Study on the Impact of Large-Scale Photovoltaic Systems on Key Surface Parameters in Desert Area Regions of Xinjiang, China
Abstract
:1. Introduction
2. Observation Experiment, Study Design, and Methods
2.1. Site Characteristics
2.2. Study Design
2.3. Method
2.3.1. Surface Albedo
2.3.2. Surface Roughness
2.3.3. Overall Transfer Coefficient
2.3.4. Soil Thermal Properties
3. Results and Discussion
3.1. Characteristics of Surface Albedo Variation
3.2. Characteristics of Surface Roughness Variation
3.3. Characteristics of Overall Transfer Coefficient
3.4. Characterization of Soil Thermal Properties Variation
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, T.Y.; Chiu, Y.H.; Chen, C.H.; Ji, L. Renewable energy consumption efficiency, greenhouse gas emission efficiency, and climate change in Europe. Geoenergy Sci. Eng. 2025, 247, 213665. [Google Scholar] [CrossRef]
- Lenton, T.M.; Rockström, J.; Gaffney, O.; Rahmstorf, S.; Richardson, K.; Steffen, W.; Schellnhuber, H.J. Climate tipping points—Too risky to bet against. Nature 2019, 575, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Breyer, C.; Bogdanov, D.; Gulagi, A.; Aghahosseini, A.; Barbosa, L.; Koskinen, O.; Barasa, M.; Caldera, U.; Afanasyeva, S.; Child, M.; et al. On the role of solar photovoltaics in global energy transition scenarios. Prog. Photovolt. 2017, 25, 727–745. [Google Scholar] [CrossRef]
- Rao, A.; Kumar, S.; Karim, S. Accelerating renewables: Unveiling the role of green energy markets. Appl. Energy 2024, 366, 123286. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.; J Al-Musawi, T.; Mahmood Ali, B.; Algburi, S.; Alzoubi, H.M.; Khudhair Al-Jiboory, A.; Zuhair Sameen, A.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- National Electric Automobile (NEA). Operation of Renewable Energy Grid Integration in 2024. Available online: https://www.nea.gov.cn/20250221/e10f363cabe3458aaf78ba4558970054/c.html (accessed on 27 January 2025).
- Taha, H. The potential for air-temperature impact from large-scale deployment of solar photovoltaic arrays in urban areas. Sol. Energy 2013, 91, 358–367. [Google Scholar] [CrossRef]
- Kumar, L.; Ahmed, J.; El Haj Assad, M.; Hasanuzzaman, M. Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review. Energies 2022, 15, 8501. [Google Scholar] [CrossRef]
- Huot, M.; Kumar, L.; Selvaraj, J.; Hasanuzzaman, M.; Rahim, N.A.; El Haj Assad, M. Performance Investigation of Tempered Glass-Based Monocrystalline and Polycrystalline Solar Photovoltaic Panels. Int. J. Photoenergy 2021, 2021, 2335805. [Google Scholar] [CrossRef]
- Kumar, L.; Hasanuzzaman, M.; Rahim, N.A. Real-Time Experimental Performance Assessment of a Photovoltaic Thermal System Cascaded with Flat Plate and Heat Pipe Evacuated Tube Collector. J. Sol. Energy Eng. 2021, 144, 011004. [Google Scholar] [CrossRef]
- Abed, F.M.; Ahmed, A.H.; Hasanuzzaman, M.; Kumar, L.; Hamaad, N.M. Experimental investigation on the effect of using chemical dyes on the performance of single-slope passive solar still. Sol. Energy 2022, 233, 71–83. [Google Scholar] [CrossRef]
- Zarakas, C.M.; Kennedy, D.; Dagon, K.; Lawrence, D.M.; Liu, A.; Bonan, G.; Koven, C.; Lombardozzi, D.; Swann, A.L.S. Land Processes Can Substantially Impact the Mean Climate State. Geophys. Res. Lett. 2024, 51, e2024GL108372. [Google Scholar] [CrossRef]
- Xueli, S. Research on Land-Surface Process Modeling—A review. J. Appl. Meteorol. Sci. 2001, 12, 102–112. [Google Scholar]
- Businger, J.A.; Wyngaard, J.C.; Izumi, Y.; Norman, J.M. Turbulent flux profiles in the convective boundary layer. J. Atmos. Sci. 1971, 28, 181–189. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Tschopp, D.; Jensen, A.R.; Dragsted, J.; Ohnewein, P.; Furbo, S. Measurement and modeling of diffuse irradiance masking on tilted planes for solar engineering applications. Sol. Energy 2022, 231, 365–378. [Google Scholar] [CrossRef]
- Chang, R.; Shen, Y.B.; Luo, Y.; Wang, B.; Yang, Z.B.; Guo, P. Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaics in the barren area of Gonghe, China. Renew. Energy 2018, 118, 131–137. [Google Scholar] [CrossRef]
- Helbig, M.; Gerken, T.; Beamesderfer, E.R.; Baldocchi, D.D.; Banerjee, T.; Biraud, S.C.; Brown, W.O.J.; Brunsell, N.A.; Burakowski, E.A.; Burns, S.P.; et al. Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions. Agric. For. Meteorol. 2021, 307, 108509. [Google Scholar] [CrossRef]
- Rui, S. Simulation Study on the Characteristics of Land Surface Processes in the Cold Zone. Master’s Thesis, Lanzhou University, Lanzhou, China, 2007. [Google Scholar]
- Cortes, A.; Murashita, Y.; Matsuo, T.; Kondo, A.; Shimadera, H.; Inoue, Y. Numerical evaluation of the effect of photovoltaic cell installation on urban thermal environment. Sustain. Cities Soc. 2015, 19, 250–258. [Google Scholar] [CrossRef]
- Xu, Z.J.; Li, Y.; Qin, Y.Z.; Bach, E. A global assessment of the effects of solar farms on albedo, vegetation, and land surface temperature using remote sensing. Sol. Energy 2024, 268, 112198. [Google Scholar] [CrossRef]
- Guosheng, W.; Qing, H.; Hongyan, X.; Xu, T. Surface Radiation Budget and Surface Albedo Characteristics in Eastern Pamir Plateau. Plateau Meteorol. 2023, 42, 619–631. [Google Scholar] [CrossRef]
- Yanlong, G.; Ranghui, W.; Jian, Y.; Jinkai, Q.; Mian, Z. Characterisation of surface albedo in the Tianshan region in the context of climate change. Arid Zone Geogr. 2015, 38, 351–358. [Google Scholar] [CrossRef]
- Han, S.S.; Ghafoor, U.; Saeed, T.; Elahi, H.; Masud, U.; Kumar, L.; Selvaraj, J.; Ahmad, M.S. Silicon Particles/Black Paint Coating for Performance Enhancement of Solar Absorbers. Energies 2021, 14, 7140. [Google Scholar] [CrossRef]
- Basuhaib, A.; Selvaraj, J.; Hasanuzzaman, M.; Anjum, T.; Kumar, L. Experimental investigation the effect of different operating parameters and optimized the water-based PVT system for domestic applications. Sol. Energy 2024, 268, 112278. [Google Scholar] [CrossRef]
- Hossain, M.S.; Kumar, L.; Arshad, A.; Selvaraj, J.; Pandey, A.K.; Rahim, N.A. A Comparative Investigation on Solar PVT- and PVT-PCM-Based Collector Constancy Performance. Energies 2023, 16, 2224. [Google Scholar] [CrossRef]
- Beljaars, A.C.M.; Holtslag, A.A.M. Flux Parameterization over Land Surfaces for Atmospheric Models. J. Appl. Meteorol. Climatol. 1991, 30, 327–341. [Google Scholar] [CrossRef]
- Liu, J.Q.; Kimura, R.; Miyawaki, M.; Kinugasa, T. Effects of plants with different shapes and coverage on the blown-sand flux and roughness length examined by wind tunnel experiments. Catena 2021, 197, 104976. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Reidel Publishing Co.: Dordrecht, The Netherlands, 1988; Volume 115. [Google Scholar]
- Di, X. Research on Soil Thermal Condition and Its Effect on Energy Balance in the Tibetan Plateau. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2009. [Google Scholar]
- Junxia, J. Research on Land Surface Process Characteristics and Parameterisation Scheme for Large-Scale Photovoltaic Power Plants in Desert Areas. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2021. [Google Scholar]
- Yaoming, M. Mount Everest Integrated Atmosphere and Environment Observatory of the Chinese Academy of Sciences: A new integrated base for studying the earth-air interaction processes in the Himalayas. Highl. Meteorol. 2007, 26, 1141–1145. [Google Scholar]
- Jiang, J.; Gao, X.; Bolong, C.J.A. The Impact of Utility-Scale Photovoltaics Plant on Near Surface Turbulence Characteristics in the Barren Areas. Atmosphere 2020, 12, 18. [Google Scholar] [CrossRef]
- Monin, A.; Obukhov, S. Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst. 1954, 24, 163–187. [Google Scholar]
- Patil, M.N. Aerodynamic drag coefficient and roughness length for three seasons over a tropical western Indian station. Athmos. Res. 2006, 80, 280–293. [Google Scholar] [CrossRef]
- Shengjie, N.; Lijuan, Z.; Chunsheng, L.; Jun, Y.; Jing, W.; Weiwei, W. Observational Evidence for the Monin-Obukhov Similarity under All Stability Conditions. Adv. Atmos. Sci. 2012, 29, 285–294. [Google Scholar]
- Zhen, Y.; Yiping, Z.; Guirui, Y. Characteristics of atmospheric stability at the boundary of atmosphere-tropical seasonal rainforest canopy in Xishuangbanna of Southwest China. Chin. J. Ecol. 2008, 27, 130–134. (In Chinese) [Google Scholar] [CrossRef]
- Lewellen, W.S.; Teske, M. Prediction of the Monin-Obukhov Similarity Functions from an Invariant Model of Turbulence. J. Atmos. Sci. 1973, 30, 1340–1345. [Google Scholar] [CrossRef]
- Zhi-Qiu, G.; Lingen, B.; Yabin, Z. Analytical solution of soil heat conduction equation and study of soil heat diffusivity in Nagqu. J. Meteorol. 2002, 03, 352–360. [Google Scholar]
- Bhumralkar, C.M. Numerical Experiments on the Computation of Ground Surface Temperature in an Atmospheric General Circulation Model. J. Appl. Meteorol. Climatol. 1975, 14, 1246–1258. [Google Scholar] [CrossRef]
- de Silans, A.M.B.P.; Monteny, B.A.; Lhomme, J.P. Apparent soil thermal diffusivity, a case study: HAPEX-Sahel experiment. Agric. For. Meteorol. 1996, 81, 201–216. [Google Scholar] [CrossRef]
- Horton, R.; Wierenga, P.J.; Nielsen, D.R. Evaluation of Methods for Determining the Apparent Thermal Diffusivity of Soil Near the Surface. Soil Sci. Soc. Am. J. 1983, 47, 25–32. [Google Scholar] [CrossRef]
- Miao, Y.C.; Liu, S.-H.; Lü, S.-H.; Zhang, Y. A comparative study of computing methods of soil thermal diffusivity, temperature and heat flux. Chin. J. Geophys. 2012, 55, 441–451. [Google Scholar] [CrossRef]
- Gao, Z.Q.; Tong, B.; Horton, R.; Mamtimin, A.; Li, Y.B.; Wang, L.L. Determination of Desert Soil Apparent Thermal Diffusivity Using a Conduction-Convection Algorithm. J. Geophys. Res.-Atmos. 2017, 122, 9569–9578. [Google Scholar] [CrossRef]
- Heusinger, J.; Broadbent, A.M.; Sailor, D.J.; Georgescu, M. Introduction, evaluation and application of an energy balance model for photovoltaic modules. Sol. Energy 2020, 195, 382–395. [Google Scholar] [CrossRef]
- Maimaitiaili, M.; Ajiguli, S.; Wang, Y.; Gao, J.; Liu, J.; Ju, C. Land Surface Process Parameters and Offline Simulation of Land Surface Models in the Hei Gobi of Eastern Xinjiang. Desert Oasis Meteorol. 2024, 18, 20–27. [Google Scholar]
- Qiang, Z.; Ronghui, H.; Hui, T. A Parameterization Scheme of Surface Turbulent Momentum and Sensible Heat over the Gobi Underlying Surface. Adv. Atmos. Sci. 2003, 20, 111–118. [Google Scholar] [CrossRef]
- Liu, T.; Jia, X.; Chen, D.; Yixi, L.; Zhang, Y.; Pan, K.; Zhang, Z. Surface aerodynamic characteristics of flat quicksand in the middle reaches of Yarlung Tsangpo River. Desert China 2023, 43, 194–203. [Google Scholar]
- Qiang, Z.; Guoan, W.; Ronghui, H. Overall Transfer Coefficients of Momentum and Sensible Heat over Desert and Gobi in the Arid Region of Northwest China. Earth Sci. 2001, 31, 783–792. [Google Scholar]
- Wang, Y.; Maimaitiaili, M.; Qing, H.; Xinghua, Y.; Wen, H.; Jiantao, Z. Characteristics of surface energy balance at the northern edge of Taklamakan Desert. Desert Oasis Meteorol. 2014, 8, 34–41. [Google Scholar]
- Yu, W.; Zeyong, H.; Xueyi, X.; Lijiao, X.; Pengcheng, X. Optimization and Validation of Soil Thermal Conductivity Parametrization Scheme on the Northern Tibetan Plateau. Plateau Meteorol. 2013, 32, 646–653. [Google Scholar]
- Qiang, Z.; Xiaoyun, C.; Guoan, W.; Rronghui, H. Impact of Climate Change on Water Resources in Cold and Arid Regions. J. Cold Arid Reg. Environ. Eng. 2010, 32, 345–356. [Google Scholar]
- Yongqiang, L.; Qing, H.; Hongsheng, Z.; Mamtimin, A. Study on Land-Atmosphere Interaction Parameters in the Inland of the Taklimakan Desert. Plateau Meteorol. 2011, 30, 1294–1299. [Google Scholar]
- Xingbing, Z. Study on Surface Energy Balance Characteristics and Turbulent Flux Parametrization over Gobi in Western Tibetan Plateau. Ph.D. Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2021. [Google Scholar]
- Hui, Z.; Shuhua, L. Parameterization and Simulation of Desert Land Surface Processes. Chin. J. Geophys. 2013, 56, 2207–2217. [Google Scholar] [CrossRef]
- Gao, X.; Yang, L.; Lv, F. Study on the effect of photovoltaic power plant on soil temperature in Golmud desert area. Acta Energiae Solaris Sin. 2016, 37, 1439–1445. [Google Scholar]
- Sun, H.; Luo, Y.; Zhao, Z.; Chang, R. The impacts of Chinese wind farms on climate. J. Geophys. Res. Atmosphere 2018, 123, 5177–5187. [Google Scholar] [CrossRef]
- Yang, L.W. Study on Local Climate Effect of the Large Solar Farm in Desert Areas of Golmud. Master’s Thesis, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences, Beijing, China, 2015. (In Chinese). [Google Scholar]
- Chang, R.; Yan, Y.; Luo, Y.; Xiao, C.; Wu, C.; Jiang, J.; Shiz, W. A coupled WRF-PV mesoscale model simulating the near-surface climate of utility-scale photovoltaic plants. Sol. Energy 2022, 245, 278–289. [Google Scholar] [CrossRef]
Instrument Name | Instrument Model | Measuring Height/Depth | Accurate |
---|---|---|---|
Four-component net radiation sensing | CNR4 (Kipp & Zonen, Delft, Holland) | 1.5, 10 m | 5~10 μv/W/m2 |
Ultraviolet radiation sensor | CUV5 (Kipp & Zonen, Delft, Holland) | 1.5, 10 m | 7~20 μv/W/m2 |
Soil heat flux sensor | Campbell HFP01 (Logan, UT, USA) | 5, 20 cm | 50 μv/W/m2 |
Soil moisture sensors | Campbell CS616-L (Logan, UT, USA) | 5, 10, 20, 40, 80, 180 cm | ±2.5% |
Soil temperature sensors | Campbell 109SS-L (Logan, UT, USA) | ±0.2 K | |
Ultrasonic eddy current system | Campbell IRGASON-IC-BB (Logan, UT, USA) | 5.5 m, 3 m | ±8 cm/s |
Date | Climatic Conditions | Date | Climatic Conditions |
---|---|---|---|
22 June 2021 | Clear sky | 3 July 2021 | Cloudy |
28 June 2021 | Overcast | 30 July 2021 | Light rain |
14 August 2021 | Moderate rain | 25 August 2021 | Dust storm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Du, H.; Yin, H.; Su, H. Study on the Impact of Large-Scale Photovoltaic Systems on Key Surface Parameters in Desert Area Regions of Xinjiang, China. Energies 2025, 18, 3170. https://doi.org/10.3390/en18123170
Jiang J, Du H, Yin H, Su H. Study on the Impact of Large-Scale Photovoltaic Systems on Key Surface Parameters in Desert Area Regions of Xinjiang, China. Energies. 2025; 18(12):3170. https://doi.org/10.3390/en18123170
Chicago/Turabian StyleJiang, Junxia, Huan Du, Huihui Yin, and Hongbo Su. 2025. "Study on the Impact of Large-Scale Photovoltaic Systems on Key Surface Parameters in Desert Area Regions of Xinjiang, China" Energies 18, no. 12: 3170. https://doi.org/10.3390/en18123170
APA StyleJiang, J., Du, H., Yin, H., & Su, H. (2025). Study on the Impact of Large-Scale Photovoltaic Systems on Key Surface Parameters in Desert Area Regions of Xinjiang, China. Energies, 18(12), 3170. https://doi.org/10.3390/en18123170