A Comprehensive Review of BBX Protein-Mediated Regulation of Anthocyanin Biosynthesis in Horticultural Plants
Abstract
1. Introduction
2. Overview of the BBX TF Family
2.1. Structural Features of BBX TFs
2.2. Functions of BBX TFs
2.2.1. Seed Germination
2.2.2. Leaf Development
2.2.3. Flowering
2.2.4. Secondary Metabolism
2.2.5. Cold Stress
2.2.6. Salt Stress
2.2.7. Drought Stress
2.2.8. Photomorphogenesis
2.2.9. Pathogen and Insect Defense
2.2.10. Thermomorphogenesis
3. Classification, Bioactivities, and Biosynthetic Pathways of Plant Anthocyanins
3.1. Classification
3.1.1. Delphinidins
3.1.2. Pelargonidins
3.1.3. Cyanidins
3.1.4. Petunidins
3.1.5. Peonidins
3.1.6. Malvidins
3.2. Bioactivities
3.2.1. Roles of Anthocyanins in Plants
3.2.2. Antioxidant Activity
3.2.3. Prevention of Cardiovascular Diseases
3.2.4. Anti-Cancer Activity
3.2.5. Anti-Aging Activity
3.2.6. Other Bioactivities
3.3. Biosynthetic Pathway
4. Molecular Mechanisms of BBX TFs Regulating Plant Anthocyanin Biosynthesis
4.1. Direct Regulation
4.2. Indirect Regulation
4.3. Co-Regulation
5. Characterized BBX TFs Involved in the Regulation of Horticultural Plant Anthocyanin Biosynthesis
6. Prospects
6.1. Application of Genome Editing Technologies in Anthocyanin Biosynthesis in Horticultural Plants
6.2. Optimizing Light Conditions Promotes Anthocyanin Biosynthesis
6.3. The Research Potential and Agricultural Applications of BBX as a "Regulatory Hub"
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PAL | Phenylalanine ammonia-lyase |
B-box | BBX |
TFs | Transcription factors |
MBW | MYB/bHLH/WD40 |
ChIP-seq | Chromatin immunoprecipitation sequencing |
CHS | Chalcone synthase |
VP | Valine–proline |
ABA | Abscisic acid |
GA | Gibberellins |
ABREs | ABA-responsive elements |
BR | Brassinosteroid |
ET | Ethylene |
FT | FLOWERING LOCUS T |
AP1 | APETALA1 |
LFY | LEAFY |
FUL | FRUITFULL |
TFL1 | TERMINAL FLOWER 1 |
CAL | CAULIFLOWER |
FLC | FLOWERING LOCUS C |
GI | GIGANTEA |
KAR | Karrikin |
SA | Salicylic acid |
PR | Pathogenesis-related |
PAMP | Pathogen-associated molecular pattern |
COR | Cold-responsive protein |
PTI | PAMP-triggered immunity |
MAPK | Mitogen-activated protein kinase |
ROS | Reactive oxygen species |
H2O2 | Hydrogen peroxide |
XO | Xanthine oxidase |
NAFLD | Nonalcoholic fatty liver disease |
HAT | Hydrogen atom transfer |
SET | Single electron transfer |
SOD | Superoxide dismutase |
CAT | Catalase |
GPx | Glutathione peroxidase |
CAD | Cardiovascular disease |
ABGs | Anthocyanin biosynthetic genes |
CHI | Chalcone isomerase |
DFR | Flavanone-3-hydroxylase, dihydroflavonol 4-reductase |
ANS | Anthocyanidin synthase |
UFGT | UDP-glucose: flavonoid 3-glucosyltransferase |
References
- Lu, Z.; Wang, X.; Lin, X.; Mostafa, S.; Zou, H.; Wang, L.; Jin, B. Plant anthocyanins: Classification, biosynthesis, regulation, bioactivity, and health benefits. Plant Physiol. Biochem. 2024, 217, 109268. [Google Scholar] [CrossRef]
- Dangles, D. Anthocyanins as natural food colorings: The chemistry behind and challenges still ahead. J. Agric. Food Chem. 2024, 72, 12356–12372. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Tang, Q.; Li, Z.; Chen, N.; Luo, X.; Zhao, Q. Natural pigments derived from plants and microorganisms: Classification, biosynthesis, and applications. Plant Biotechnol. J. 2025, 23, 592–614. [Google Scholar] [CrossRef]
- Tang, R.; He, Y.; Fan, K. Recent advances in stability improvement of anthocyanins by efficient methods and its application in food intelligent packaging: A review. Food Biosci. 2023, 56, 103164. [Google Scholar] [CrossRef]
- Xie, J.; Xu, Y.; Chen, W. Discovery and characterization of novel anthocyanin-metal complex for blue food coloring. Food Chem. 2025, 485, 144485. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, C.; Li, Y.; Yuan, K.; Zhang, W.; Cai, D.; Peng, Z.; Hu, Y.; Sun, J.; Bai, W. Bioactivity and application of anthocyanins in skin protection and cosmetics: An extension as a functional pigment. Phytochem. Rev. 2023, 22, 1441–1467. [Google Scholar] [CrossRef]
- Belwal, T.; Singh, G.; Jeandet, P.; Pandey, A.; Giri, L.; Ramola, S.; Bhatt, D.I.; Venskutonis, P.R.; Georgiev, M.I.; Clément, C.; et al. Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnol. Adv. 2020, 43, 107600. [Google Scholar] [CrossRef]
- Bian, R.; Yao, J.; Nie, Y.; Zhang, Y.; Wu, Z.; Zhang, J.; Zhang, Z. A novel function for the transcription factor sensitive to proton rhizotoxicity1 in promoting anthocyanin accumulation in strawberry. Plant Biotechnol. J. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Kowalczyk, T.; Muskała, M.; Merecz-Sadowska, A.; Sikora, J.; Picot, L.; Sitarek, P. Anti-inflammatory and anticancer effects of anthocyanins in in vitro and in vivo studies. Antioxidants 2024, 13, 1143. [Google Scholar] [CrossRef]
- Randeni, N.; Luo, J.; Xu, B. Critical review on anti-obesity effects of anthocyanins through PI3K/Akt signaling pathways. Nutrients 2025, 17, 1126. [Google Scholar] [CrossRef] [PubMed]
- Maaz, M.; Muhammad Sultan, T.; Noman, A.; Zafar, S.; Tariq, N.; Hussain, M.; Imran, M.; Mujtaba, A.; Yehuala, T.F.; Mostafa, E.M.; et al. Anthocyanins: From natural colorants to potent anticancer agents. Food Sci. Nutr. 2025, 13, e70232. [Google Scholar] [CrossRef]
- Chachar, Z.; Lai, R.; Ahmed, N.; Ma, L.; Chachar, S.; Paker, N.P.; Qi, Y. Cloned genes and genetic regulation of anthocyanin biosynthesis in maize: A comparative review. Front. Plant Sci. 2024, 15, 1310634. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Shi, Y.; Lv, S.; Zhu, C.; Xu, C.; Zhang, B.; Allan, A.; Grierson, D.; Chen, K.; et al. The R2R3 MYB Ruby1 is activated by two cold-responsive ethylene response factors, via the retrotransposon in its promoter, to positively regulate anthocyanin biosynthesis in citrus. Plant J. 2024, 119, 1433–1448. [Google Scholar] [CrossRef]
- Zhen, Z.; Cui, C.; Hong, L.; Jiang, C.; Yuhui, Z.; Guo, Y. The VvHY5-VvMYB24-VvMYBA1 transcription factor cascade regulates the biosynthesis of anthocyanin in grape. Hortic. Plant J. 2025, 11, 1066–1077. [Google Scholar] [CrossRef]
- Leng, X.; Li, C.; Wang, P.; Ren, Y.; Chen, J.; Liu, G.; Hakeem, A.; Liu, Y.; Shi, X.; Hou, T.; et al. The transcription factor VvMYB44-1 plays a role in reducing grapevine anthocyanin biosynthesis at high temperature. Plant Physiol. 2025, 197, kiae657. [Google Scholar] [CrossRef]
- He, W.; Liu, H.; Li, Y.; Wu, Z.; Xie, Y.; Yan, X.; Wang, X.; Miao, Q.; Chen, T.; Rahman, S.; et al. Genome-wide characterization of B-box gene family in Artemisia annua L. and its potential role in the regulation of artemisinin biosynthesis. Ind. Crops Prod. 2023, 199, 116736. [Google Scholar] [CrossRef]
- Fu, J.; Liao, L.; Jin, J.; Lu, Z.; Sun, J.; Song, L.; Huang, Y.; Liu, S.; Huang, D.; Xu, Y.; et al. A transcriptional cascade involving BBX22 and HY5 finely regulates both plant height and fruit pigmentation in citrus. J. Integr. Plant Biol. 2024, 66, 1752–1768. [Google Scholar] [CrossRef]
- Bai, S.; Tao, R.; Tang, Y.; Yin, L.; Ma, Y.; Ni, J.; Yan, X.; Yang, Q.; Wu, Z.; Zeng, Y.; et al. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnol. J. 2019, 17, 1985–1997. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lyu, S.; Yang, Z.; Xu, G.; Zhang, Y.; Liu, Y.; Jin, J.; Deng, S. Genome-wide characterization of tobacco B-BOX gene family identified two close members play contrast roles under cold stress. Environ. Exp. Bot. 2023, 216, 105533. [Google Scholar] [CrossRef]
- Khanna, R.; Kronmiller, B.; Maszle, D.; Coupland, G.; Holm, M.; Mizuno, T.; Shu-Wu, H. The Arabidopsis B-box zinc finger family. Plant Cell 2009, 21, 3416–3420. [Google Scholar] [CrossRef]
- Song, Z.; Bian, Y.; Liu, J.; Sun, Y.; Xu, D. B-box proteins: Pivotal players in light-mediated development in plants. J. Integr. Plant Biol. 2020, 62, 1293–1309. [Google Scholar] [CrossRef]
- Gangappa, S.N.; Botto, J. The BBX family of plant transcription factors. Trends Plant Sci. 2014, 19, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yoshida, H.; Chu, C.; Matsuoka, M.; Sun, J. Seed dormancy and germination in rice: Molecular regulatory mechanisms and breeding. Mol. Plant 2025, 18, 960–977. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, S.; Lin, R. The role of light in regulating seed dormancy and germination. J. Integr. Plant Biol. 2020, 62, 1310–1326. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Zheng, Y. Integration of ABA, GA, and light signaling in seed germination through the regulation of ABI5. Front. Plant Sci. 2022, 13, 1000803. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Datta, S. BBX30/miP1b and BBX31/miP1a form a positive feedback loop with ABI5 to regulate ABA-mediated postgermination seedling growth arrest. New Phytol. 2023, 238, 1908–1923. [Google Scholar] [CrossRef]
- Bai, M.; Sun, J.; Liu, J.; Ren, H.; Wang, K.; Wang, Y.; Wang, C.; Dehesh, K. The B-box protein BBX19 suppresses seed germination via induction of ABI5. Plant J. 2019, 99, 1192–1202. [Google Scholar] [CrossRef]
- Cao, J.; Liang, Y.; Yan, T.; Wang, X.; Zhou, H.; Chen, C.; Zhang, Y.; Zhang, B.; Zhang, S.; Liao, J.; et al. The photomorphogenic repressors BBX28 and BBX29 integrate light and brassinosteroid signaling to inhibit seedling development in Arabidopsis. Plant Cell 2022, 34, 2266–2285. [Google Scholar] [CrossRef]
- An, J.-P.; Zhang, C.-L.; Li, H.; Wang, G.-L.; You, C. Apple SINA E3 ligase MdSINA3 negatively mediates JA-triggered leaf senescence by ubiquitinating and degrading the MdBBX37 protein. Plant J. 2022, 111, 457–472. [Google Scholar] [CrossRef]
- Buelbuel, S.; Sakuraba, Y.; Sedaghatmehr, M.; Watanabe, M.; Hoefgen, R.; Balazadeh, S.; Mueller-Roeber, B. Arabidopsis BBX14 negatively regulates nitrogen starvation- and dark-induced leaf senescence. Plant J. 2023, 116, 251–268. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, A.; Richter, R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. J. Exp. Bot. 2020, 71, 2490–2504. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xuan, L.; Jiang, Y.; Yu, H. Regulation by FLOWERING LOCUS T and TERMINAL FLOWER 1 in flowering time and plant architecture. Small Struct. 2021, 2, 2000125. [Google Scholar] [CrossRef]
- Niu, F.; Rehmani, M.S.; Yan, J. Multilayered regulation and implication of flowering time in plants. Plant Physiol. Biochem. 2024, 213, 108842. [Google Scholar] [CrossRef]
- Yu, B.; Hu, Y.; Hou, X. More than flowering: CONSTANS plays multifaceted roles in plant development and stress responses. J. Integr. Plant Biol. 2025, 67, 425–439. [Google Scholar] [CrossRef]
- Romero, J.M.; Serrano-Bueno, G.; Camacho-Fernández, C.; Vicente, M.H.; Ruiz, M.T.; Perez-Castiñeira, J.R.; Pérez-Hormaeche, J.; Nogueira, F.T.S.; Valverde, F. CONSTANS, a hub for all seasons: How photoperiod pervades plant physiology regulatory circuits. Plant Cell 2024, 36, 2086–2102. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.-D.; Lin, Y.; Ren, Q.-P.; Wang, Y.-Y.; Xiong, F.; Wang, X.-L. RNA splicing of FLC modulates the transition to flowering. Front. Plant Sci. 2019, 10, 1625. [Google Scholar] [CrossRef]
- Michaels, S.; Amasino, R. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 1999, 11, 949–956. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zhang, X.; Wei, Y.; He, Y.; Zhang, X.; Li, Z.; Wang, C.; Zhang, H. AcBBX5, a B-box transcription factor from pineapple, regulates flowering time and floral organ development in plants. Front. Plant Sci. 2022, 13, 1060276. [Google Scholar] [CrossRef]
- Xu, X.; Xu, J.; Yuan, C.; Chen, Q.; Liu, Q.; Wang, X.; Qin, C. BBX17 interacts with CO and negatively regulates flowering time in Arabidopsis thaliana. Plant Cell Physiol. 2022, 63, 401–409. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, C.; Xu, Y.; Wei, Q.; Imtiaz, M.; Lan, H.; Gao, S.; Cheng, L.; Wang, M.; Fei, Z.; et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. Plant Cell 2014, 26, 2038–2054. [Google Scholar] [CrossRef]
- Cheng, H.; Yu, Y.; Zhai, Y.; Wang, L.; Wang, L.; Chen, S.; Chen, F.; Jiang, J. An ethylene-responsive transcription factor and a B-box protein coordinate vegetative growth and photoperiodic flowering in chrysanthemum. Plant Cell Environ. 2023, 46, 440–450. [Google Scholar] [CrossRef]
- Riboni, M.; Test, A.R.; Galbiati, M.; Tonelli, C.; Conti, L. ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J. Exp. Bot. 2016, 67, 6309–6322. [Google Scholar] [CrossRef]
- He, W.; Liu, H.; Wu, Z.; Miao, Q.; Hu, X.; Yan, X.; Wen, H.; Zhang, Y.; Fu, X.; Ren, L.; et al. The AaBBX21-AaHY5 module mediates light-regulated artemisinin biosynthesis in Artemisia annua L. J. Integr. Plant Biol. 2024, 66, 1735–1751. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Li, X.; Bai, Y.; Peng, K.; Wang, Z.; Dai, Z.; Bian, X.; Zhang, Q.; Jia, L.; et al. The B-box transcription factor IbBBX29 regulates leaf development and flavonoid biosynthesis in sweet potato. Plant Physiol. 2023, 191, 496–514. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, Z.; Sun, Y.; Feng, C.; Peng, X.; Zhang, X.; Xiao, Y.; Zhou, X.; Wang, W.; Jiao, J.; et al. Genome-wide identification of the B-BOX genes that respond to multiple ripening related signals in sweet cherry fruit. Int. J. Mol. Sci. 2021, 22, 1622. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Lin, R.; Tang, M.; Wang, L.; Fan, P.; Xia, X.; Yu, J.; Zhou, Y. SlMPK1- and SlMPK2-mediated SlBBX17 phosphorylation positively regulates CBF-dependent cold tolerance in tomato. New Phytol. 2023, 239, 1887–1902. [Google Scholar] [CrossRef]
- Wang, S.; Shen, Y.; Deng, D.; Guo, L.; Zhang, Y.; Nie, Y.; Du, Y.; Zhao, X.; Ye, X.; Huang, J.; et al. Orthogroup and phylotranscriptomic analyses identify transcription factors involved in the plant cold response: A case study of Arabidopsis BBX29. Plant Commun. 2023, 4, 100684. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Chen, C.; Xu, M.; Wang, G.; Xu, L.; Wu, Y. Overexpression of Ginkgo BBX25 enhances salt tolerance in transgenic Populus. Plant Physiol. Biochem. 2021, 167, 946–954. [Google Scholar] [CrossRef]
- Tang, H.; Yuan, C.; Shi, H.; Liu, F.; Shan, S.; Wang, Z.; Sun, Q.; Sun, J. Genome-wide identification of peanut B-boxes and functional characterization of AhBBX6 in salt and drought stresses. Plants 2024, 13, 955. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, H.; Cheng, P.; Wang, C.; Li, J.; Liu, Y.; Song, A.; Chen, S.; Chen, F.; Wang, L.; et al. The BBX gene CmBBX22 negatively regulates drought stress tolerance in chrysanthemum. Hortic. Res. 2022, 9, uhac181. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Li, X.; Gao, X.; Dai, Z.; Cui, Y.; Zhi, Y.; Liu, Q.; Zhai, H.; Gao, S.; et al. The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato. New Phytol. 2022, 233, 1133–1152. [Google Scholar] [CrossRef]
- Lin, F.; Lin, F.; Jiang, Y.; Li, J.; Yan, T.; Fan, L.; Liang, J.; Chen, Z.; Xu, D.; Deng, X.W.; et al. B-BOX DOMAIN PROTEIN28 negatively regulates photomorphogenesis by repressing the activity of transcription factor HY5 and undergoes COP1-mediated degradation. Plant Cell 2018, 30, 2006–2019. [Google Scholar] [CrossRef]
- Bursch, K.; Niemann, E.T.; David Nelson, C.; Johansson, H. Karrikins control seedling photomorphogenesis and anthocyanin biosynthesis through a HY5-BBX transcriptional module. Plant J. 2021, 107, 1346–1362. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Y.; Yu, T.; Li, J.; Qiu, X.; Zhu, C.; Liu, J.; Dang, F.; Yang, Y. Characterization of the B-BOX gene family in pepper and the role of CaBBX14 in defense response against Phytophthora capsici infection. Int. J. Biol. Macromol. 2023, 237, 124071. [Google Scholar] [CrossRef]
- Luo, S.; Tetteh, C.; Song, Z.; Zhang, C.; Jin, P.; Hao, X.; Liu, Y.; Ge, S.; Chen, J.; Ye, K.; et al. Positive regulation of BBX11 by NAC053 confers stomatal and apoplastic immunity against bacterial infection in Arabidopsis. New Phytol. 2025, 246, 1816–1833. [Google Scholar] [CrossRef]
- Xie, S.; Shi, B.; Miao, M.; Zhao, C.; Bai, R.; Yan, F.; Lei, C. A B-Box (BBX) transcription factor from cucumber, CsCOL9, positively regulates resistance of host plant to Bemisia tabaci. Int. J. Mol. Sci. 2025, 26, 324. [Google Scholar] [CrossRef]
- Malakar, B.C.; Singh, S.; Garhwal, V.; Chandramohan, R.; Upadhyaya, G.; Sethi, V.; Sreeramaiah Gangappa, N. BBX24 and BBX25 antagonize the function of thermosensor ELF3 to promote PIF4-mediated thermomorphogenesis in Arabidopsis. Plant Commun. 2025, 6, 101391. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Wang, S.; Song, S.; Jiang, Y.; Han, J.; Lu, S.; Li, L.; Liu, J. Two B-box domain proteins, BBX18 and BBX23, interact with ELF3 and regulate thermomorphogenesis in Arabidopsis. Cell Rep. 2018, 25, 1718–1728.e4. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, H.; Jin, Z.; Ding, Y.; Guo, M. Comprehensive characterization of B-box zinc finger genes in Citrullus lanatus and their response to hormone and abiotic stresses. Plants 2023, 12, 2634. [Google Scholar] [CrossRef]
- Shi, J.; Tang, Y.; Li, H.; Xing, H. The BBX family and their response to abiotic stress in ginger (Zingiber officinale Roscoe). BMC Genom. 2025, 26, 548. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, H.; Huang, J.; Tao-Shi, X.; Meng, Z.; Chen, Q.; Deng, J. Genome-wide analysis of BBX gene family in Tartary buckwheat (Fagopyrum tataricum). PeerJ 2021, 9, e11939. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Sun, H.; Liu, S.; He, Y.; Zhao, S.; Wang, J.; Wang, T.; Zhang, J.; Gao, J.; Yang, Q.; et al. Identification of BBX gene family and its function in the regulation of microtuber formation in yam. BMC Genom. 2023, 24, 354. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Li, B.; Wu, H.; Sha, Y.; Qin, L.; Chen, X.; Liu, Y.; Tang, H.; Yang, L. The function of BBX gene family under multiple stresses in Nicotiana tabacum. Genes 2022, 13, 1841. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Chen, J.; Huang, B.; Huang, Z.; Zhang, Z.-J. The BBX gene family in Moso bamboo (Phyllostachys edulis): Identification, characterization and expression profiles. BMC Genom. 2021, 22, 533. [Google Scholar] [CrossRef]
- Yin, L.; Wu, R.; An, R.; Feng, Y.; Qiu, Y.; Zhang, M. Genome-wide identification, molecular evolution and expression analysis of the B-box gene family in mung bean (Vigna radiata L.). BMC Plant Biol. 2024, 24, 532. [Google Scholar] [CrossRef]
- Li, S.; Guo, S.; Gao, X.; Wang, X.; Liu, Y.; Wang, J.; Li, X.; Zhang, J.; Fu, B. Genome-wide identification of B-box zinc finger (BBX) gene family in Medicago sativa and their roles in abiotic stress responses. BMC Genom. 2024, 25, 110. [Google Scholar] [CrossRef]
- Cao, Y.; Meng, D.; Han, Y.; Chen, T.; Jiao, C.; Chen, Y.; Jin, Q.; Cai, Y. Comparative analysis of B-BOX genes and their expression pattern analysis under various treatments in Dendrobium officinale. BMC Plant Biol. 2019, 19, 245. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, Y.; Li, X.; Wang, G.; Zhou, Q.; Chen, Q.; Li, J.; Wang, X.; Tang, H. An evolutionary analysis of B-box transcription factors in strawberry reveals the role of FaBBx28c1 in the regulation of flowering time. Int. J. Mol. Sci. 2021, 22, 11766. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Bao, G.; Shi, T.; Zhai, L.; Bian, S.; Li, X. Genome-wide identification of BBX gene family and their expression patterns under salt stress in soybean. BMC Genom. 2022, 23, 820. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, J.; Hao, J.; Bao, X.; Kuang, L.; Zhang, D.; Zong, C. Identification of the BBX gene family in blueberry at different chromosome ploidy levels and fruit development and response under stress. BMC Genom. 2025, 26, 100. [Google Scholar] [CrossRef]
- Chen, X.; Niu, M.; Wu, X.; Peng, Y.; Zheng, R.; Cheng, M.; Zhao, K.; Zhou, Y.; Peng, D. BBX genes of Cymbidium ensifolium exhibited intense response to blue light in meristem induction through artificial control. Plants 2024, 13, 2375. [Google Scholar] [CrossRef] [PubMed]
- Obel, H.O.; Cheng, C.; Li, Y.; Tian, Z.; Njogu, M.; Li, J.; Lou, Q.; Yu, X.; Yang, Z.; Ogweno, J.; et al. Genome-wide identification of the B-box gene family and expression analysis suggests their potential role in photoperiod-mediated β-carotene accumulation in the endocarp of cucumber (Cucumis sativus L.) fruit. Genes 2022, 13, 658. [Google Scholar] [CrossRef]
- Nian, L.; Zhang, X.; Liu, X.; Li, X.; Liu, X.; Yang, Y.; Haider, F.; Zhu, X.; Ma, B.; Mao, Z.; et al. Characterization of B-box family genes and their expression profiles under abiotic stresses in Melilotus albus. Front. Plant Sci. 2022, 13, 990929. [Google Scholar] [CrossRef]
- Song, H.; Ding, G.; Zhao, C.; Li, Y. Genome-wide identification of B-box gene family and expression analysis suggest its roles in responses to Cercospora leaf spot in sugar beet (Beta vulgaris L.). Genes 2023, 14, 1248. [Google Scholar] [CrossRef]
- Feng, Z.; Li, M.; Li, Y.; Yang, X.; Wei, H.; Fu, X.; Ma, L.; Lu, J.; Wang, H.; Yu, S. Comprehensive identification and expression analysis of B-box genes in cotton. BMC Genom. 2021, 22, 439. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Lei, S.; Li, J.; Tian, B.; Li, C.; Cao, J.; Lu, J.; Ma, C.; Chang, C.; Zhang, H. In silico analysis of the wheat BBX gene family and identification of candidate genes for seed dormancy and germination. BMC Plant Biol. 2024, 24, 334. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tong, Y.; Ye, J.; Zhang, C.; Li, B.; Hu, S.; Xue, X.; Tian, Q.; Wang, Y.; Li, L.; et al. Genome-wide characterization of B-box gene family in Salvia miltiorrhiza. Int. J. Mol. Sci. 2023, 24, 2146. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Liu, Q.; Zhang, T.; Chong, X.; Yuan, H. Genome-wide identification and expression analysis of BBX transcription factors in Iris germanica L. Int. J. Mol. Sci. 2021, 22, 8793. [Google Scholar] [CrossRef]
- Shi, G.; Ai, K.; Yan, X.; Zhou, Z.; Cai, F.; Bao, M.; Zhang, J. Genome-wide analysis of the BBX genes in Platanus × acerifolia and their relationship with flowering and/or dormancy. Int. J. Mol. Sci. 2023, 24, 8576. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, G.; Chen, J.; Ying, Y.; Yao, L.; Li, X.; da Silva, J.A.T.; Yu, Z. Role of Rubus chingii BBX gene family in anthocyanin accumulation during fruit ripening. Front. Plant Sci. 2024, 15, 1427359. [Google Scholar] [CrossRef]
- Xie, J.; Cui, H.; Xu, Y.; Xie, L.; Chen, W. Delphinidin-3-O-sambubioside: A novel xanthine oxidase inhibitor identified from natural anthocyanins. Food Qual. Saf. 2021, 5, fyaa038. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, H.; Luo, C.; Hu, W.; Weng, T.; Shuang, F. Pelargonidin ameliorates inflammatory response and cartilage degeneration in osteoarthritis via suppressing the NF-κB pathway. Arch. Biochem. Biophys. 2023, 743, 109668. [Google Scholar] [CrossRef]
- Cheng, Z.; Si, X.; Tan, H.; Zang, Z.; Tian, J.; Shu, C.; Sun, X.; Li, Z.; Jiang, Q.; Meng, X.; et al. Cyanidin-3-O-glucoside and its phenolic metabolites ameliorate intestinal diseases via modulating intestinal mucosal immune system: Potential mechanisms and therapeutic strategies. Crit. Rev. Food Sci. Nutr. 2023, 63, 1629–1647. [Google Scholar] [CrossRef] [PubMed]
- Kongthitilerd, P.; Barras, E.D.; Rong, W.; Thibodeaux, A.; Rigdon, M.; Yao, S.; Adisakwattana, S.; Suantawee, T.; Cheng, H. Cyanidin inhibits adipogenesis in 3T3-L1 preadipocytes by activating the PLC-IP3 pathway. Biomed. Pharmacother. 2023, 162, 114677. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Huo, J.; Liu, J.; Yu, J.; Zhou, J.; Sun, C.; Wang, Y.; Leng, F. Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chem. 2023, 411, 135540. [Google Scholar] [CrossRef]
- Cai, X.Y.; Yang, C.; Shao, L.; Zhu, H.M.; Wang, Y.X.; Huang, X.; Wang, S.; Hong, L. Targeting NOX4 by petunidin improves anoxia/reoxygenation-induced myocardium injury. Eur. J. Pharmacol. 2020, 888, 173414. [Google Scholar] [CrossRef]
- Lee, G.-H.; Hoang, T.-H.; Jung, E.-S.; Jung, S.-J.; Han, S.-K.; Chung, M.-J.; Chae, S.-W.; Chae, H.-J. Anthocyanins attenuate endothelial dysfunction through regulation of uncoupling of nitric oxide synthase in aged rats. Aging Cell 2020, 19, e13279. [Google Scholar] [CrossRef]
- Chung, I.-C.; Yuan, S.-N.; OuYang, C.-N.; Hu, S.-I.; Lin, H.-C.; Huang, K.-Y.; Lin, W.-N.; Chuang, Y.-T.; Chen, Y.-J.; Ojcius, D.M.; et al. EFLA 945 restricts AIM2 inflammasome activation by preventing DNA entry for psoriasis treatment. Cytokine 2020, 127, 154951. [Google Scholar] [CrossRef]
- Shi, L.; Li, X.; Fu, Y.; Li, C. Environmental stimuli and phytohormones in anthocyanin biosynthesis: A comprehensive review. Int. J. Mol. Sci. 2023, 24, 16415. [Google Scholar] [CrossRef]
- Zhao, S.; Blum, J.A.; Ma, F.; Wang, Y.; Borejsza-Wysocka, E.; Ma, F.; Cheng, L.; Li, P. Anthocyanin accumulation provides protection against high light stress while reducing photosynthesis in apple leaves. Int. J. Mol. Sci. 2022, 23, 12616. [Google Scholar] [CrossRef]
- Li, Z.; Ahammed, G. Plant stress response and adaptation via anthocyanins: A review. Plant Stress 2023, 10, 100230. [Google Scholar] [CrossRef]
- Fallah, S.; Yusefi-Tanha, E.; Peralta-Videa, J. Interaction of nanoparticles and reactive oxygen species and their impact on macromolecules and plant production. Plant Nano Biol. 2024, 10, 100105. [Google Scholar] [CrossRef]
- Naing, A.H.; Kim, C. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiol. Plant. 2021, 172, 1711–1723. [Google Scholar] [CrossRef]
- Yu, D.; Wei, W.; Fan, Z.; Chen, J.; You, Y.; Huang, W.; Zhan, J. VabHLH137 promotes proanthocyanidin and anthocyanin biosynthesis and enhances resistance to Colletotrichum gloeosporioides in grapevine. Hortic. Res. 2022, 10, uhac261. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, Y.; Du, H.; Tian, J.; Zhu, F.; Zhang, J.; Zhang, Q.; Wang, X.; Ge, L. Anthocyanins promote the abundance of endophytic lactic acid bacteria by reducing ROS in Medicago truncatula. Plant J. 2025, 122, e70127. [Google Scholar] [CrossRef]
- Zeng, Z.; Liao, Y.; Wang, J.; Liang, X.; Duan, L.; Huang, Y.; Han, Z.; Lin, K.; Hu, H.; Ye, K.; et al. Combined transcriptomic, metabolomic and physiological analysis reveals the key role of nitrogen, but not phosphate and potassium in regulating anthocyanin biosynthesis induced by nutrient deficiency in Eucalyptus. Int. J. Biol. Macromol. 2024, 283 Pt 1, 137564. [Google Scholar] [CrossRef]
- Li, H.; He, K.; Zhang, Z.; Hu, Y. Molecular mechanism of phosphorous signaling inducing anthocyanin accumulation in Arabidopsis. Plant Physiol. Biochem. 2023, 196, 121–129. [Google Scholar] [CrossRef]
- Qi, Q.; Chu, M.; Yu, X.; Xie, Y.; Li, Y.; Du, Y.; Liu, X.; Zhang, Z.; Shi, J.; Yan, N. Anthocyanins and proanthocyanidins: Chemical structures, food sources, bioactivities, and product development. Food Rev. Int. 2022, 39, 4581–4609. [Google Scholar] [CrossRef]
- Garcia, C.; Blesso, C. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic. Biol. Med. 2021, 172, 152–166. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Antioxidant activity of anthocyanins and anthocyanidins: A critical review. Int. J. Mol. Sci. 2024, 25, 12001. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, D.; Shi, L.; Liu, X.; Zhang, Y.; Tong, C.; Song, D.; Hou, M. Blueberry anthocyanins-enriched extracts attenuate cyclophosphamide-induced cardiac injury. PLoS ONE 2015, 10, e0127813. [Google Scholar] [CrossRef] [PubMed]
- Neyestani, T.; Yari, Z.; Rasekhi, H.; Nikooyeh, B. How effective are anthocyanins on healthy modification of cardiometabolic risk factors: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2023, 15, 106. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Alsharairi, N.A. Insights into the mechanisms of action of proanthocyanidins and anthocyanins in the treatment of nicotine-induced non-small cell lung cancer. Int. J. Mol. Sci. 2022, 23, 7905. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, R.D.P.; da Machado, F.A.P. The preventive and therapeutic effects of anthocyanins on colorectal cancer: A comprehensive review based on up-to-date experimental studies. Food Res. Int. 2023, 170, 113028. [Google Scholar] [CrossRef]
- Wang, B.; Tang, X.; Mao, B.; Zhang, Q.; Tian, F.; Zhao, J.; Cui, S.; Chen, W. Anti-aging effects and mechanisms of anthocyanins and their intestinal microflora metabolites. Crit. Rev. Food Sci. Nutr. 2024, 64, 2358–2374. [Google Scholar] [CrossRef]
- Hu, X.; Yang, Y.; Tang, S.; Chen, Q.; Zhang, M.; Ma, J.; Qin, J.; Yu, H. Anti-aging effects of anthocyanin extracts of Sambucus canadensis caused by targeting mitochondrial-induced oxidative stress. Int. J. Mol. Sci. 2023, 24, 1528. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, G.; Zhang, X.; Xu, D.; Gao, J.; Fan, J.; Zhou, Z. Anthocyanins from black chokeberry (Aronia melanocarpa Elliot) delayed aging-related degenerative changes of brain. J. Agric. Food Chem. 2017, 65, 5973–5984. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, X.; Han, L.; Bian, J.; He, C.; El-Omar, E.; Gong, L.; Wang, M. The potential roles of dietary anthocyanins in inhibiting vascular endothelial cell senescence and preventing cardiovascular diseases. Nutrients 2022, 14, 2836. [Google Scholar] [CrossRef]
- Chen, Y.; Song, G.; Zhao, C.; Qi, W.; Wang, Y. Interactions between anthocyanins and gut microbiota in promoting healthy aging. J. Future Foods 2025, 5, 229–238. [Google Scholar] [CrossRef]
- Kozłowska, A.; Nitsch-Osuch, A. Anthocyanins and type 2 diabetes: An update of human study and clinical trial. Nutrients 2024, 16, 1674. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Guo, Y.; Liu, M.; Chen, X.; Xiao, X.; Wang, S.; Gong, P.; Ma, Y.; Chen, F. Structure and function of blueberry anthocyanins: A review of recent advances. J. Funct. Foods 2022, 88, 104864. [Google Scholar] [CrossRef]
- Franco-Sebastián, D.; Alaniz-Monreal, S.; Rabadán-Chávez, G.; Vázquez-Manjarrez, N.; Hernández-Ortega, M.; Gutiérrez-Salmeán, G. Anthocyanins: Potential therapeutic approaches towards obesity and diabetes mellitus type 2. Molecules 2023, 28, 1237. [Google Scholar] [CrossRef] [PubMed]
- Winter, A.N.; Bickford, P. Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease. Antioxidants 2019, 8, 333. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Han, T.; Lyu, L.; Li, W.; Wu, W. Research progress in understanding the biosynthesis and regulation of plant anthocyanins. Sci. Hortic. 2023, 321, 112374. [Google Scholar] [CrossRef]
- Hu, Y.; Gong, Z.; Yan, Y.; Zhang, J.; Shao, A.; Li, H.; Wang, P.; Zhang, S.; Cheng, C.; Zhang, J. ChBBX6 and ChBBX18 are positive regulators of anthocyanins biosynthesis and carotenoids degradation in Cerasus humilis. Int. J. Biol. Macromol. 2024, 282 Pt 4, 137195. [Google Scholar] [CrossRef]
- Luo, D.; Xiong, C.; Lin, A.; Zhang, C.; Sun, W.; Zhang, J.; Yang, C.; Lu, Y.; Li, H.; Ye, Z.; et al. SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2 to regulate anthocyanin biosynthesis by activating SlDFR expression in tomato. Hortic. Res. 2021, 8, 163. [Google Scholar] [CrossRef]
- Pan, C.; Liao, Y.; Shi, B.; Zhang, M.; Zhou, Y.; Wu, J.; Wu, H.; Qian, M.; Bai, S.; Teng, Y.; et al. Blue light-induced MiBBX24 and MiBBX27 simultaneously promote peel anthocyanin and flesh carotenoid biosynthesis in mango. Plant Physiol. Biochem. 2025, 219, 109315. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, H.; Qu, D.; Zhen-Zhu, Z.; Ya-Yang, Z.; Zhao, Z. The MdBBX22-miR858-MdMYB9/11/12 module regulates proanthocyanidin biosynthesis in apple peel. Plant Biotechnol. J. 2022, 20, 1683–1700. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Tian, S.; Hao, W.; Du, L. Two B-Box proteins, MaBBX20 and MaBBX51, coordinate light-induced anthocyanin biosynthesis in grape hyacinth. Int. J. Mol. Sci. 2022, 23, 5678. [Google Scholar] [CrossRef]
- Yang, G.; Sun, M.; Brewer, L.; Tang, Z.; Nieuwenhuizen, N.; Cooney, J.; Xu, S.; Sheng, J.; Andre, C.M.; Xue, C.; et al. Allelic variation of BBX24 is a dominant determinant controlling red coloration and dwarfism in pear. Plant Biotechnol. J. 2024, 22, 1468–1490. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ou, C.; Liu, X.; Wang, F.; Zhang, Y.; Qi, L.; Jiang, S.; Li, H. Plant U-box E3 ligase PpPUB59 regulates anthocyanin accumulation by ubiquitinating PpBBX24 in ‘Zaosu’ pear and its red bud mutation. Plant Physiol. Biochem. 2025, 219, 109354. [Google Scholar] [CrossRef]
- Liu, W.; Mu, H.; Yuan, L.; Li, Y.; Li, Y.; Li, S.; Ren, C.; Duan, W.; Fan, P.; Dai, Z.; et al. VvBBX44 and VvMYBA1 form a regulatory feedback loop to balance anthocyanin biosynthesis in grape. Hortic. Res. 2023, 10, uhad176. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, Y.; Sun, Y.; Zhang, X.; Du, B.; Turupu, M.; Qi-Yao, X.; Gai, S.; Tong, S.; Huang, J.; et al. Two B-box proteins, PavBBX6/9, positively regulate light-induced anthocyanin accumulation in sweet cherry. Plant Physiol. 2023, 192, 2030–2048. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Sun, Y.; Zhu, Z.; Ni, N.; Sun, S.; Nie, M.; Du, W.; Irfan, M.; Chen, L.; Zhang, L. Transcription factors LvBBX24 and LvbZIP44 coordinated anthocyanin accumulation in response to light in lily petals. Hortic. Res. 2024, 11, uhae211. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Pei, J.; Yan, X.; Cui, X.; Tsuruta, M.; Liu, Y.; Lian, C. A poplar B-box protein PtrBBX23 modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. Plant Cell Environ. 2021, 44, 3015–3033. [Google Scholar] [CrossRef]
- Zhou, L.; Peng, J.; Chen, C.; Wang, Y.; Wang, Y.; Li, Y.; Song, A.; Jiang, J.; Chen, S.; Chen, F. CmBBX28-CmMYB9a module regulates petal anthocyanin accumulation in response to light in chrysanthemum. Plant Cell Environ. 2025, 48, 3750–3765. [Google Scholar] [CrossRef]
- Deng, F.; Zhang, Y.; Chen, Y.; Li, Y.; Li, L.; Lei, Y.; Li, Z.; Pi, B.; Chen, J.; Qiao, Z. Genome-wide identification and expression analysis of the BBX gene family in Lagerstroemia indica grown under light stress. Int. J. Biol. Macromol. 2025, 297, 139899. [Google Scholar] [CrossRef]
- Deng, F.; Zhang, Y.; Chen, Y.; Li, Y.; Li, L.; Lei, Y.; Li, Z.; Pi, B.; Chen, J.; Qiao, Z. Evaluation of light irradiation on anthocyanins and energy metabolism of grape (Vitis vinifera L.) during storage. Food Chem. 2024, 431, 137141. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Zhao, H.; Xu, J.; Zheng, P.; Liu, S.; Sun, B. CsHY5 regulates light-induced anthocyanin accumulation in Camellia sinensis. Int. J. Mol. Sci. 2025, 26, 3253. [Google Scholar] [CrossRef] [PubMed]
- An, J.-P.; Wang, X.-F.; Espley, R.V.; Wang, K.-L.; Bi, S.-Q.; You, C.-X.; Hao, Y.-J. An apple B-Box protein MdBBX37 modulates anthocyanin biosynthesis and hypocotyl elongation synergistically with MdMYBs and MdHY5. Plant Cell Physiol. 2020, 61, 130–143. [Google Scholar] [CrossRef] [PubMed]
Plant Species | Numbers | Key BBX | Function | Reference |
---|---|---|---|---|
Citrullus lanatus | 25 | ClBBX5/6a | Fruit development | [60] |
Zingiber officinale | 31 | ZoBBX11/27 | Regulation of flowering | [61] |
Fagopyrum tataricum | 28 | FtBBX2/8/17/26 | Anthocyanin biosynthesis | [62] |
Dioscorea spp. | 19 | DoBBX2/8 | Inhibition/promotion of microtuber development | [63] |
Nicotiana tabacum | NtBBX9/30 | Salt stress | [64] | |
Phyllostachys edulis | 27 | PeBBX01 | Growth and development | [65] |
Vigna radiata | 23 | VrBBX5/10/12 | Abiotic stress | [66] |
Medicago sativa | 28 | MsBBX11 | Salt stress | [67] |
Dendrobium officinale | 19 | DoBBX17/11 | Growth and development and abiotic stress | [68] |
Fragaria ananassa | 51 | FaBBX28c1 | Negative regulation of flowering | [69] |
Glycine max | 59 | GmBBX30a/30b | Salt stress | [70] |
Vaccinium spp. | 83 | VcBBX22a1/22a2 | Anthocyanin biosynthesis and fruit ripening | [71] |
Cymbidium ensifolium | 19 | CeBBX10 | Regulation of flowering | [72] |
Cucumis sativus | 26 | CsaBBX9/15/22 | β-carotene biosynthesis | [73] |
Melilotus albus | 20 | MaBBX13 | Salt stress | [74] |
Beta vulgaris | 17 | BvBBX03/16 | Disease stress resistance | [75] |
Gossypium hirsutum | 37 | GhBBX5/8/23/26 | Regulation of flowering | [76] |
Triticum aestivum | 96 | TaBBX4-2A | Seed development | [77] |
Salvia miltiorrhiza | 27 | SmBBX1/4/20/24 | Anthocyanin biosynthesis | [78] |
Iris germanica | 6 | IgBBX6 | Drought stress | [79] |
Platanus acerifolia | 39 | PaBBX1-1/PaBBX4 | Regulation of flowering | [80] |
Rubus chingii | 32 | RcBBX26 | Anthocyanin biosynthesis | [81] |
Plant Species | BBX | Target Gene | Regulatory Type | Negative or Positive | Anthocyanin Accumulation Levels | Reference |
---|---|---|---|---|---|---|
Cerasus humilis | ChBBX6 ChBBX18 | ChCHS ChF3H | Direct regulation | Positive | Increase | [117] |
Solanum lycopersicum | SlBBX20 | SlDFR | Direct regulation | Positive | Increase | [118] |
Mangifera indica | MiBBX24 MiBBX27 | MiMYB1 | Indirect regulation | Positive | Increase | [119] |
Malus domestica | MdBBX22 | mdm-miR858 | Indirect regulation | Positive | Increase | [120] |
Muscari armeniacum | MaBBX20 | MaHY5 | Co-regulation | Positive | Increase | [121] |
MaBBX51 | MaHY5 MaBBX20 | Co-regulation | Negative | Decrease | ||
Pyrus pyrifolia | PpBBX24 | PpHY5 | Co-regulation | Negative | Decrease | [123] |
Vitis vinifera | VvBBX44 | VvMYBA1 | Indirect regulation | Negative | Decrease | [124] |
Prunus avium | PavBBX6 PavBBX9 | PavUFGT PavNCED1 | Direct regulation Indirect regulation | Positive | Increase | [125] |
Lilium spp. | LvBBX24 | LvMYB5 LvbZIP44 | Indirect regulation Co-regulation | Positive | Increase | [126] |
Populus trichocarpa | PtrBBX23 | PtrHY5 | Co-regulation | Positive | Increase | [127] |
Chrysanthemum morifolium | CmBBX28 | CmMYB9a | Indirect regulation | Negative | Decrease | [128] |
Lagerstroemia indica | LiBBX4 | LiHY5 LiHYH LiCOP1 | Co-regulation | Negative | Decrease | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Deng, K.; Zhao, Y.; Xu, D. A Comprehensive Review of BBX Protein-Mediated Regulation of Anthocyanin Biosynthesis in Horticultural Plants. Horticulturae 2025, 11, 894. https://doi.org/10.3390/horticulturae11080894
Li H, Deng K, Zhao Y, Xu D. A Comprehensive Review of BBX Protein-Mediated Regulation of Anthocyanin Biosynthesis in Horticultural Plants. Horticulturae. 2025; 11(8):894. https://doi.org/10.3390/horticulturae11080894
Chicago/Turabian StyleLi, Hongwei, Kuanping Deng, Yingying Zhao, and Delin Xu. 2025. "A Comprehensive Review of BBX Protein-Mediated Regulation of Anthocyanin Biosynthesis in Horticultural Plants" Horticulturae 11, no. 8: 894. https://doi.org/10.3390/horticulturae11080894
APA StyleLi, H., Deng, K., Zhao, Y., & Xu, D. (2025). A Comprehensive Review of BBX Protein-Mediated Regulation of Anthocyanin Biosynthesis in Horticultural Plants. Horticulturae, 11(8), 894. https://doi.org/10.3390/horticulturae11080894