Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (382)

Search Parameters:
Keywords = plant dust

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9135 KiB  
Article
A Study on the Characterization of Asphalt Plant Reclaimed Powder Using Fourier Transform Infrared Spectroscopy
by Hao Wu, Daoan Yu, Wentao Wang, Chuanqi Yan, Rui Xiao, Rong Chen, Peng Zhang and Hengji Zhang
Materials 2025, 18(15), 3660; https://doi.org/10.3390/ma18153660 - 4 Aug 2025
Viewed by 57
Abstract
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation [...] Read more.
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation methods, such as the methylene blue test and plasticity index, can assess reclaimed powder properties to guide its recycling. However, these methods suffer from inefficiency, strong empirical dependence, and high variability. To address these limitations, this study proposes a rapid and precise evaluation method for reclaimed powder properties based on Fourier transform infrared spectroscopy (FTIR). To do so, five field-collected reclaimed powder samples and four artificial samples were evaluated. Scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), and X-ray diffraction (XRD) were employed to characterize their microphase morphology, chemical composition, and crystal structure, respectively. Subsequently, FTIR was used to establish correlations between key acidity/alkalinity, cleanliness, and multiple characteristic peak intensities. Representative infrared characteristic peaks were selected, and a quantitative functional group index (Is) was proposed to simultaneously evaluate acidity/alkalinity and cleanliness. The results indicate that reclaimed powder primarily consists of tiny, crushed stone particles and dust, with significant variations in crystal structure and chemical composition, including calcium carbonate, silicon oxide, iron oxide, and aluminum oxide. Some samples also contained clay, which critically influenced the reclaimed powder properties. Since both filler acidity/alkalinity and cleanliness are affected by clay (silicon/carbon ratio determining acidity/alkalinity and aluminosilicate content affecting cleanliness), this study calculated four functional group indices based on FTIR absorption peaks, namely the Si-O-Si stretching vibration (1000 cm−1) and the CO32− asymmetric stretching vibration (1400 cm−1). These indices were correlated with conventional testing results (XRF for acidity/alkalinity, methylene blue value, and pull-off strength for cleanliness). The results show that the Is index exhibited strong correlations (R2 = 0.89 with XRF, R2 = 0.80 with methylene blue value, and R2 = 0.96 with pull-off strength), demonstrating its effectiveness in predicting both acidity/alkalinity and cleanliness. The developed method enhances reclaimed powder detection efficiency and facilitates high-value recycling in road engineering applications. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

13 pages, 272 KiB  
Article
Effects of Cognitive Behavioral Therapy-Based Educational Intervention Addressing Fine Particulate Matter Exposure on the Mental Health of Elementary School Children
by Eun-Ju Bae, Seobaek Cha, Dong-Wook Lee, Hwan-Cheol Kim, Jiho Lee, Myung-Sook Park, Woo-Jin Kim, Sumi Chae, Jong-Hun Kim, Young Lim Lee and Myung Ho Lim
Children 2025, 12(8), 1015; https://doi.org/10.3390/children12081015 - 1 Aug 2025
Viewed by 236
Abstract
Objectives: This study assessed the effectiveness of a cognitive behavioral therapy (CBT)-based fine dust education program, grounded in the Health Belief Model (HBM), on elementary students’ fine dust knowledge, related behaviors, and mental health (depression, anxiety, stress, sleep quality). Methods: From [...] Read more.
Objectives: This study assessed the effectiveness of a cognitive behavioral therapy (CBT)-based fine dust education program, grounded in the Health Belief Model (HBM), on elementary students’ fine dust knowledge, related behaviors, and mental health (depression, anxiety, stress, sleep quality). Methods: From September to November 2024, 95 students (grades 4–6) living near a coal-fired power plant in midwestern South Korea were assigned to either an intervention group (n = 44) or a control group (n = 51). The intervention group completed a three-session CBT-based education program; the control group received stress management education. Assessments were conducted at weeks 1, 2, 4, and 8 using standardized mental health and behavior scales (PHQ: Patient Health Questionnaire, GAD: Generalized Anxiety Disorder Assessment, PSS: Perceived Stress Scale, ISI: Insomnia Severity Index). Results: A chi-square test was conducted to compare pre- and post-test changes in knowledge and behavior related to PM2.5. The intervention group showed significant improvements in seven fine dust-related knowledge and behavior items (e.g., PM2.5 awareness rose from 33.3% to 75.0%; p < 0.05). The control group showed limited gains. Regarding mental health, based on a mixed-design ANCOVA, anxiety scores significantly declined over time in the intervention group, with group and interaction effects also significant (p < 0.05). Depression scores showed time effects, but group and interaction effects were not significant. No significant changes were observed for stress, sleep, or group × PM2.5 interactions. Conclusions: The CBT-based education program effectively enhanced fine dust knowledge, health behaviors, and reduced anxiety among students. It presents a promising, evidence-based strategy to promote environmental and mental health in school-aged children. Full article
(This article belongs to the Special Issue Advances in Mental Health and Well-Being in Children (2nd Edition))
21 pages, 1471 KiB  
Article
Impact of Basalt Rock Powder on Ryegrass Growth and Nutrition on Sandy and Loamy Acid Soils
by Charles Desmalles, Lionel Jordan-Meille, Javier Hernandez, Cathy L. Thomas, Sarah Dunham, Feifei Deng, Steve P. McGrath and Stephan M. Haefele
Agronomy 2025, 15(8), 1791; https://doi.org/10.3390/agronomy15081791 - 25 Jul 2025
Viewed by 453
Abstract
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt [...] Read more.
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt (80 and 160 t ha−1) were applied to two types of slightly acid soils (sandy or silty clayey), derived from long-term trials at Bordeaux (INRAE, France) and Rothamsted Research (England), respectively. For each soil, half of the pots were planted with ryegrass; the other half were left bare. Thus, the experiment had twelve treatments with four replications per treatment. Soil pH increased with the addition of basalt (+0.8 unit), with a 5% equivalence of that of reactive chalk. The basalt contained macro- and micronutrients. Some cations extractable in the basalt before being mixed to the soil became more extractable with increased weathering, independent of plant cover. Plant uptake generally increased for macronutrients and decreased for micronutrients, due to increased stock (macro) and reduced availability (micronutrients and P), related to pH increases. K supplied in the basalt was responsible for a significant increase in plant yield on the sandy soil, linked to an average basalt K utilisation efficiency of 33%. Our general conclusion is that rock dust applications have to be re-evaluated at each site with differing soil characteristics. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

28 pages, 2881 KiB  
Article
Segmentation-Based Classification of Plants Robust to Various Environmental Factors in South Korea with Self-Collected Database
by Ganbayar Batchuluun, Seung Gu Kim, Jung Soo Kim and Kang Ryoung Park
Horticulturae 2025, 11(7), 843; https://doi.org/10.3390/horticulturae11070843 - 17 Jul 2025
Viewed by 326
Abstract
Many plant image-based studies primarily use datasets featuring either a single plant, a plant with only one leaf, or images containing only plants and leaves without any background. However, in real-world scenarios, a substantial portion of acquired images consists of blurred plants or [...] Read more.
Many plant image-based studies primarily use datasets featuring either a single plant, a plant with only one leaf, or images containing only plants and leaves without any background. However, in real-world scenarios, a substantial portion of acquired images consists of blurred plants or extensive backgrounds rather than high-resolution details of the target plants. In such cases, classification models struggle to identify relevant areas for classification, leading to insufficient information and reduced classification performance. Moreover, the presence of moisture, water droplets, dust, or partially damaged leaves further degrades classification accuracy. To address these challenges and enhance classification performance, this study introduces a plant image segmentation (Pl-ImS) model for segmentation and a plant image classification (Pl-ImC) model for classification. The proposed models were evaluated using a self-collected dataset of 21,760 plant images captured under real field conditions in South Korea, incorporating various environmental factors such as moisture, water droplets, dust, and partial leaf loss. The segmentation method achieved a dice score (DS) of 89.90% and an intersection over union (IoU) of 81.82%, while the classification method attained an F1-score of 95.97%, surpassing state-of-the-art methods. Full article
(This article belongs to the Special Issue Emerging Technologies in Smart Agriculture)
Show Figures

Figure 1

21 pages, 15127 KiB  
Article
Assessing the Influences of Leaf Functional Traits on Plant Performances Under Dust Deposition and Microplastic Retention
by Mamun Mandal, Anamika Roy, Shubhankar Ghosh, Achinta Mondal, Arkadiusz Przybysz, Robert Popek, Totan Ghosh, Sandeep Kumar Dash, Ganesh Kumar Agrawal, Randeep Rakwal and Abhijit Sarkar
Atmosphere 2025, 16(7), 861; https://doi.org/10.3390/atmos16070861 - 15 Jul 2025
Viewed by 384
Abstract
Since airborne microplastics (AMPs) are a recent and unexplored field of study, there are several unresolved issues regarding their effects on plants. The accumulating potential of AMPs and their effect on the biochemical parameters of ten different plant species in an Indian city [...] Read more.
Since airborne microplastics (AMPs) are a recent and unexplored field of study, there are several unresolved issues regarding their effects on plants. The accumulating potential of AMPs and their effect on the biochemical parameters of ten different plant species in an Indian city environment were assessed. The four types of AMPs deposited in the phyllosphere—fragment (30.76%), film (28.95%), fiber (22.61%), and pellet (17.68%)—were examined using stereomicroscopy and fluorescence microscopy. The air pollution tolerance index (APTI) was determined, and other biochemical parameters such as proline, phenol, malondialdehyde, carotenoids, superoxide dismutase, catalase, and peroxidase were also measured. The findings showed that in the case of polymers type, PE (30%) was more abundant than others, followed by PET (17%), PP (15%), PVC (13%), PVA (10%), PS (7%), ABS (5%), and PMMA (3%). Clerodendrum infortunatum L., Calotropis procera (Aiton) W.T. Aiton, and Mangifera indica L. all showed a strong APTI and also exhibited significantly higher amounts of AMP accumulation. Principal component analysis showed a stronger association between phyllospheric AMPs and biochemical parameters. Additionally, the correlation analysis revealed that the presence of accumulated AMPs may significantly influence the biochemical parameters of the plants. Thus, it can be concluded that the different plant species are uniquely specialized in AMP accumulation, which is significantly impacted by the plants’ APTI as well as other biochemical parameters. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

24 pages, 2639 KiB  
Review
Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review
by Alina Bărbulescu and Kamal Hosen
Toxics 2025, 13(7), 587; https://doi.org/10.3390/toxics13070587 - 14 Jul 2025
Viewed by 1238
Abstract
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to [...] Read more.
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to air, water, and soil degradation and are linked to severe health conditions in nearby populations, including respiratory disorders, cardiovascular diseases, and increased mortality rates. Noise pollution is also a significant issue, inducing auditory diseases that affect most workers in cement plants, and disturbing the population living in the neighborhoods and fauna behavior. This review explores the pollution paths and the multifaceted impacts of cement production on the environment. It also highlights the social challenges faced by communities, underscoring the urgent need for stricter environmental policies and the adoption of greener technologies to mitigate the adverse effects of cement production on both the environment and human health. Full article
Show Figures

Graphical abstract

18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 440
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

20 pages, 4381 KiB  
Article
Silvicultural and Ecological Characteristics of Populus bolleana Lauche as a Key Introduced Species in the Urban Dendroflora of Industrial Cities
by Vladimir Kornienko, Valeriya Reuckaya, Alyona Shkirenko, Besarion Meskhi, Anastasiya Olshevskaya, Mary Odabashyan, Victoria Shevchenko and Svetlana Teplyakova
Plants 2025, 14(13), 2052; https://doi.org/10.3390/plants14132052 - 4 Jul 2025
Viewed by 392
Abstract
In this work, we evaluated the silvicultural and ecological parameters of Populus bolleana Lauche trees growing in conditions of anthropogenic pollution, using the example of one of the largest megacities of the Donetsk ridge, the city of Donetsk. The objectives of this study [...] Read more.
In this work, we evaluated the silvicultural and ecological parameters of Populus bolleana Lauche trees growing in conditions of anthropogenic pollution, using the example of one of the largest megacities of the Donetsk ridge, the city of Donetsk. The objectives of this study included determining the level of anthropogenic load of the territory; conducting dendrological studies to assess morphometric and allometric parameters, age structure, and condition of P. bolleana stands under the influence of environmental factors; as well as completing biomechanical studies to assess and predict the mechanical stability of stands. A total of 1109 plants growing in areas with increased anthropogenic load and in the control areas were studied. The model territories of the study were located in the city of Donetsk on Fallen Communards Avenue (length of field routes: 2.6 km) and Ilyicha Avenue (length of field routes: 9.7 km). Control plantings grew on the territory of the Donetsk botanical garden and residential (dormitory) districts of the city. The age structure of P. bolleana plantations remained uniform throughout the city for 50–55 years due to the fact that the landscaping was under a single state program. In the steppe zone in the south of the East European Plain, with a high level of anthropogenic load and severe natural climatic factors, the critical age of P. bolleana (55 years) was determined. The condition of plantations and their morphometric indices correlate with the level of anthropogenic load of the city (H, Dbase, DBH). Under control conditions, the plants are in good condition with signs of weakening (2 points). Under conditions of increased anthropogenic load, the plants are in a severely weakened condition (3 points). A total of 25% of the plants in the sample are in critical condition (4–5 points). The main damages to the crowns and trunks of plants include core rot, mechanical damage to bark and tissues, the development of core rot through the affected skeletal branch, crown thinning, and drying. P. bolleana trees are valued for their crown area and ability to retain dust particles from the air. The analysis of experimentally obtained data on the crown area showed that in the initial phases of ontogenesis, the average deviation in the crown area of plants does not depend on the place of growth. Due to artificial narrowing and sanitary pruning of the crown, as well as skeletal branches dying along the busiest highways, the values do not exceed 22–23 m2 on average, with an allometric coefficient of 0.35–0.37. When comparing this coefficient in the control areas, the crown area in areas with a high level of anthropogenic load is 36 ± 11% lower. For trees growing under the conditions of the anthropogenic load of an industrial city and having reached the critical age, mechanical resistance varied depending on the study area and load level. At sites with a high level of pollution of the territory, a significant decrease in indicators was revealed in comparison with the control (mcr—71%, EI—75%, RRB—43%). Having analyzed all the obtained data, we can conclude that, until the age of 50–55 years, P. bolleana retains good viability, mechanical resistance, and general allometric ratios, upon which the stability of the whole plant depends. Even with modern approaches and tendencies toward landscaping with exotic introductions, it is necessary to keep P. bolleana as the main species in dendrobanocenoses. Full article
(This article belongs to the Special Issue Plants for Biodiversity and Sustainable Cities)
Show Figures

Figure 1

17 pages, 2261 KiB  
Article
Impact of Multiple Factors on Temperature Distribution and Output Performance in Dusty Photovoltaic Modules: Implications for Sustainable Solar Energy
by Weiping Zhao, Shuai Hu and Zhiguang Dong
Energies 2025, 18(13), 3411; https://doi.org/10.3390/en18133411 - 28 Jun 2025
Viewed by 346
Abstract
Enhancing solar photovoltaic (PV) power generation is fundamental to achieving energy sustainability goals. However, elevated module temperatures can diminish photoelectric conversion efficiency and output power, impacting the safe and efficient operation of PV modules. Therefore, understanding module temperature distribution is crucial for predicting [...] Read more.
Enhancing solar photovoltaic (PV) power generation is fundamental to achieving energy sustainability goals. However, elevated module temperatures can diminish photoelectric conversion efficiency and output power, impacting the safe and efficient operation of PV modules. Therefore, understanding module temperature distribution is crucial for predicting power generation performance and optimizing cleaning schedules in PV power plants. To investigate the combined effects of multiple factors on the temperature distribution and output power of dusty PV modules, a heat transfer model was developed. Validation against experimental data and comparisons with the NOCT model demonstrated the validity and advantages of the proposed model in accurately predicting PV module behavior. This validated model was then employed to simulate and analyze the influence of various parameters on the temperature of dusty modules and to evaluate the module output power, providing insights into sustainable PV energy generation. Results indicate that the attenuation of PV glass transmittance due to dust accumulation constitutes the primary determinant of the lower temperature observed in dusty modules compared to clean modules. This highlights a significant factor impacting long-term performance and resource utilization efficiency. Dusty module temperature exhibits a positive correlation with irradiance and ambient temperature, while displaying a negative correlation with wind speed and dust accumulation. Notably, alignment of wind direction and module orientation enhances module heat dissipation, representing a passive cooling strategy that promotes efficient and sustainable operation. At an ambient temperature of 25 °C and a wind speed of 3 m/s, the dusty module exhibits a temperature reduction of approximately 11.0% compared to the clean module. Furthermore, increasing the irradiance from 200 W/m2 to 800 W/m2 results in an increase in output power attenuation from 51.4 W to 192.6 W (approximately 30.4% attenuation rate) for a PV module with a dust accumulation of 25 g/m2. This underscores the imperative for effective dust mitigation strategies to ensure long-term viability, economic sustainability, and optimized energy yields from solar energy investments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 667 KiB  
Article
Exposure to Airborne Contaminants and Respiratory Health Among Lithium Mine Workers in Western Australia
by David Gbondo, Viviana Cerpa-Perez, Ngoc Minh Pham, Yun Zhao and Krassi Rumchev
Environments 2025, 12(6), 206; https://doi.org/10.3390/environments12060206 - 17 Jun 2025
Viewed by 619
Abstract
Background: Lithium is an essential commodity; however, its mining and processing can expose miners to airborne contaminants such as inhalable dust, respirable dust and respirable crystalline silica. These exposures may adversely affect respiratory health. To protect the health of miners, exposure assessment and [...] Read more.
Background: Lithium is an essential commodity; however, its mining and processing can expose miners to airborne contaminants such as inhalable dust, respirable dust and respirable crystalline silica. These exposures may adversely affect respiratory health. To protect the health of miners, exposure assessment and control activities are required, followed by respiratory health monitoring to assess the effect of exposure on respiratory health. This study aimed to investigate the relationship between workgroup exposure to airborne contaminants and respiratory health. To determine group exposure levels, exposure data was collected at the group level, which limits individual-level inference, followed by health monitoring. Methods: Industry health monitoring data were collected from miners in three surface lithium mines in Western Australia for the period between October 2023 and October 2024. Miners from Management Administration & Technical, Crusher/Dry/Wet Plant, and Laboratory Operations participated in a pulmonary function test, completed a health and exposure questionnaire and underwent a low dose high-resolution computed tomography. Multivariable linear and logistic regression models were fitted to identify factors associated with lung function and respiratory symptoms. Results: Older age, smoking and pre-existing respiratory conditions were correlated with poor respiratory airflow. The odds of having a respiratory obstruction or restriction were significantly higher by 3.942 and 2.165 times respectively, for miners who were 40 years old or above, and those who had existing diagnosed respiratory medical conditions. The risk of coughing among current smokers was more than four times higher compared to non-smokers. In addition, working in Crushing and Processing was significantly associated with the risk of experiencing respiratory symptoms compared to working in Management Administration & Technical and Laboratory Operations. Conclusions: The study demonstrated that respiratory health was influenced by non-work-related risk factors. Based on these results, it is recommended that health promotion programs be developed and implemented to empower miners to cease smoking and to manage non-work-related respiratory conditions. Full article
(This article belongs to the Special Issue Environmental Pollutant Exposure and Human Health)
Show Figures

Figure 1

17 pages, 2158 KiB  
Article
Study on the Impact of Large-Scale Photovoltaic Systems on Key Surface Parameters in Desert Area Regions of Xinjiang, China
by Junxia Jiang, Huan Du, Huihui Yin and Hongbo Su
Energies 2025, 18(12), 3170; https://doi.org/10.3390/en18123170 - 17 Jun 2025
Viewed by 360
Abstract
This study evaluated the effects of photovoltaic (PV) arrays on critical surface parameters through analysis of observational data collected from a utility-scale PV power station located in Wujiaqu City, Xinjiang, in 2021. The results reveal that: (1) Installation of PV panels reduces surface [...] Read more.
This study evaluated the effects of photovoltaic (PV) arrays on critical surface parameters through analysis of observational data collected from a utility-scale PV power station located in Wujiaqu City, Xinjiang, in 2021. The results reveal that: (1) Installation of PV panels reduces surface albedo, which is significantly altered by dust storm conditions; (2) the installation of PV arrays increases the aerodynamic and thermal roughness length by increasing the frictional velocity across the mixed underlying surface; (3) the overall transport coefficients within the PV plant are higher than that of the reference site, with greater diurnal variation than nocturnal variation. The overall transport coefficient is highest in the unstable stratification conditions and lowest under stable stratification conditions; and (4) soil thermal property parameters exhibit seasonal variations. Significant changes in thermal conductivity and specific heat capacity were observed during spring thaw, high and fluctuating diffusivity in summer, and low and stable values in winter. The findings demonstrate that installing PV arrays in arid regions modifies surface energy balance and heat transfer characteristics. This provides a basis for optimizing PV station layouts and conducting climate impact assessments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

14 pages, 2529 KiB  
Article
Stachydrine Showing Metabolic Changes in Mice Exposed to House Dust Mites Ameliorates Allergen-Induced Inflammation
by Ji-Hye Do, Jung Yeon Hong, Ji-Hye Jang, Kyu-Tae Jeong, Seung Hyun Kim and Hye-Ja Lee
Nutrients 2025, 17(12), 2015; https://doi.org/10.3390/nu17122015 - 16 Jun 2025
Viewed by 610
Abstract
Background/Objectives: Asthma, a chronic airway inflammatory disease characterized by bronchial narrowing and caused by an inflammatory response, results in airway obstruction and hyperresponsiveness. Stachydrine (STA), an abundant metabolite found in plants and humans, is recognized for its bioactivity in treating fibrosis, cancer, and [...] Read more.
Background/Objectives: Asthma, a chronic airway inflammatory disease characterized by bronchial narrowing and caused by an inflammatory response, results in airway obstruction and hyperresponsiveness. Stachydrine (STA), an abundant metabolite found in plants and humans, is recognized for its bioactivity in treating fibrosis, cancer, and inflammation. However, its effects on asthma have not been fully elucidated. We aimed to investigate the ameliorating effects of STA on chronic airway inflammation caused by Dermatophagoides pteronyssinus (house dust mite, HDM). Methods: We used a murine model of HDM-induced airway inflammation to assess the change in metabolite profile by chronic airway inflammation. The mice were challenged with HDM (35 challenges in total) for up to 12 weeks. Serum metabolites were analyzed using capillary electrophoresis time-of-flight mass spectrometry. Results: HDM exposure increased airway hypersensitivity, immune cell infiltration, cytokine production, goblet cell hyperplasia, collagen deposition, and alpha smooth muscle actin and fibronectin expression. Serum metabolite analysis revealed that STA levels were lower in the mice with HDM-induced chronic inflammation than in the controls. In vitro analyses demonstrated that HDM sensitization increased cytokine production (interleukin [IL]-6 and IL-8) and extracellular signal-regulated kinase (ERK) activity. However, STA treatment reduced HDM-induced IL-6 and IL-8 production and ERK activity. Co-treatment with a mitogen-activated protein kinase (MAPK) inhibitor and STA resulted in a more pronounced reduction in cytokine production and MAPK activity. Conclusions: These findings suggest that STA, particularly when used in combination with a MAPK inhibitor, effectively suppresses airway inflammation through ERK pathway inhibition, making it a potential therapeutic agent for asthma treatment. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

15 pages, 5585 KiB  
Article
Revegetation of Thermal Power Plant Ash Dumps or Sustainable Urban Development
by Lyudmila Ivanovna Khudyakova, Natalya Mikhailovna Garkusheva, Pavel Leonidovich Paleev, Irina Yurievna Kotova, Darya Petrovna Khomoksonova, Pavel Anatolyevich Gulyashinov and Inna Germanovna Antropova
Urban Sci. 2025, 9(6), 210; https://doi.org/10.3390/urbansci9060210 - 5 Jun 2025
Viewed by 559
Abstract
The goal of this study is to safely reduce dust emissions from ash dumps and create green landscapes at waste storage sites. The most effective way to achieve this is through revegetation, which allows ash dumps to be transformed into green landscapes. Unlike [...] Read more.
The goal of this study is to safely reduce dust emissions from ash dumps and create green landscapes at waste storage sites. The most effective way to achieve this is through revegetation, which allows ash dumps to be transformed into green landscapes. Unlike similar studies, this paper examines the revegetation of a sand-covered ash dump under the extreme conditions of a sharply continental climate. The following perennial plant species were selected: Festuca pratensis, Bromus inermis, and Medicago polymorpha. Laboratory studies revealed that Festuca pratensis was the most adapted to the laboratory conditions in an indoor environment, while Medicago polymorpha showed poor development. The maximum height reached by Festuca pratensis was 0.27 m, Bromus inermis reached 0.23 m, and Medicago polymorpha reached 0.10 m. In the field experiments, over three months of vegetation, maximum plant heights were as follows: Festuca pratensis—0.09 m, Bromus inermis—0.11 m, and Medicago polymorpha—0.30 m. Medicago polymorpha exhibited a higher rate of development compared to the grasses. Thus, revegetating ash dumps from thermal power plants presents a promising solution for creating green spaces, aligning with the principles of sustainable urban development. Full article
Show Figures

Figure 1

12 pages, 1068 KiB  
Article
Enhancing Transplanting Success in Restoration of Degraded Areas Using Peat-Free Substrates
by Silvia Traversari, Sara Di Lonardo, Simone Orsenigo, Daniele Massa, Beatrice Nesi, Lino Zubani and Sonia Cacini
Plants 2025, 14(10), 1450; https://doi.org/10.3390/plants14101450 - 13 May 2025
Viewed by 449
Abstract
Native plant species used for ecological restoration in urban and degraded areas are typically cultivated by ornamental and forestry nurseries. In the face of climate change, it is crucial to produce plants that can withstand transplant stress while promoting the use of sustainable [...] Read more.
Native plant species used for ecological restoration in urban and degraded areas are typically cultivated by ornamental and forestry nurseries. In the face of climate change, it is crucial to produce plants that can withstand transplant stress while promoting the use of sustainable materials, such as peat-free substrates. Replacing peat with locally sourced organic materials offers a promising strategy to enhance plant resilience to abiotic stress while improving sustainability. This study evaluated the effects of alternative growing media on the growth and post-transplant performance of Viburnum lantana L. under standard nursery conditions. Three substrate mixtures were tested: (i) peat:pumice 70:30 v:v (PP); (ii) coconut coir dust:pumice 70:30 v:v (CP); (iii) coconut coir dust:green compost 55:45 v:v (CGC). After one year in the nursery, half of the plants were sampled in late spring for biometric, eco-physiological, and nutrient analyses, while the remaining plants were transplanted into a degraded area providing only a single irrigation event during the trial. Approximately 100 days after transplant, biometric and eco-physiological parameters were assessed. Plants grown on CGC demonstrated the highest transplant success, while those grown on PP and CP exhibited greater leaf necrosis, with PP plants also showing significant defoliation. These findings highlight CGC as a viable and sustainable alternative to peat-based substrates, particularly for post-transplant survival in degraded areas prone to drought stress. Full article
(This article belongs to the Special Issue Effect of Growing Media on Plant Performance)
Show Figures

Graphical abstract

21 pages, 15399 KiB  
Article
Research on the Inversion Method of Dust Content on Mining Area Plant Canopies Based on UAV-Borne VNIR Hyperspectral Data
by Yibo Zhao, Shaogang Lei, Xiaotong Han, Yufan Xu, Jianzhu Li, Yating Duan and Shengya Sun
Drones 2025, 9(4), 256; https://doi.org/10.3390/drones9040256 - 27 Mar 2025
Cited by 1 | Viewed by 367
Abstract
Monitoring dust on plant canopies around open-pit coal mines is crucial to assessing environmental pollution and developing effective dust suppression strategies. This research focuses on the Ha’erwusu open-pit coal mine in Inner Mongolia, China, using measured dust content on plant canopies and UAV-borne [...] Read more.
Monitoring dust on plant canopies around open-pit coal mines is crucial to assessing environmental pollution and developing effective dust suppression strategies. This research focuses on the Ha’erwusu open-pit coal mine in Inner Mongolia, China, using measured dust content on plant canopies and UAV-borne VNIR hyperspectral data as the data sources. The study employed five spectral transformation forms—first derivative (FD), second derivative (SD), logarithm transformation (LT), reciprocal transformation (RT), and square root (SR)—alongside the competitive adaptive reweighted sampling (CARS) method to extract characteristic bands associated with canopy dust. Various regression models, including extreme learning machine (ELM), random forest (RF), partial least squares regression (PLSR), and support vector machine (SVM), were utilized to establish dust inversion models. The spatial distribution of canopy dust was then analyzed. The results demonstrate that the geometric and radiometric correction of the UAV-borne VNIR hyperspectral images successfully restored the true spatial information and spectral features. The spectral transformations significantly enhance the feature information for canopy dust. The CARS algorithm extracted characteristic bands representing 20 to 30% of the total spectral bands, evenly spread across the entire range, thereby reducing the estimation model’s computational complexity. Both feature extraction and model selection influence the inversion accuracy, with the LT-CARS and RF combination offering the best predictive performance. Canopy dust content decreases with increasing distance from the dust source. These findings offer valuable insights for canopy dust retention monitoring and offer a solid foundation for dust pollution management and the development of suppression strategies. Full article
Show Figures

Figure 1

Back to TopTop