Platinum–Iron Nanoparticles for Oxygen-Enhanced Sonodynamic Tumor Cell Suppression
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Iron–Platinum Nanoparticles
2.2. Evaluation of the Oxygen Generating Capability of Iron–Platinum Nanoparticles in Hydrogen Peroxide Decomposition
2.3. Evaluation of Singlet Oxygen Generation by Iron–Platinum Nanoparticles Under Sonodynamic Therapy
2.4. Evaluation of Tumor Cell Growth Inhibition by Iron–Platinum Nanoparticles
3. Materials and Methods
3.1. Instruments and Materials
3.2. Main Instruments
3.3. Synthesis of Iron–Platinum Nanoparticles
3.4. Measurement of Dissolved Oxygen Generation by Decomposition of Hydrogen Peroxide with Iron–Platinum Nanoparticles
3.5. Singlet Oxygen Generation Test for Iron–Platinum Nanoparticles
3.6. Cytotoxicity Test for Iron–Platinum Nanoparticles
3.7. Sonodynamic Therapy Efficacy Test for Iron–Platinum Nanoparticles
3.8. Ultrasound Thermal Effect Test
3.9. Statistical Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Feng, W.; Qian, X.; Yu, L.; Chen, Y.; Li, Y. Emerging Nanomedicine-Enabled/Enhanced Nanodynamic Therapies beyond Traditional Photodynamics. Adv. Mater. 2021, 33, 2005062. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic Therapy of Cancer: An Update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, M.; Hou, Y.; Luo, Z.; Chen, Q.; Cao, H.; Huo, R.; Xue, C.; Sutrisno, L.; Hao, L.; et al. Engineering of a Nanosized Biocatalyst for Combined Tumor Starvation and Low-Temperature Photothermal Therapy. ACS Nano 2018, 12, 2858–2872. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, Y.; Du, Y.; Zhang, Y.; Wang, X.; Ding, Y.; Yang, X.; Meng, F.; Tu, J.; Luo, L.; et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat. Commun. 2019, 10, 4871. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Shi, C.; He, S.; Wang, R.; Zhang, Z.; Hu, Y.; Cao, J.; Liu, T.; Zhou, D.; Sun, W.; et al. Heptamethine Cyanine Dyes with Ultra-Efficient Excited-State Nonradiative Decay for Synergistic Photothermal Immunotherapy. Adv. Funct. Mater. 2023, 33, 2300340. [Google Scholar] [CrossRef]
- Idris, N.M.; Gnanasammandhan, M.K.; Zhang, J.; Ho, P.C.; Mahendran, R.; Zhang, Y. In vivo Photodynamic Therapy Using Upconversion Nanoparticles as Remote-Controlled Nanotransducers. Nat. Med. 2012, 18, 1580–1585. [Google Scholar] [CrossRef]
- Zou, Z.; Chang, H.; Li, H.; Wang, S. Induction of Reactive Oxygen Species: An Emerging Approach for Cancer Therapy. Apoptosis 2017, 22, 1321–1335. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Yao, F.; Zhao, J.; Zhang, W.; Chen, L.; Wang, X.; Yang, P.; Tang, J.; Chi, Y. Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials. Exploration 2023, 3, 20220115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Han, X.; Wang, S.; Pan, Z.; Tang, X.; Jiang, Z. Violet Phosphorus Nanosheet: A Biocompatible and Stable Platform for Stimuli-Responsive Multimodal Cancer Phototherapy. Adv. Healthc. Mater. 2023, 12, 2201995. [Google Scholar] [CrossRef]
- Zhang, Q.; Bao, C.; Cai, X.; Jin, L.; Sun, L.; Lang, Y.; Li, L. Sonodynamic Therapy-Assisted Immunotherapy: A Novel Modality for Cancer Treatment. Cancer Sci. 2018, 109, 1330–1345. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Wang, H.; Wang, S.; Sun, X.; Wang, L.; Wang, W.; Shen, H.; Liu, H. Sonodynamic Therapy (SDT): A Novel Strategy for Cancer Nanotheranostics. Sci. China Life Sci. 2018, 61, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, X.; Ouyang, B.; Mo, H.; Ren, H.; Yang, S. Three-Dimensional Collision Avoidance Method for Robot-Assisted Minimally Invasive Surgery. Cyborg Bionic Syst. 2023, 4, 0042. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Qian, X.; Chen, Y.; Yu, L.; Lin, H.; Wane, L.; Zhu, Y.; Shi, J. Metalloporphyrin-Encapsulated Biodegradable Nanosystems for Highly Efficient Magnetic Resonance Imaging-Guided Sonodynamic Cancer Therapy. J. Am. Chem. Soc. 2017, 139, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Imashiro, C.; Jin, Y.; Hayama, M.; Yamada, T.G.; Funahashi, A.; Sakaguchi, K.; Umezu, S.; Komotori, J. Titanium Culture Vessel Presenting Temperature Gradation for the Thermotolerance Estimation of Cells. Cyborg Bionic Syst. 2023, 4, 0049. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Zhang, X.; Zahrani, A.A.; Gao, W.; Ma, G.; Zhang, L.; Xue, J. Neural tissue engineering: From bioactive scaffolds and in situ monitoring to regeneration. Exploration 2022, 2, 20210035. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, N.; Nam, K.H.; Christensen, D.A.; Kennedy, A.M.; Shea, J.E.; Scaife, C.L. Ultrasound-Enhanced Nanotherapy of Pancreatic Cancer. In Proceedings of the 9TH International Symposium on Therapeutic Ultrasound: ISTU—2009, Aix en Provence, France, 24–26 September 2009; pp. 123–126. [Google Scholar]
- Qian, K.; Gao, S.; Jiang, Z.; Ding, Q.; Cheng, Z. Recent advances in mitochondria-targeting theranostic agents. Exploration 2024, 4, 20230063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Sun, Y.; Cao, J.; Luo, J.; Wang, J.; Jiang, Z.; Huang, P. Intrinsic Nucleus-Targeted Ultra-Small Metal–Organic Framework for the Type I Sonodynamic Treatment of Orthotopic Pancreatic Carcinoma. J. Nanobio. 2021, 19, 315. [Google Scholar] [CrossRef]
- He, Z.; Du, J.; Miao, Y.; Li, Y. Recent developments of inorganic nanosensitizers for sonodynamic therapy. Adv. Healthc. Mater. 2023, 12, 2300234. [Google Scholar] [CrossRef]
- Islami, F.; Marlow, E.C.; Thomson, B.; McCullough, M.L.; Rumgay, H.; Gapstur, S.M.; Patel, A.V.; Soerjomataram, I.; Jemal, A. Proportion and Number of Cancer Cases and Deaths Attributable to Potentially Modifiable Risk Factors in the United States, 2019. CA Cancer J. Clin. 2024, 74, 405–432. [Google Scholar] [CrossRef]
- Zhao, C.; Tang, X.; Chen, X.; Jiang, Z. Multifaceted Carbonized Metal–Organic Frameworks Synergize with Immune Checkpoint Inhibitors for Precision and Augmented Cuproptosis Cancer Therapy. ACS Nano 2024, 18, 17852–17868. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, E.; Zhang, Y.; Zhang, L.L.; Montiel, M.; Zoltan, M.; Dong, W.L.; Quesada, P.; Sahin, I.; Chandra, V.; San Lucas, A.; et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell 2019, 178, 795. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Song, Z.; Zhou, Y.; Zhang, Y.; Deng, Y.; Qin, J.; Zhang, T.; Jiang, Z. Mitochondria-targeted high-load sound-sensitive micelles for sonodynamic therapy to treat triple-negative breast cancer and inhibit metastasis. Mater. Sci. Eng. C 2021, 124, 112054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, W.; Zhang, T.; Jiang, X.; Hu, Y. Hybrid Nanoparticle Composites Applied to Photodynamic Therapy: Strategies and Applications. J. Mater. Chem. B 2020, 8, 4726–4737. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Kim, J.H.; Wang, X.; Zhang, C.; Yoon, S.A.; Shin, J.; Sharma, A.; Lee, M.H.; Cheng, L.; Wu, J.; et al. Multifunctional Sonosensitizers in Sonodynamic Cancer Therapy. Chem. Soc. Rev. 2020, 49, 3244–3261. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Xiao, W.; Fu, Q. Stimuli responsive nanosonosensitizers for sonodynamic therapy. J. Control. Release 2023, 361, 547–567. [Google Scholar] [CrossRef]
- Jung, H.S.; Han, J.; Shi, H.; Koo, S.; Singh, H.; Kim, H.-J.; Sessler, J.L.; Lee, J.Y.; Kim, J.-H.; Kim, J.S. Overcoming the Limits of Hypoxia in Photodynamic Therapy: A Carbonic Anhydrase IX-Targeted Approach. J. Am. Chem. Soc. 2017, 139, 7595–7602. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Xie, X.; Shi, X.; Peng, Y.; Ding, J.; Zhou, W. Oxygen-Self-Supplying and HIF-1α-Inhibiting Core–Shell Nanosystem for Hypoxia-Resistant Photodynamic Therapy. ACS Appl. Mater. Interfaces 2019, 11, 48261–48270. [Google Scholar] [CrossRef]
- Chen, J.; Luo, H.; Liu, Y.; Zhang, W.; Li, H.; Luo, T.; Zhang, K.; Zhao, Y.; Liu, J. Oxygen-Self-Produced Nanoplatform for Relieving Hypoxia and Breaking Resistance to Sonodynamic Treatment of Pancreatic Cancer. ACS Nano 2017, 11, 12849–12862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Jiang, Z.; Chen, L.; Pan, C.; Sun, S.; Liu, C.; Li, Z.; Ren, W.; Wu, A.; Huang, P. PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia. Nano Res. 2020, 13, 273–281. [Google Scholar] [CrossRef]
- Zhao, C.; Kang, J.; Li, Y.; Wang, Y.; Tang, X.; Jiang, Z. Carbon-Based Stimuli-Responsive Nanomaterials: Classification and Application. Cyborg Bionic Syst. 2023, 4, 0022. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.P.; Li, X.X.; Li, Y.; Zhu, R.M.; Pang, H. Applications of Metal-Organic-Framework-Derived Carbon Materials. Adv. Mater. 2019, 31, 1804740. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wei, H.; Zhang, Z.; Wang, E.; Dong, S. Nanozyme: An Emerging Alternative to Natural Enzyme for Biosensing and Immunoassay. TrAC Trends Anal. Chem. 2018, 105, 218–224. [Google Scholar] [CrossRef]
- An, J.; Hu, Y.-G.; Cheng, K.; Li, C.; Hou, X.-L.; Wang, G.-L.; Zhang, X.-S.; Liu, B.; Zhao, Y.-D.; Zhang, M.-Z. ROS-Augmented and Tumor-Microenvironment Responsive Biodegradable Nanoplatform for Enhancing Chemo-Sonodynamic Therapy. Biomaterials 2020, 234, 119761. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhou, Z.; Qiu, N.; Shen, Y. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Adv. Mater. 2017, 29, 1606628. [Google Scholar] [CrossRef]
- Han, X.; Huang, J.; Jing, X.; Yang, D.; Lin, H.; Wang, Z.; Li, P.; Chen, Y. Oxygen-Deficient Black Titania for Synergistic/Enhanced Sonodynamic and Photoinduced Cancer Therapy at Near Infrared-II Biowindow. ACS Nano 2018, 12, 4545–4555. [Google Scholar] [CrossRef]
- Wang, S.; Huang, P.; Chen, X. Stimuli-Responsive Programmed Specific Targeting in Nanomedicine. ACS Nano 2016, 10, 2991–2994. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; He, Y.; Zhang, M.; Liang, C.; Li, T.; Ji, T.; Zu, M.; Ma, X.; Zhang, Z.; Liang, C.; et al. Programmed initiation and enhancement of cGAS/STING pathway for tumour immunotherapy via tailor-designed ZnFe2O4-based nanosystem. Exploration 2023, 3, 20230061. [Google Scholar] [CrossRef]
- Han, X.; Li, Y.; Zhou, Y.; Song, Z.; Deng, Y.; Qin, J.; Jiang, Z. Metal-Organic Frameworks-Derived Bimetallic Nanozyme Platform Enhances Cytotoxic Effect of Photodynamic Therapy in Hypoxic Cancer Cells. Mater. Des. 2021, 204, 109646. [Google Scholar] [CrossRef]
- Zhao, P.; Deng, Y.; Xiang, G.; Liu, Y. Nanoparticle-assisted sonosensitizers and their biomedical applications. Int. J. Nanomed. 2021, 16, 4615–4630. [Google Scholar] [CrossRef]
- Wang, F.; Fan, Y.; Liu, Y.; Lou, X.; Sutrisno, L.; Peng, S.; Li, J. Oxygen-carrying semiconducting polymer nanoprodrugs induce sono-pyroptosis for deep-tissue tumor treatment. Exploration 2024, 4, 20230100. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Xu, M.; Qiao, B.; Huang, T.; Guo, H.; Zhang, N.; Zhou, L.; Li, M.; Tan, Y.; Zhang, M.; et al. Nanodroplet-enhanced sonodynamic therapy potentiates immune checkpoint blockade for systemic suppression of triple-negative breast cancer. Acta Biomater. 2023, 158, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Yin, J.; Ran, H.; Ren, Y.; Lu, C.; Liu, L.; Shi, Q.; Qiu, Y.; Pan, H.; Ma, A. Hypoxia-alleviated sonodynamic therapy based on a hybrid protein oxygen carrier to enhance tumor inhibition. Biomater. Sci. 2022, 10, 294–305. [Google Scholar] [CrossRef]
- Hou, B.; Li, B.; Deng, W.; Li, B.; Ren, B.; Hu, C.; Zhang, G.; Yang, F.; Xiao, M.; Xie, S.; et al. DHTPY-Cu@ZOL-Enhanced Photodynamic Therapy: A Strategic Platform for Advanced Treatment of Drug-Resistant Bacterial Wound Infections. Int. J. Nanomed. 2024, 19, 6319–6336. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Xu, D.; Hu, X.; Zhu, W.; Kong, L.; Qian, Z.; Mei, J.; Ma, R.; Shang, X.; Fan, W.; et al. Biodegradable oxygen-evolving metalloantibiotics for spatiotemporal sono-metalloimmunotherapy against orthopaedic biofilm infections. Nat. Commun. 2024, 15, 8058. [Google Scholar] [CrossRef]
- Chen, Y.; Shang, H.; Wang, C.; Zeng, J.; Zhang, S.; Wu, B.; Cheng, W. RNA-Seq Explores the Mechanism of Oxygen-Boosted Sonodynamic Therapy Based on All-in-One Nanobubbles to Enhance Ferroptosis for the Treatment of HCC. Int. J. Nanomed. 2022, 17, 105–123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-Y.; Cheng, K.; Sun, X.; Yang, X.-Q.; Li, Y.; Hu, Y.-G.; Zhang, X.-S.; Liu, B.; Chen, W.; Zhao, Y.-D.; et al. Biomimetic O2 Self-generated hybrid membrane nanoplatform for blocking the polarization towards immunosuppressive M2 macrophage phenotype and enhancing sonodynamics therapy in orthotopic colorectal cancer. Chem. Eng. J. 2022, 450, 138337. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Q.; Jiang, Z. Platinum–Iron Nanoparticles for Oxygen-Enhanced Sonodynamic Tumor Cell Suppression. Inorganics 2024, 12, 331. https://doi.org/10.3390/inorganics12120331
Dong Q, Jiang Z. Platinum–Iron Nanoparticles for Oxygen-Enhanced Sonodynamic Tumor Cell Suppression. Inorganics. 2024; 12(12):331. https://doi.org/10.3390/inorganics12120331
Chicago/Turabian StyleDong, Qianya, and Zhenqi Jiang. 2024. "Platinum–Iron Nanoparticles for Oxygen-Enhanced Sonodynamic Tumor Cell Suppression" Inorganics 12, no. 12: 331. https://doi.org/10.3390/inorganics12120331
APA StyleDong, Q., & Jiang, Z. (2024). Platinum–Iron Nanoparticles for Oxygen-Enhanced Sonodynamic Tumor Cell Suppression. Inorganics, 12(12), 331. https://doi.org/10.3390/inorganics12120331