Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,114)

Search Parameters:
Keywords = plant pigments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2561 KiB  
Article
Preharvest Far-Red Light Affects Respiration Rate and Carbohydrate Status in Lettuce Grown in a Vertical Farm and Stored Under Modified Atmosphere Conditions
by Ellen Van de Velde, Lauriane Van Wilder, Marie-Christine Van Labeke, Bruno De Meulenaer, Kathy Steppe, Frank Devlieghere and Emmy Dhooghe
Agronomy 2025, 15(8), 1957; https://doi.org/10.3390/agronomy15081957 - 13 Aug 2025
Viewed by 131
Abstract
Vertical farming allows for precise control of environmental conditions, including light quality, enabling the optimization of plant growth and the synthesis of specific phytochemicals. However, the effects of such conditions on postharvest quality remain underexplored. In this study, butterhead lettuce (Lactuca sativa [...] Read more.
Vertical farming allows for precise control of environmental conditions, including light quality, enabling the optimization of plant growth and the synthesis of specific phytochemicals. However, the effects of such conditions on postharvest quality remain underexplored. In this study, butterhead lettuce (Lactuca sativa cv. ‘Alyssa’) was grown for three weeks under light-emitting diode (LED) lighting (190 µmol m−2 s−1; 89% red, 11% blue), with or without supplemental far-red light (ca. 50 µmol m−2 s−1). Growth and quality parameters were assessed at harvest, followed by postharvest evaluation of fresh-cut lettuce stored under equilibrium modified atmosphere packaging (EMAP: 3% O2, balance N2) at 7 °C in darkness for 13 days. The respiration rate of the produce was also determined. Far-red light supplementation increased dry weight (+17%) and elevated glucose (+57%) and fructose (+64%) levels at harvest, without affecting fresh weight, pigment content, vitamin C, or sucrose levels. Although respiration rates during storage were about 54% higher for lettuce grown under far-red light, visual quality seemed slightly better preserved. Total aerobic psychrotrophic counts showed no significant differences between treatments at harvest or during storage. These findings suggest that far-red light can enhance certain quality traits of lettuce, particularly carbohydrate accumulation and dry weight, but the associated rise in respiration may limit these benefits postharvest. Further research is needed to clarify its long-term impact in vertical farming systems. Full article
(This article belongs to the Special Issue Light Environment Regulation of Crop Growth)
Show Figures

Figure 1

18 pages, 3769 KiB  
Article
Functions of Pugionium cornutum (L.) Gaertn Extracts: Investigating the Mechanism of Gastroparesis Amelioration from the Perspective of the Gut Microbiota and Its Metabolites
by Yangzu Gao, Haoyu Li, Qian Wu, Bang Chen, Kangzhen Xu, Cong Li and Yehua Shen
Foods 2025, 14(16), 2800; https://doi.org/10.3390/foods14162800 - 12 Aug 2025
Viewed by 223
Abstract
The functional exploration of natural foods, coupled with the increasing prevalence of gastrointestinal motility disorders and the associated therapeutic challenges, has generated significant interest in this field. This study aims to investigate the ameliorative effects of the extract from Pugionium cornutum (L.) Gaertn [...] Read more.
The functional exploration of natural foods, coupled with the increasing prevalence of gastrointestinal motility disorders and the associated therapeutic challenges, has generated significant interest in this field. This study aims to investigate the ameliorative effects of the extract from Pugionium cornutum (L.) Gaertn (EAEPC), a traditional edible vegetable in northwest China’s desert region, on atropine-induced gastroparesis in mice, as well as to elucidate its mechanism in terms of the gut microbiota and major metabolites. The findings indicate that EAEPC effectively reduces the rate of pigment residual in the stomach while shortening the gastrointestinal transit time and alleviating other symptoms associated with atropine-induced gastroparesis. These effects may be mediated through modulation of the expression levels of major intestinal metabolites, such as short-chain fatty acids (SCFAs), bile acids (BAs), and L-tryptophan, alongside remodeling of both the diversity and relative abundance of the gut microbiota. Furthermore, correlation analyses were conducted on significantly altered strains and metabolites to clarify their interactions. Moreover, the chemical constituents of EAEPC were identified by UPLC-Q-TOF-MS/MS, and the key active components responsible for improving gastroparesis were predicted through network pharmacology approaches and validated experimentally. These results provide a foundation for further research into the functions of Pugionium and offer scientific support for developing natural plant-based strategies aimed at treating gastrointestinal motility disorders. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

25 pages, 4215 KiB  
Article
Seed Priming with Phytofabricated Silver Nanoparticles: A Physicochemical and Physiological Investigation in Wheat
by Saubhagya Subhadarsini Sahoo, Dwipak Prasad Sahu and Rajendra Kumar Behera
J. Exp. Theor. Anal. 2025, 3(3), 22; https://doi.org/10.3390/jeta3030022 - 11 Aug 2025
Viewed by 143
Abstract
Seed priming is an innovative pre-planting technique to improve germination and accelerate early seedling growth, offering a sustainable and eco-friendly alternative to chemical treatments. In this study, silver nanoparticles (AgNPs) were synthesized using flower extracts of neem plants for the first time, alongside [...] Read more.
Seed priming is an innovative pre-planting technique to improve germination and accelerate early seedling growth, offering a sustainable and eco-friendly alternative to chemical treatments. In this study, silver nanoparticles (AgNPs) were synthesized using flower extracts of neem plants for the first time, alongside the conventional neem leaf extract-based AgNPs, and their comparative efficacy was evaluated in wheat seed priming. The biosynthesized AgNPs were characterized through UV–Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive Spectroscopy (EDS), Dynamic Light Scattering (DLS), and zeta potential analysis to confirm their formation, stability, and surface functionality. Wheat seeds were primed with varying concentrations (25, 50, 75, 100 mg/L) of flower-mediated nanoparticles (F-AgNPs) and leaf-mediated nanoparticles (L-AgNPs). Effects on seed germination, seedling growth, plant pigments, secondary metabolites, and antioxidant enzyme activities were systematically investigated. The results indicated that F-AgNP priming treatment significantly enhanced wheat seedlings’ performances in comparison to L-AgNPs, which could be attributed to the difference in phytochemical profiles in the extracts. This study contributes a comparative experimental analysis highlighting the potential of biogenic AgNPs—particularly those derived from neem flower extract—offering a promising strategy for enhancing seedling establishment in wheat through seed priming. Full article
Show Figures

Graphical abstract

19 pages, 2379 KiB  
Article
Effects of Shading on Metabolism and Grain Yield of Irrigated Rice During Crop Development
by Stefânia Nunes Pires, Fernanda Reolon de Souza, Bruna Evelyn Paschoal Silva, Natan da Silva Fagundes, Simone Ribeiro Lucho, Luis Antonio de Avila and Sidnei Deuner
Plants 2025, 14(16), 2491; https://doi.org/10.3390/plants14162491 - 11 Aug 2025
Viewed by 277
Abstract
Rice (Oryza sativa L.) plays a pivotal role in the Brazilian economy, serving as a staple food for more than half of the world’s population and thereby contributing to global food security. Projections of future climate change scenarios indicate an increase in [...] Read more.
Rice (Oryza sativa L.) plays a pivotal role in the Brazilian economy, serving as a staple food for more than half of the world’s population and thereby contributing to global food security. Projections of future climate change scenarios indicate an increase in extreme weather events. Among climate variables that impact the development and productivity of irrigated rice, solar radiation is one of the most important in defining productive potential. Understanding the risks imposed on agricultural production by the occurrence of days with reduced luminosity availability is crucial for guiding adequate responses that mitigate the negative impacts of climate variability. Therefore, this study aimed to investigate the effect of shade on the metabolism and productivity of irrigated rice plants, with a specific focus on the synthesis of photosynthetic pigments, carbohydrate accumulation, invertase activity, and the nutritional status and grain yield of rice. For this, the study was conducted on the field rice cultivars IRGA 424 RI, BRS PAMPA, and BRS PAMPEIRA, which were subjected to 35% shading using black nylon netting installed when the plants reached the reproductive stage (R0). The restriction was maintained until the R4 stage, and later, from the R4 stage until the R9 stage. After the imposition of treatments, evaluations took place at the phenological stages R2, R4, R6, and R8. In shaded plants, a higher content of photosynthetic pigments and a lower accumulation of carbohydrates were observed, which was reflected in an increase in the activity of invertase enzymes. These conditions were able to potentiate effects on the nutritional status of the plants, in addition to reducing productivity and 1000-grain weight and increasing spikelet sterility, due to changes in the source–sink relationship, with effects more pronounced in cultivars BRS PAMPA and BRS PAMPEIRA during the R4–R9 period. Full article
(This article belongs to the Special Issue The Impact of Stress Conditions on Crop Quality)
Show Figures

Figure 1

18 pages, 798 KiB  
Article
The Impact of Nut-Based Plant Beverages on Wheat Bread Quality: A Study of Almond, Hazelnut, and Walnut Beverages
by Anna Wirkijowska, Dorota Teterycz and Piotr Zarzycki
Appl. Sci. 2025, 15(16), 8821; https://doi.org/10.3390/app15168821 - 10 Aug 2025
Viewed by 270
Abstract
Nut-based plant beverages are gaining recognition for their functional properties and nutritional value in bakery applications. This study evaluated the effects of substituting water with hazelnut (BH), walnut (BW), and almond (BA) beverages in wheat bread formulations at four substitution levels (25–100%). Thirteen [...] Read more.
Nut-based plant beverages are gaining recognition for their functional properties and nutritional value in bakery applications. This study evaluated the effects of substituting water with hazelnut (BH), walnut (BW), and almond (BA) beverages in wheat bread formulations at four substitution levels (25–100%). Thirteen bread variants, including a control, were produced using the straight dough method. The impact of substitution on dough performance, crumb structure, texture, color, physicochemical composition, and sensory attributes was evaluated. All nut beverages improved bread yield, with BA100 and BW100 showing the highest values. Crumb moisture was well retained, and baking losses were reduced in some high-substitution variants. Medium-sized pores (0.1–0.9 mm2) dominated crumb structure, particularly in almond-enriched breads, which contributed to desirable loaf volume and crumb elasticity. Walnut beverage significantly darkened the crumb due to natural pigments, while BA and BH maintained lighter tones and enhanced yellowness. Nut-based beverages increased ash and fat content, with BW breads showing the highest caloric values—mainly due to beneficial unsaturated fats. Sensory evaluation confirmed high consumer acceptability, with the highest ratings observed for breads containing 100% walnut and 50–75% almond beverage. These variants demonstrated the most favorable balance of technological performance and nutritional enhancement, underscoring their potential as optimal formulations for clean-label, plant-based bread products. Full article
Show Figures

Figure 1

50 pages, 1224 KiB  
Review
Natural Dyes and Pigments: Sustainable Applications and Future Scope
by Arvind Negi
Sustain. Chem. 2025, 6(3), 23; https://doi.org/10.3390/suschem6030023 - 8 Aug 2025
Viewed by 657
Abstract
Natural dyes and pigments are gaining importance as a sustainable alternative to synthetic dyes. Sourced from renewable materials, they are known for their biodegradable and non-toxic properties, offering a diverse range of color profiles and applications across industries such as textiles, cosmetics, food, [...] Read more.
Natural dyes and pigments are gaining importance as a sustainable alternative to synthetic dyes. Sourced from renewable materials, they are known for their biodegradable and non-toxic properties, offering a diverse range of color profiles and applications across industries such as textiles, cosmetics, food, and pharmaceuticals. This manuscript discusses various aspects of natural dyes and pigments (derived from plants and microbes), including anthocyanins, flavonoids, carotenoids, lactones, and chlorophyll. Furthermore, it highlights the polyphenolic nature of these compounds, which is responsible for their antioxidant activity and contributes to their anticancer, antibacterial, antifungal, antiprotozoal, and immunomodulatory effects. However, natural dyes are often categorized as pigments rather than dyes due to their limited solubility, a consequence of their molecular characteristics. Consequently, this manuscript provides a detailed discussion of key structural challenges associated with natural dyes and pigments, including thermal decomposition, photodegradation, photoisomerization, cross-reactivity, and pH sensitivity. Due to these limitations, natural dyes are currently used in relatively limited applications, primarily in the food industry, and, to lesser extent, in textiles and coatings. Nevertheless, with ongoing research and technological innovations, natural dyes present a viable alternative to synthetic dyes, promoting a more sustainable and environmentally conscious future. Full article
Show Figures

Figure 1

24 pages, 3629 KiB  
Article
Chlorography or Chlorotyping from the Decomposition of Chlorophyll and Natural Pigments in Leaves and Flowers as a Natural Alternative for Photographic Development
by Andrea D. Larrea Solórzano, Iván P. Álvarez Lizano, Pablo R. Morales Fiallos, Carolina E. Maldonado Cherrez and Carlos S. Suárez Naranjo
J. Zool. Bot. Gard. 2025, 6(3), 41; https://doi.org/10.3390/jzbg6030041 - 7 Aug 2025
Viewed by 276
Abstract
This study explores the use of chlorography as a natural photographic developing technique that utilizes the decomposition of chlorophyll and other plant pigments through the action of sunlight. The developed images corresponded to previous research on changes in the iconography of the indigenous [...] Read more.
This study explores the use of chlorography as a natural photographic developing technique that utilizes the decomposition of chlorophyll and other plant pigments through the action of sunlight. The developed images corresponded to previous research on changes in the iconography of the indigenous Salasaka people. In this context, this experimental project on natural photography is oriented toward the conservation of the ancestral knowledge of this community and the understanding of the native flora of Ecuador. We investigated the application of the contact image transfer technique with positive transparencies on leaves and flowers of 30 different species that grow in the Ecuadorian highlands, including leaves of vascular plants, as well as rose petals. The results showed that the clarity and contrast of chlorography depended on the plant species and exposure time. It was observed that fruit-bearing species produced more visible images than the leaves of other plants and rose petals, with species from the Passifloraceae family proving particularly effective. We interpreted these findings within the framework of plant photophysical mechanisms, proposing an inverse relationship between development efficiency and species’ non-photochemical quenching (NPQ) capacity. Furthermore, we interpreted the findings in relation to the photobleaching of pigments and compared chlorography with other natural photographic processes such as anthotypes. Key factors influencing the process were identified, such as the type of leaf, the intensity and duration of light, and the hydration of the plant material. It is concluded that chlorography is a viable, non-toxic, and environmentally friendly photographic alternative with potential applications in art, education, and research, although it presents challenges in terms of image permanence and reproducibility. Full article
Show Figures

Figure 1

24 pages, 1967 KiB  
Article
Water Stress Promotes Secondary Sexual Dimorphism in Ecophysiological Traits of Papaya Seedlings
by Ingrid Trancoso, Guilherme A. R. de Souza, João Vitor Paravidini de Souza, Rosana Maria dos Santos Nani de Miranda, Diesily de Andrade Neves, Miroslava Rakocevic and Eliemar Campostrini
Plants 2025, 14(15), 2445; https://doi.org/10.3390/plants14152445 - 7 Aug 2025
Viewed by 284
Abstract
Plant genders could express different functional strategies to compensate for different reproductive costs, as females have an additional role in fruit and seed production. Secondary sexual dimorphism (SSD) expression is frequently greater under stress than under optimal growth conditions. The early gender identification [...] Read more.
Plant genders could express different functional strategies to compensate for different reproductive costs, as females have an additional role in fruit and seed production. Secondary sexual dimorphism (SSD) expression is frequently greater under stress than under optimal growth conditions. The early gender identification in papaya may help to reduce orchard costs because the most desirable fruit shape is formed by hermaphrodite plants. We hypothesized that (a) gender ecophysiological phenotyping can be an alternative to make gender segregations in papaya seedlings, and (b) such gender segregation will be more efficient after a short drought exposure than under adequate water conditions. To test such hypotheses, seedlings of two papaya varieties (‘Candy’ and ‘THB’) were exposed to two kind of treatments: (1) water shortage (WS) for 45 h, after which they were well watered, and (2) continuously well-watered (WW). Study assessed the ecophysiological responses, such as stomatal conductance (gs), SPAD index, optical reflectance indices, morphological traits, and biomass accumulation in females (F) and hermaphrodites (H). In WS treatment, the SSD was expressed in 14 of 18 traits investigated, while in WW treatment, the SSD was expressed only in 7 of 18 traits. As tools for SSD expression, gs and simple ratio pigment index (SRPI) must be measured on the first or second day after the imposed WS was interrupted, respectively, while the other parameters must be measured after a period of four days. In some traits, the SSD was expressed in only one variety, or the response of H and F plants were of opposite values for two varieties. The choice of the clearest responses of gender segregation in WS treatment will be greenness index, combination of normalized difference vegetation index (CNDVI), photochemical reflectance index (PRI), water band index (WBI), SRPI, leaf number, leaf dry mass, and leaf mass ratio. If the WW conditions are maintained for papaya seedling production, the recommendation in gender segregation will be the analysis of CNDVI, carotenoid reflectance index 2 (CRI2), WBI, and SRPI. The non-destructive optical leaf indices segregated papaya hermaphrodites from females under both water conditions and eventually could be adjusted for wide-scale platform evaluations, with planned space arrangements of seedlings, and sensor’s set. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

12 pages, 560 KiB  
Article
Determination of Antioxidant Activity and Proximate Composition of a Variety of Red Pigmented Zea mays L. from Puebla, Mexico
by Jesabel Pineda-Quiroz, Juan Alex Hernández-Rivera, Ivonne Pérez-Xochipa, Pedro Antonio-López and Alan Carrasco-Carballo
AppliedChem 2025, 5(3), 18; https://doi.org/10.3390/appliedchem5030018 - 6 Aug 2025
Viewed by 218
Abstract
Corn is one of the most consumed cereals in the Mexican diet. In this country, there are multiple varieties that exhibit nutraceutical potential due to their content of different metabolites with biological activity, such as blue corn. Another variety that has received little [...] Read more.
Corn is one of the most consumed cereals in the Mexican diet. In this country, there are multiple varieties that exhibit nutraceutical potential due to their content of different metabolites with biological activity, such as blue corn. Another variety that has received little study is the red pigmented corn variety Chilac from Puebla, Mexico, which is being studied for its nutraceutical potential. A differential extraction using the Soxhlet method was carried out to evaluate the phenolic content, total flavonoid content, and monomeric anthocyanins, and free radical scavenging test was performed using the DPPH reagent. A proximate analysis was also conducted to identify the main macronutrients. The results of the proximate analysis were comparable to those of other traditional corn varieties, with carbohydrates being the macronutrient present in the highest amount at 77.9%. Regarding phenolic content and the presence of anthocyanins, the best extractions were obtained using alcoholic solvents; for example, ethanol for phenols, yielding 1368.420 ± 104.094 mg of gallic acid equivalents (GAE)/kg plant. In contrast, the flavonoid content was higher in the aqueous extract, with 833.984 ± 65.218 mg QE/Kg. In the case of the DPPH assay, the best result was obtained with ethyl acetate (73.81 ± 5.31%). These findings provide a foundation for expanding the use of corn varieties with nutraceutical potential, opening the possibility of studies focused on deeper characterization. Full article
Show Figures

Graphical abstract

18 pages, 1602 KiB  
Article
Interacting Effects of Heat and Nanoplastics Affect Wheat (Triticum turgidum L.) Seedling Growth and Physiology
by Debora Fontanini, Stefania Bottega, Monica Ruffini Castiglione and Carmelina Spanò
Plants 2025, 14(15), 2426; https://doi.org/10.3390/plants14152426 - 5 Aug 2025
Viewed by 301
Abstract
Nano- and microplastic pollution, together with the ongoing rise in global temperatures driven by climate change, represent increasingly critical environmental challenges. Although these stressors often co-occur in the environment, their combined effects on plant systems remain largely unexplored. To test the hypothesis that [...] Read more.
Nano- and microplastic pollution, together with the ongoing rise in global temperatures driven by climate change, represent increasingly critical environmental challenges. Although these stressors often co-occur in the environment, their combined effects on plant systems remain largely unexplored. To test the hypothesis that their interaction may exacerbate the effects observed under each stressor individually, we investigated the response of seedlings of Triticum turgidum to treatments with fluorescent polystyrene nanoplastics under optimal (25 °C) and elevated (35 °C) temperature conditions. We evaluated seedling growth, photosynthetic pigment content, and oxidative stress markers using both biochemical and histochemical techniques. In addition, we assessed enzymatic and non-enzymatic antioxidant responses. The use of fluorescently labeled nanoplastics enabled the visualization of their uptake and translocation within plant tissues. Elevated temperatures negatively affect plant growth, increasing the production of proline, a key protective molecule, and weakly activating secondary defense mechanisms. Nanoplastics disturbed wheat seedling physiology, with these effects being amplified under high temperature conditions. Combined stress enhances nanoplastic uptake in roots, increases oxidative damage, and alters antioxidant responses, reducing defense capacity in leaves while triggering compensatory mechanisms in roots. These findings underscore a concerning interaction between plastic pollution and climate warming in crop plants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

28 pages, 2282 KiB  
Article
From Hue to Health: Exploring the Therapeutic Potential of Plant-Pigment-Enriched Extracts
by Azza SalahEldin El-Demerdash, Amira E. Sehim, Abeer Altamimi, Hanan Henidi, Yasmin Mahran and Ghada E. Dawwam
Microorganisms 2025, 13(8), 1818; https://doi.org/10.3390/microorganisms13081818 - 4 Aug 2025
Viewed by 491
Abstract
The escalating global challenges of antimicrobial resistance (AMR) and cancer necessitate innovative therapeutic solutions from natural sources. This study investigated the multifaceted therapeutic potential of pigment-enriched plant extracts. We screened diverse plant extracts for antimicrobial and antibiofilm activity against multidrug-resistant bacteria and fungi. [...] Read more.
The escalating global challenges of antimicrobial resistance (AMR) and cancer necessitate innovative therapeutic solutions from natural sources. This study investigated the multifaceted therapeutic potential of pigment-enriched plant extracts. We screened diverse plant extracts for antimicrobial and antibiofilm activity against multidrug-resistant bacteria and fungi. Hibiscus sabdariffa emerged as the most promising, demonstrating potent broad-spectrum antimicrobial and significant antibiofilm activity. Sub-inhibitory concentrations of H. sabdariffa robustly downregulated essential bacterial virulence genes and suppressed aflatoxin gene expression. Comprehensive chemical profiling via HPLC identified major anthocyanin glucosides, while GC-MS revealed diverse non-pigment bioactive compounds, including fatty acids and alcohols. Molecular docking suggested favorable interactions of key identified compounds (Cyanidin-3-O-glucoside and 1-Deoxy-d-arabitol) with E. coli outer membrane protein A (OmpA), indicating potential antiadhesive and antimicrobial mechanisms. Furthermore, H. sabdariffa exhibited selective cytotoxicity against MCF-7 breast cancer cells. These findings establish H. sabdariffa pigment-enriched extract as a highly promising, multi-functional source of novel therapeutics, highlighting its potential for simultaneously addressing drug resistance and cancer challenges through an integrated chemical, biological, and computational approach. Full article
(This article belongs to the Special Issue Advanced Research on Antimicrobial Activity of Natural Products)
Show Figures

Figure 1

21 pages, 2189 KiB  
Article
Effects of Salicylic Acid Application Method and Concentration on the Growth and Ornamental Quality of Poinsettia (Euphorbia pulcherrima Willd.)
by Alessandro Esposito, Alessandro Miceli, Filippo Vetrano, Samantha Campo and Alessandra Moncada
Horticulturae 2025, 11(8), 904; https://doi.org/10.3390/horticulturae11080904 - 4 Aug 2025
Viewed by 342
Abstract
In the context of increasing demand for sustainable floriculture, this study evaluated the effects of salicylic acid (SA) on phenotypic traits of poinsettia (Euphorbia pulcherrima Willd.). A factorial experiment was conducted in a commercial glasshouse using rooted poinsettia cuttings treated with three [...] Read more.
In the context of increasing demand for sustainable floriculture, this study evaluated the effects of salicylic acid (SA) on phenotypic traits of poinsettia (Euphorbia pulcherrima Willd.). A factorial experiment was conducted in a commercial glasshouse using rooted poinsettia cuttings treated with three SA concentrations (10−3, 10−4, 10−5 M) applied via foliar or root application. Morphological parameters, colorimetric traits (CIELAB), canopy development, and biomass accumulation were assessed throughout the cultivation cycle. SA had no significant influence on the plant height, leaf number, or biomass of stems, leaves, and roots. However, notable phenotypic changes were observed. Foliar applications, particularly at 10−5 M, induced visible changes in leaf and bract color, including reduced brightness, saturation, and red pigmentation, especially in newly developed tissues. Conversely, root applications had milder effects and were generally associated with a more stable bract color. The 10−4 M root treatment promoted greater bract surface and color saturation. Canopy expansion and dry matter accumulation were also influenced by SA in a dose- and method-dependent manner, with high-dose foliar treatments (10−3 M) exerting suppressive effects. These findings suggest that the application mode and concentration of SA are critical in modulating ornamental quality traits, with low-to-moderate doses—particularly via root application—offering promising strategies to enhance plant performance in sustainable poinsettia cultivation. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

29 pages, 6015 KiB  
Review
A Comprehensive Review of BBX Protein-Mediated Regulation of Anthocyanin Biosynthesis in Horticultural Plants
by Hongwei Li, Kuanping Deng, Yingying Zhao and Delin Xu
Horticulturae 2025, 11(8), 894; https://doi.org/10.3390/horticulturae11080894 - 2 Aug 2025
Viewed by 400
Abstract
Anthocyanins, a subclass of flavonoid pigments, impart vivid red, purple, and blue coloration to horticultural plants, playing essential roles in ornamental enhancement, stress resistance, and pollinator attraction. Recent studies have identified B-box (BBX) proteins as a critical class of transcription factors (TFs) involved [...] Read more.
Anthocyanins, a subclass of flavonoid pigments, impart vivid red, purple, and blue coloration to horticultural plants, playing essential roles in ornamental enhancement, stress resistance, and pollinator attraction. Recent studies have identified B-box (BBX) proteins as a critical class of transcription factors (TFs) involved in anthocyanin biosynthesis. Despite these advances, comprehensive reviews systematically addressing BBX proteins are urgently needed, especially given the complexity and diversity of their roles in regulating anthocyanin production. In this paper, we provide an in-depth overview of the fundamental structures, biological functions, and classification of BBX TFs, along with a detailed description of anthocyanin biosynthetic pathways and bioactivities. Furthermore, we emphasize the diverse molecular mechanisms through which BBX TFs regulate anthocyanin accumulation, including direct activation or repression of target genes, indirect modulation via interacting protein complexes, and co-regulation with other transcriptional regulators. Additionally, we summarize the known upstream regulatory signals and downstream target genes of BBX TFs, highlighting their significance in shaping anthocyanin biosynthesis pathways. Understanding these regulatory networks mediated by BBX proteins will not only advance fundamental horticultural science but also provide valuable insights for enhancing the aesthetic quality, nutritional benefits, and stress adaptability of horticultural crops. Full article
Show Figures

Graphical abstract

27 pages, 4169 KiB  
Article
Biostimulatory Effects of Foliar Application of Silicon and Sargassum muticum Extracts on Sesame Under Drought Stress Conditions
by Soukaina Lahmaoui, Rabaa Hidri, Hamid Msaad, Omar Farssi, Nadia Lamsaadi, Ahmed El Moukhtari, Walid Zorrig and Mohamed Farissi
Plants 2025, 14(15), 2358; https://doi.org/10.3390/plants14152358 - 31 Jul 2025
Viewed by 1255
Abstract
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications [...] Read more.
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications of silicon (Si), Sargassum muticum (Yendo) Fensholt extracts (SWE), and their combination to enhance drought tolerance and mitigate stress-induced damage in sesame. Plants were grown under well-watered conditions (80% field capacity, FC) versus 40% FC (drought conditions) and were treated with foliar applications of 1 mM Si, 10% SWE, or both. The results showed that the majority of the tested parameters were significantly (p < 0.05) lowered by drought stress. However, the combined application of Si and SWE significantly (p < 0.05) enhanced plant performance under drought stress, leading to improved growth, biomass accumulation, water status, and physiological traits. Gas exchange, photosynthetic pigment content, and photosystem activity (PSI and PSII) all increased significantly when SWE were given alone; PSII was more significantly affected. In contrast, Si alone had a more pronounced impact on PSI activity. These findings suggest that Si and SWE, applied individually or in combination, can effectively alleviate drought stress’s negative impact on sesame, supporting their use as promising biostimulants for enhancing drought tolerance. Full article
(This article belongs to the Special Issue The Role of Exogenous Silicon in Plant Response to Abiotic Stress)
Show Figures

Figure 1

16 pages, 2729 KiB  
Article
Effect of Enterobacter bugandensis R-18 on Maize Growth Promotion Under Salt Stress
by Xingguo Tian, Qianru Liu, Jingjing Song, Xiu Zhang, Guoping Yang, Min Li, Huan Qu, Ahejiang Tastanbek and Yarong Tan
Microorganisms 2025, 13(8), 1796; https://doi.org/10.3390/microorganisms13081796 - 31 Jul 2025
Viewed by 347
Abstract
Soil salinization poses a significant constraint to agricultural productivity. However, certain plant growth-promoting bacteria (PGPB) can mitigate salinity stress and enhance crop performance. In this study, a bacterial isolate, R-18, isolated from saline-alkali soil in Ningxia, China, was identified as Enterobacter bugandensis based [...] Read more.
Soil salinization poses a significant constraint to agricultural productivity. However, certain plant growth-promoting bacteria (PGPB) can mitigate salinity stress and enhance crop performance. In this study, a bacterial isolate, R-18, isolated from saline-alkali soil in Ningxia, China, was identified as Enterobacter bugandensis based on 16S rRNA gene sequencing. The isolate was characterized for its morphological, biochemical, and plant growth-promoting traits and was evaluated for its potential to alleviate NaCl-induced stress in maize (Zea mays L.) under hydroponic conditions. Isolate R-18 exhibited halotolerance, surviving at NaCl concentrations ranging from 2.0% to 10.0%, and alkaliphilic adaptation, growing at pH 8.0–11.0. Biochemical assays confirmed it as a Gram-negative bacterium, displaying positive reactions in the Voges–Proskauer (V–P) tests, catalase activity, citrate utilization, fluorescent pigment production, starch hydrolysis, gelatin liquefaction, and ammonia production, while testing negative for the methyl red and cellulose hydrolysis. Notably, isolate R-18 demonstrated multiple plant growth-promoting attributes, including nitrogen fixation, phosphate and potassium solubilization, ACC deaminase activity, and indole-3-acetic acid (IAA) biosynthesis. Under 100 mM NaCl stress, inoculation with isolate R-18 significantly enhanced maize growth, increasing plant height, stem dry weight, root fresh weight, and root dry weight by 20.64%, 47.06%, 34.52%, and 31.25%, respectively. Furthermore, isolate R-18 improved ion homeostasis by elevating the K+/Na+ ratio in maize tissues. Physiological analyses revealed increased chlorophyll and proline content, alongside reduced malondialdehyde (MDA) levels, indicating mitigated oxidative damage. Antioxidant enzyme activity was modulated, with decreased superoxide dismutase (SOD) and peroxidase (POD) activities but increased catalase (CAT) activity. These findings demonstrated that Enterobacter bugandensis R-18 effectively alleviated NaCl-induced growth inhibition in maize by enhancing osmotic adjustment, reducing oxidative stress, and improving ion balance. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

Back to TopTop