Cytokinin–Ethylene Crosstalk Mediates Bottle Gourd Rootstock-Induced Vigor in Grafted Melon
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Grafting Methodology
2.3. Measurement of Plant Growth
2.4. RNA Sequencing and Quantitative Real-Time PCR Analysis
2.5. Quantification of Phytohormones with HPLC
2.6. VlGS Assay and Phenotypic Observation
2.7. Statistical Analysis
3. Results
3.1. Bottle Gourd Rootstock Enhances the Growth of Melon Scions
3.2. Rootstock-Induced Transcriptomic Reprogramming in Melon Scions
3.3. Functional Characterization of Growth-Promoting Genes
3.4. Phytohormone Pathways Activated During Heterografting
3.5. Functional Validation of Candidate Genes via VIGS
4. Discussion
4.1. Transcriptional and Metabolic Reprogramming: The Foundation of Vigor
4.2. Hormonal Crosstalk: Integrating Signals for Growth
4.3. Prospective Mechanisms of Rootstock-to-Scion Communication
4.4. Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nawaz, M.A.; Imtiaz, M.; Kong, Q.; Cheng, F.; Ahmed, W.; Huang, Y.; Bie, Z. Grafting: A technique to modify ion accumulation in horticultural crops. Front. Plant Sci. 2016, 7, 1457. [Google Scholar] [CrossRef] [PubMed]
- Savvas, D.; Ntatsi, G.; Barouchas, P. Impact of grafting and rootstock genotype on cation uptake by cucumber (Cucumis sativus L.) exposed to Cd or Ni stress. Sci. Hortic. 2013, 149, 86–96. [Google Scholar] [CrossRef]
- Razi, K.; Suresh, P.; Mahapatra, P.P.; Al Murad, M.; Venkat, A.; Notaguchi, M.; Bae, D.W.; Prakash, M.A.S.; Muneer, S. Exploring the role of grafting in abiotic stress management: Contemporary insights and automation trends. Plant Direct 2024, 8, e70021. [Google Scholar] [CrossRef]
- Hayat, F.; Li, J.; Iqbal, S.; Khan, U.; Ali, N.A.; Peng, Y.; Hong, L.; Asghar, S.; Javed, H.U.; Li, C.; et al. Hormonal interactions underlying rootstock-induced vigor control in horticultural crops. Appl. Sci. 2023, 13, 1237. [Google Scholar] [CrossRef]
- Cerruti, E.; Gisbert, C.; Drost, H.-G.; Valentino, D.; Portis, E.; Barchi, L.; Prohens, J.; Lanteri, S.; Comino, C.; Catoni, M. Grafting vigour is associated with DNA de-methylation in eggplant. Hortic. Res. 2021, 8, 241. [Google Scholar] [CrossRef]
- Shahwar, D.; Khan, Z.; Park, Y. Molecular markers for marker-assisted breeding for biotic and abiotic stress in melon (Cucumis melo L.): A review. Int. J. Mol. Sci. 2024, 25, 6307. [Google Scholar] [CrossRef]
- Dhami, D.S.; Kaur, S.; Sharma, A.; Sharma, S.P.; Dhillon, N.K.; Jain, S. Characterization of multiple disease resistance in melons (Cucumis melo L.) against Meloidogyne incognita, Fusarium oxysporum and tomato leaf curl Palampur virus. Plant Genet. Resour. Charact. Util. 2024, 22, 27–36. [Google Scholar] [CrossRef]
- Xiong, M.; Liu, C.; Guo, L.; Wang, J.; Wu, X.; Li, L.; Bie, Z.; Huang, Y. Compatibility evaluation and anatomical observation of melon grafted onto eight Cucurbitaceae species. Front. Plant Sci. 2021, 12, 762889. [Google Scholar] [CrossRef] [PubMed]
- Thies, J.A. Grafting for managing vegetable crop pests. Pest Manag. Sci. 2021, 77, 4825–4835. [Google Scholar] [CrossRef]
- Nie, W.; Wen, D. Study on the applications and regulatory mechanisms of grafting on vegetables. Plants 2023, 12, 2822. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, A.; Singh, P.M.; Rai, N.; Singh, A.K.; Singh, A.K.; Karkute, S.G.; Behera, T.K. Grafting in vegetables to improve abiotic stress tolerance, yield and quality. J. Hortic. Sci. Biotechnol. 2024, 99, 385–403. [Google Scholar] [CrossRef]
- Garcia-Lozano, M.; Dutta, S.K.; Natarajan, P.; Tomason, Y.R.; Lopez, C.; Katam, R.; Levi, A.; Nimmakayala, P.; Reddy, U.K. Transcriptome changes in reciprocal grafts involving watermelon and bottle gourd reveal molecular mechanisms involved in increase of the fruit size, rind toughness and soluble solids. Plant Mol. Biol. 2020, 102, 213–223. [Google Scholar] [CrossRef]
- Mauro, R.P.; Pérez-Alfocea, F.; Cookson, S.J.; Ollat, N.; Vitale, A. Editorial: Physiological and molecular aspects of plant rootstock-scion interactions. Front. Plant Sci. 2022, 13, 852518. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Ahsan, M.U.; Frank, M.H. Getting to the root of grafting-induced traits. Curr. Opin. Plant Biol. 2021, 59, 101988. [Google Scholar] [CrossRef]
- Parvathi, M.S.; Antony, P.D.; Kutty, M.S. Multiple stressors in vegetable production: Insights for trait-based crop improvement in cucurbits. Front. Plant Sci. 2022, 13, 861637. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Wang, P.; Chen, J.; Cao, Y. Gene expression, hormone signaling, and nutrient uptake in the root regermination of grafted watermelon plants with different pumpkin rootstocks. J. Plant Growth Regul. 2023, 42, 1051–1066. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Zhao, M.; Liu, Y.; Xu, X.; Li, T. Transcriptomic analysis of melon/squash graft junction reveals molecular mechanisms potentially underlying the graft union development. PeerJ 2021, 9, e12569. [Google Scholar] [CrossRef]
- Hou, S.; Zhu, Y.; Wu, X.; Xin, Y.; Guo, J.; Wu, F.; Yu, H.; Sun, Z.; Xu, C. Scion-to-rootstock mobile transcription factor CmHY5 positively modulates the nitrate uptake capacity of melon scion grafted on squash rootstock. Int. J. Mol. Sci. 2023, 24, 162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, W.; Wang, C.; Lin, S.; Chen, Y.; Cui, H.; Xiang, C.; Ma, Y.; Li, X.; Lu, Y.; et al. Root-to-shoot mobile mRNA CmoKARI1 promotes JA-Ile biosynthesis to confer chilling tolerance in grafted cucumbers. Nat. Commun. 2025, 16, 7782. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chu, C.; Li, H.; Zhang, H.; Sun, H.; Wang, S.; Wang, Z.; Li, Y.; Foster, T.M.; López-Girona, E.; et al. Near-gapless and haplotype-resolved apple genomes provide insights into the genetic basis of rootstock-induced dwarfing. Nat. Genet. 2024, 56, 505–516. [Google Scholar] [CrossRef]
- Ai, M.; Han, W.; Wang, Z.; Xu, X.; He, Y.; Shou, W.; Sun, X.; Wang, H.; Shen, J. Cucurbit crops acquired silencing: Virus-induced post-transcriptional silencing is transmitted across the graft union. Horticulturae 2024, 10, 1313. [Google Scholar] [CrossRef]
- Coşkun, Ö.F. The effect of grafting on morphological, physiological and molecular changes induced by drought stress in cucumber. Sustainability 2023, 15, 875. [Google Scholar] [CrossRef]
- Castanera, R.; Ruggieri, V.; Pujol, M.; Garcia-Mas, J.; Casacuberta, J.M. An improved melon reference genome with single-molecule sequencing uncovers a recent burst of transposable elements with potential impact on genes. Front. Plant Sci. 2019, 10, 1815. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Kamada-Nobusada, T.; Komatsu, H.; Takei, K.; Kuroha, T.; Mizutani, M.; Ashikari, M.; Ueguchi-Tanaka, M.; Matsuoka, M.; Suzuki, K.; et al. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and Liquid Chromatography–Tandem Mass Spectrometry: An application for hormone profiling in Oryza sativa. Plant Cell Physiol. 2009, 50, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cao, S.; Xu, X.; He, Y.; Shou, W.; Munaiz, E.D.; Yu, C.; Shen, J. Application and expansion of virus-induced gene silencing for functional studies in vegetables. Horticulturae 2023, 9, 934. [Google Scholar] [CrossRef]
- Fang, L.; Wei, X.Y.; Liu, L.Z.; Zhou, L.X.; Tian, Y.P.; Geng, C.; Li, X.D. A tobacco ringspot virus-based vector system for gene and microRNA function studies in cucurbits. Plant Physiol. 2021, 186, 853–864. [Google Scholar] [CrossRef]
- Sosnowski, J.; Truba, M.; Vasileva, V. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture 2023, 13, 724. [Google Scholar] [CrossRef]
- Tan, X.; Sha, L.; Tian, B.; Yu, M.; Xie, Z.; Chen, W.; Huangfu, Y.; Guo, J.; Liu, J.; Deng, C. Synergistic integration of light signal, hormone dynamics, and carbohydrate metabolism orchestrates rhizome bud development in Arundo donax. Planta 2025, 262, 85. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Liu, J.; Zhang, P.; Kudoyarova, G.; Liu, C.-J.; Zhang, K. Spatially distributed cytokinins: Metabolism, signaling, and transport. Plant Commun. 2024, 5, 100936. [Google Scholar] [CrossRef]
- Barrera-Rojas, C.H.; Rocha, G.H.B.; Polverari, L.; Pinheiro Brito, D.A.; Batista, D.S.; Notini, M.M.; da Cruz, A.C.F.; Morea, E.G.O.; Sabatini, S.; Otoni, W.C. miR156-targeted SPL10 controls Arabidopsis root meristem activity and root-derived de novo shoot regeneration via cytokinin responses. J. Exp. Bot. 2020, 71, 934–950. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, H. Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant J. 2021, 105, 421–430. [Google Scholar] [CrossRef]
- Lakehal, A.; Dob, A.; Rahneshan, Z.; Novák, O.; Escamez, S.; Alallaq, S.; Strnad, M.; Tuominen, H.; Bellini, C. ETHYLENE RESPONSE FACTOR 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis. New Phytol. 2020, 228, 1611–1626. [Google Scholar] [CrossRef]
- Liang, L.; Tang, W.; Lian, H.; Sun, B.; Huang, Z.; Sun, G.; Li, X.; Tu, L.; Li, H.; Tang, Y. Grafting promoted antioxidant capacity and carbon and nitrogen metabolism of bitter gourd seedlings under heat stress. Front. Plant Sci. 2022, 13, 1074889. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Augstein, F.; Kareem, A.; Melnyk, C.W. Plant grafting: Molecular mechanisms and applications. Mol. Plant 2024, 17, 75–91. [Google Scholar] [CrossRef]
- Márkus, R.; Kocsis, M.; Farkas, Á.; Nagy, D.U.; Helfrich, P.; Kutyáncsánin, D.; Nyitray, G.; Czigle, S.; Stranczinger, S. A modeling approach to studying the influence of grafting on the anatomical features and SAUR gene expression in watermelons. Agronomy 2024, 14, 1472. [Google Scholar] [CrossRef]
- Pokimica, N.; Ćosić, T.; Uzelac, B.; Ninković, S.; Raspor, M. Dissecting the roles of the cytokinin signaling network: The case of de novo shoot apical meristem formation. Biomolecules 2024, 14, 381. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Sharma, D.; Jan, S.; Singh, R.; Bhardwaj, R.; Kapoor, D. Crosstalk of ethylene and other phytohormones in the regulation of plant development. In Ethylene in Plant Biology; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2022; pp. 17–31. [Google Scholar] [CrossRef]
- Márkus, R.; Czigle, S.; Zana, B.; Somogyi, B.A.; Urbán, P.; Kutyáncsánin, D.; Helfrich, P.; Stranczinger, S. Drought and salt stressors alter NAC and WRKY gene expression profiles in grafted Citrullus lanatus. Plant Mol. Biol. Report. 2025, 43, 1576–1587. [Google Scholar] [CrossRef]
- Wang, P.; Liu, F.; Sun, Y.; Liu, X.; Jin, L. Physiological and molecular insights into citrus rootstock-scion interactions: Compatibility, signaling, and impact on growth, fruit quality and stress responses. Horticulturae 2025, 11, 1110. [Google Scholar] [CrossRef]
- Shimotohno, A.; Aki, S.S.; Takahashi, N.; Umeda, M. Regulation of the plant cell cycle in response to hormones and the environment. Annu. Rev. Plant Biol. 2021, 72, 273–296. [Google Scholar] [CrossRef]
- Li, G.; Tan, M.; Liu, X.; Mao, J.; Song, C.; Li, K.; Ma, J.; Xing, L.; Zhang, D.; Shao, J. The nutrient, hormone, and antioxidant status of scion affects the rootstock activity in apple. Sci. Hortic. 2022, 302, 111157. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Liu, Y.; Wang, L.; Jiang, J.; Zhao, S.; Fang, W.; Chen, F.; Guan, Z. Long-distance transport RNAs between rootstocks and scions and graft hybridization. Planta 2022, 255, 96. [Google Scholar] [CrossRef] [PubMed]
- Davoudi, M.; Song, M.; Zhang, M.; Chen, J.; Lou, Q. Long-distance control of the scion by the rootstock under drought stress as revealed by transcriptome sequencing and mobile mRNA identification. Hortic. Res. 2022, 9, uhab033. [Google Scholar] [CrossRef]
- Wang, T.; Li, X.; Zhang, X.; Wang, Q.; Liu, W.; Lu, X.; Gao, S.; Liu, Z.; Liu, M.; Gao, L. RNA motifs and modification involve in RNA long-distance transport in plants. Front. Cell Dev. Biol. 2021, 9, 651278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Thieme, C.J.; Kollwig, G.; Apelt, F.; Yang, L.; Winter, N.; Andresen, N.; Walther, D.; Kragler, F. tRNA-related sequences trigger systemic mRNA transport in plants. Plant Cell 2016, 28, 1237–1249. [Google Scholar] [CrossRef]
- Carraro, P.; Naeem, Y.; Girardi, F.; Botton, A.; Varotto, S.; Ruperti, B.; Bonghi, C. A rootstock-centered perspective on the regulation of alternate bearing in fruit trees. J. Exp. Bot. 2025, eraf460. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, P.P.; Bae, D.W.; Notaguchi, M.; Muneer, S. Grafting enhances drought stress tolerance by regulating proteome and targeted gene regulatory networks in tomato. Front. Plant Sci. 2025, 16, 1591437. [Google Scholar] [CrossRef]
- Loupit, G.; Brocard, L.; Ollat, N.; Cookson, S.J. Grafting in plants: Recent discoveries and new applications. J. Exp. Bot. 2023, 74, 2433–2447. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Han, W.; Ai, M.; Song, S.; Xu, X.; He, Y.; Shou, W.; Shen, J.; Wu, Z. Cytokinin–Ethylene Crosstalk Mediates Bottle Gourd Rootstock-Induced Vigor in Grafted Melon. Horticulturae 2026, 12, 82. https://doi.org/10.3390/horticulturae12010082
Han W, Ai M, Song S, Xu X, He Y, Shou W, Shen J, Wu Z. Cytokinin–Ethylene Crosstalk Mediates Bottle Gourd Rootstock-Induced Vigor in Grafted Melon. Horticulturae. 2026; 12(1):82. https://doi.org/10.3390/horticulturae12010082
Chicago/Turabian StyleHan, Wen, Mei Ai, Sishi Song, Xinyang Xu, Yanjun He, Weisong Shou, Jia Shen, and Zhe Wu. 2026. "Cytokinin–Ethylene Crosstalk Mediates Bottle Gourd Rootstock-Induced Vigor in Grafted Melon" Horticulturae 12, no. 1: 82. https://doi.org/10.3390/horticulturae12010082
APA StyleHan, W., Ai, M., Song, S., Xu, X., He, Y., Shou, W., Shen, J., & Wu, Z. (2026). Cytokinin–Ethylene Crosstalk Mediates Bottle Gourd Rootstock-Induced Vigor in Grafted Melon. Horticulturae, 12(1), 82. https://doi.org/10.3390/horticulturae12010082

