement in Orthovoltage Nanoparticle-Enhanced Radiotherapy: A Monte Carlo Phantom Study
by James C. L. Chow and Sama Jubran
Micromachines 2023, 14(6), 1230; https://doi.org/10.3390/mi14061230 - 10 Jun 2023
Cited by 3 | Viewed by 1883
Abstract
Background: This study was to examine the depth dose enhancement in orthovoltage nanoparticle-enhanced radiotherapy for skin treatment by investigating the impact of various photon beam energies, nanoparticle materials, and nanoparticle concentrations. Methods: A water phantom was utilized, and different nanoparticle materials (gold, platinum, [...] Read more.
Background: This study was to examine the depth dose enhancement in orthovoltage nanoparticle-enhanced radiotherapy for skin treatment by investigating the impact of various photon beam energies, nanoparticle materials, and nanoparticle concentrations. Methods: A water phantom was utilized, and different nanoparticle materials (gold, platinum, iodine, silver, iron oxide) were added to determine the depth doses through Monte Carlo simulation. The clinical 105 kVp and 220 kVp photon beams were used to compute the depth doses of the phantom at different nanoparticle concentrations (ranging from 3 mg/mL to 40 mg/mL). The dose enhancement ratio (DER), which represents the ratio of the dose with nanoparticles to the dose without nanoparticles at the same depth in the phantom, was calculated to determine the dose enhancement. Results: The study found that gold nanoparticles outperformed the other nanoparticle materials, with a maximum DER value of 3.77 at a concentration of 40 mg/mL. Iron oxide nanoparticles exhibited the lowest DER value, equal to 1, when compared to other nanoparticles. Additionally, the DER value increased with higher nanoparticle concentrations and lower photon beam energy. Conclusions: It is concluded in this study that gold nanoparticles are the most effective in enhancing the depth dose in orthovoltage nanoparticle-enhanced skin therapy. Furthermore, the results suggest that increasing nanoparticle concentration and decreasing photon beam energy lead to increased dose enhancement. Full article
(This article belongs to the Special Issue Nanoparticles for Diagnostic and Therapeutic Applications)
Show Figures

Figure 1

13 pages, 825 KiB  
Article
In Vitro Studies of Nanoparticles as a Potentially New Antimicrobial Agent for the Prevention and Treatment of Lameness and Digital Dermatitis in Cattle
by Magdalena Kot, Aleksandra Kalińska, Sławomir Jaworski, Mateusz Wierzbicki, Sebastian Smulski and Marcin Gołębiewski
Int. J. Mol. Sci. 2023, 24(7), 6146; https://doi.org/10.3390/ijms24076146 - 24 Mar 2023
Cited by 7 | Viewed by 2477
Abstract
Digital dermatitis (DD) is the second most prevalent disease in dairy cattle. It causes significant losses for dairy breeders and negatively impacts cows’ welfare and milk yield. Despite this, its etiology has not been entirely identified, and available data are limited. Antibiotic therapy [...] Read more.
Digital dermatitis (DD) is the second most prevalent disease in dairy cattle. It causes significant losses for dairy breeders and negatively impacts cows’ welfare and milk yield. Despite this, its etiology has not been entirely identified, and available data are limited. Antibiotic therapy is a practical method for managing animal health, but overuse has caused the evolution of antibiotic-resistant bacteria, leading to a loss in antimicrobial efficacy. The antimicrobial properties of metal nanoparticles (NPs) may be a potential alternative to antibiotics. The aim of this study was to determine the biocidal properties of AgNPs, CuNPs, AuNPs, PtNPs, FeNPs, and their nanocomposites against pathogens isolated from cows suffering from hoof diseases, especially DD. The isolated pathogens included Sphingomonas paucimobilis, Ochrobactrum intermedium I, Ochrobactrum intermedium II, Ochrobactrum gallinifaecis, and Actinomyces odontolyticus. Cultures were prepared in aerobic and anaerobic environments. The viability of the pathogens was then determined after applying nanoparticles at various concentrations. The in vitro experiment showed that AgNPs and CuNPs, and their complexes, had the highest biocidal effect on pathogens. The NPs’ biocidal properties and their synergistic effects were confirmed, which may forecast their use in the future treatment and the prevention of lameness in cows, especially DD. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials)
Show Figures

Figure 1

21 pages, 1631 KiB  
Article
Multilayer Methacrylate-Based Wound Dressing as a Therapeutic Tool for Targeted Pain Relief
by Tanja Zidarič, Kristijan Skok, Kristjan Orthaber, Matevž Pristovnik, Lidija Gradišnik, Tina Maver and Uroš Maver
Materials 2023, 16(6), 2361; https://doi.org/10.3390/ma16062361 - 15 Mar 2023
Cited by 3 | Viewed by 2976
Abstract
This study presents an innovative wound dressing system that offers a highly effective therapeutic solution for treating painful wounds. By incorporating the widely used non-steroidal anti-inflammatory drug diclofenac, we have created an active wound dressing that can provide targeted pain relief with ease. [...] Read more.
This study presents an innovative wound dressing system that offers a highly effective therapeutic solution for treating painful wounds. By incorporating the widely used non-steroidal anti-inflammatory drug diclofenac, we have created an active wound dressing that can provide targeted pain relief with ease. The drug was embedded within a biocompatible matrix composed of polyhydroxyethyl methacrylate and polyhydroxypropyl methacrylate. The multilayer structure of the dressing, which allows for sustained drug release and an exact application, was achieved through the layer-by-layer coating technique and the inclusion of superparamagnetic iron platinum nanoparticles. The multilayered dressings’ physicochemical, structural, and morphological properties were characterised using various methods. The synergistic effect of the incorporated drug molecules and superparamagnetic nanoparticles on the surface roughness and release kinetics resulted in controlled drug release. In addition, the proposed multilayer wound dressings were found to be biocompatible with human skin fibroblasts. Our findings suggest that the developed wound dressing system can contribute to tailored therapeutic strategies for local pain relief. Full article
Show Figures

Figure 1

Back to TopTop