Assessing the Influences of Leaf Functional Traits on Plant Performances Under Dust Deposition and Microplastic Retention
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling Process and Meteorological Parameters
2.3. Dust Capturing Potentiality of Leaves
2.4. Scanning Electron Microscopy (SEM) of Leaves
2.5. Isolation, Identification, and Quantification of Microplastics
2.5.1. Isolation Procedure
2.5.2. Stereomicroscope
2.5.3. Fluorescent Microscope
2.5.4. Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy
2.6. Biochemical Characterization of Plant Leaves
2.7. Quality Control and Quality Assurance for Microplastic Analysis
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandal, M.; Roy, A.; Sarkar, A. Understanding the possible cellular responses in plants under micro (nano)-plastic (MNPs): Balancing the structural harmony with functions. Sci. Total Environ. 2024, 957, 177732. [Google Scholar] [CrossRef] [PubMed]
- ISO. Plastics—Environmental Aspects—State of Knowledge and Methodologies. 2020. Available online: https://www.iso.org/obp (accessed on 1 July 2025).
- Mandal, M.; Roy, A.; Binha, S.K.; Popek, R.; Przybysz, A.; Koczoń, P.; Prasad, D.; Sarkar, A. Waste dumps as microplastic hotspots: A comparative investigation at urban, suburban, and rural areas of Eastern India and associated risk assessment. Environ. Toxicol. Chem. 2025, 44, 1869–1882. [Google Scholar] [CrossRef]
- Jeong, E.; Lee, J.Y.; Redwan, M. Animal exposure to microplastics and health effects: A review. Emerg. Contam. 2024, 10, 110369. [Google Scholar] [CrossRef]
- Mandal, M.; Roy, A.; Singh, P.; Sarkar, A. Quantification and Characterization of Airborne Microplastics and their Possible Hazards: A Case Study from an Urban Sprawl in Eastern India. Front. Environ. Chem. 2024, 5, 1499873. [Google Scholar] [CrossRef]
- Mandal, M.; Das, S.; Roy, A.; Rakwal, R.; Jones, O.A.; Popek, R.; Agrawal, G.K.; Sarkar, A. Interactive relations between plants, phyllosphere microbial community, and particulate matter pollution. Sci. Total Environ. 2023, 890, 164352. [Google Scholar] [CrossRef]
- Zhu, R.; Zhang, Z.; Zhang, N.; Zhong, H.; Zhou, F.; Zhang, X.; Liu, C.; Huang, Y.; Yuan, Y.; Wang, Y.; et al. A global estimate of multiecosystem photosynthesis losses under microplastic pollution. Proc. Natl. Acad. Sci. USA 2025, 122, e2423957122. [Google Scholar] [CrossRef]
- Mandal, M.; Sarkar, M.; Khan, A.; Biswas, M.; Masi, A.; Rakwal, R.; Agrawal, G.K.; Srivastava, A.; Sarkar, A. Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) in Plants—Maintenance of structural individuality and functional blend. Adv. Redox Res. 2022, 5, 100039. [Google Scholar] [CrossRef]
- Sahu, C.; Dash, P.K.; Basti, S. Accumulation of airborne microplastics and its impact on pollution tolerance ability of plants in an urban setup in India. Air Qual. Atmos. Health 2025, 18, 225–237. [Google Scholar] [CrossRef]
- Natsu, S.; Okochi, H.; Niida, Y.; Miyazaki, A. Accumulation of Airborne Microplastics on Forest Canopy Leaves: Insights from Trichomes and Epicuticular Waxes. Environ. Chem. Lett. 2023; preprint. [Google Scholar]
- Bi, M.; He, Q.; Chen, Y. What roles are terrestrial plants playing in global microplastic cycling? Environ. Sci. Technol. 2020, 54, 5325–5327. [Google Scholar] [CrossRef]
- Crawford, C.B.; Quinn, B. Plastic production, waste and legislation. In Microplastic Pollutants; Crawford, C.B., Quinn, B., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2017; pp. 39–56. [Google Scholar]
- Jia, L.; Liu, L.; Zhang, Y.; Fu, W.; Liu, X.; Wang, Q.; Tanveer, M.; Huang, L. Microplastic stress in plants: Effect on plant growth and their remediations. Front. Plant Sci. 2023, 14, 1226484. [Google Scholar] [CrossRef] [PubMed]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Atugoda, T.; Vithanage, M.; Wijesekara, H.; Bolan, N.; Sarmah, A.K.; Bank, M.S.; You, S.; Ok, Y.S. Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environ. Int. 2021, 149, 106367. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Batool, I.; Qadir, A.; Levermore, J.M.; Kelly, F.J. Dynamics of airborne microplastics, appraisal and distributional behavior in atmosphere; A review. Sci. Total Environ. 2022, 806, 150745. [Google Scholar] [CrossRef]
- Panda, S.S.; Sahu, C.; Basti, S.; Sahu, S.K. Particle and heavy metal accumulation by two plant species in a coal mining area of Odisha, India. Int. J. Phytoremediation 2023, 26, 838–849. [Google Scholar] [CrossRef]
- Dang, N.; Zhang, H.; Salam, M.M.A.; Li, H.; Chen, G. Foliar dust particle retention and metal accumulation of five garden tree species in Hangzhou: Seasonal changes. Environ. Pollut. 2022, 306, 119472. [Google Scholar] [CrossRef]
- Dash, P.K.; Sahu, C.; Basti, S.; Sahu, S.K. Altitude governs the air pollution tolerance and heavy metal accumulation in plants. Environ. Monit. Assess. 2023, 195, 1122. [Google Scholar] [CrossRef]
- Dowarah, K.; Patchaiyappan, A.; Thirunavukkarasu, C.; Jayakumar, S.; Devipriya, S.P. Quantification of microplastics using Nile red in two bivalve species Perna viridis and Meretrix meretrix from three estuaries in Pondicherry, India and microplastic uptake by local communities through bivalve diet. Mar. Pollut. Bull. 2020, 153, 110982. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Leitão, I.A.; Van Schaik, L.; Iwasaki, S.; Ferreira, A.J.D.; Geissen, V. Accumulation of airborne microplastics on leaves of different tree species in the urban environment. Sci. Total Environ. 2024, 948, 174907. [Google Scholar] [CrossRef] [PubMed]
- Falakdin, P.; Rosales, A.L.; Andrade, J.; Terzaghi, E.; Guardo, A.D.; Lorenzo, S.M. Comparison of microplastic type, size, and composition in atmospheric and foliage samples in an urban scenario. Environ. Pollut. 2024, 349, 123911. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Zhao, X.; Jin, P.; Gao, K.; Beardall, J. Current understanding and challenges for aquatic primary producers in a world with rising micro- and nano-plastic levels. J. Hazard. Mater. 2021, 406, 124685. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, D.; Wei, L.; Zhang, X.; Song, B. Bioaccumulation of heavy metals in plant leaves from Yan’an city of the Loess Plateau, China. Ecotoxicol. Environ. Saf. 2014, 110, 82–88. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, Z.; Li, T.; Li, M.; Cai, Z.; Wang, X.; Gong, H.; Yan, M. Mangrove plants are promising bioindicator of coastal atmospheric microplastics pollution. J. Hazard. Mater. 2024, 465, 133473. [Google Scholar] [CrossRef]
- Javanmard, Z.; Kouchaksaraei, M.T.; Pandey, H.S.M.; Pandey, A.K. Assessment of anticipated performance index of some deciduous plant species under dust air pollution. Environ. Sci. Pollut. Res. 2020, 27, 38987–38994. [Google Scholar] [CrossRef]
- Keller, T.; Schwager, H. Air pollution and ascorbic acid. Eur. J. For. Pathol. 1977, 7, 338–350. [Google Scholar] [CrossRef]
- Karmarkar, D.; Padhy, P.K. Air pollution tolerance, anticipated performance, and metal accumulation indices of plant species for greenbelt development in urban industrial area. Chemosphere 2019, 237, 124552. [Google Scholar] [CrossRef]
- Kaur, M.; Nagpal, A. Evaluation of air pollution tolerance index and anticipated performance index of plants and their application in development of green space along the urban areas. Environ. Sci. Pollut. Res. 2017, 24, 18881–18895. [Google Scholar] [CrossRef]
- Karmakar, D.; Deb, K.; Padhy, P.K. Ecophysiological responses of tree species due to air pollution for biomonitoring of environmental health in urban area. Urban Clim. 2021, 35, 100741. [Google Scholar] [CrossRef]
- Noreen, H.; Semmar, N.; Farman, M.; McCullagh, J.S. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac. J. Trop. Med. 2017, 10, 792–801. [Google Scholar] [CrossRef]
- Khalofah, A.; Migdadi, H.; El-Harty, E. Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa willd) to exogenous selenium application. Plants 2021, 10, 719. [Google Scholar] [CrossRef]
- Khanoranga, K.S. Phytomonitoring of air pollution around brick kilns in Balochistan province Pakistan through air pollution index and metal accumulation index. J. Clean. Prod. 2019, 229, 727–738. [Google Scholar] [CrossRef]
- Khatiwada, J.R.; Madsen, C.; Warwick, C.; Shrestha, S.; Chio, C.; Qin, W. Interaction between polyethylene terephthalate (PET) microplastic and microalgae (Scenedesmus spp.): Effect on the growth, chlorophyll content, and hetero-aggregation. Environ. Adv. 2023, 13, 100399. [Google Scholar] [CrossRef]
- Leonard, J.; Borthakur, A.; Koutnik, V.S.; Brar, J.; Glasman, J.; Cowger, W.; Dittrich, T.M.; Mohanty, S.K. Challenges of using leaves as biomonitoring system to assess airborne microplastic deposition on urban tree canopies. Atmos. Pollut. Res. 2023, 14, 101651. [Google Scholar] [CrossRef]
- Leonard, J.; El Rassi, L.A.; Samad, M.A.; Prehn, S.; Mohanty, S.K. The relative importance of local climate and land use on the deposition rate or airborne microplastics on terrestrial land. Atmos. Environ. 2024, 318, 120212. [Google Scholar] [CrossRef]
- Xu, L.; Li, K.; Bai, X.; Zhang, G.; Tian, X.; Tang, Q.; Zhang, M.; Hu, M.; Huang, Y. Microplastics in the atmosphere: Adsorb on leaves and their effects on the phyllosphere bacterial community. J. Hazard. Mater. 2024, 462, 132789. [Google Scholar] [CrossRef]
- Li, J.; Zheng, X.; Liu, X.; Zhang, L.; Zhang, S.; Li, Y.; Zhang, W.; Li, Q.; Zhao, Y.; Chen, X.; et al. Effect and mechanism of microplastics exposure against microalgae: Photosynthesis and oxidative stress. Sci. Total Environ. 2023, 905, 167017. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Chen, X.; He, Y.; Bolan, N.; Rinklebe, J.; Lam, S.S.; Peng, W.; Sonne, C. A discussion of microplastics in soil and risks for ecosystems and food chains. Chemosphere 2023, 313, 137637. [Google Scholar] [CrossRef]
- Li, R.; Wei, C.; Jiao, M.; Wang, Y.; Sun, H. Mangrove leaves: An undeniably important sink of MPs from tidal water and air. J. Hazard. Mater. 2022, 426, 128138. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Song, Z.; Wei, N.; Li, D. Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport. Sci. Total Environ. 2020, 742, 140523. [Google Scholar] [CrossRef]
- Yadav, H.; Sethulekshmi, S.; Shriwastav, A. Estimation of microplastic exposure via the composite sampling of drinking water, respirable air, and cooked food from Mumbai, India. Environ Res. 2022, 214, 113735. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Ma, Z.; Xu, Y.; Sun, F.; Lun, X.; Liu, X.; Chen, J.; Yu, X. Assessing the capacity of plant species to accumulate particulate matter in Beijing, China. PLoS ONE 2015, 10, e0140664. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.P.; Mishra, R.; Basti, S.; Sahu, C. Chemical fractionation of elements in leaf-deposited particulate matter of an urban area in India. Air Qual. Atmos. Health 2024, 17, 1–13. [Google Scholar] [CrossRef]
- Molnar, V.E.; Simon, E.; Tothmeresz, B.; Ninsawat, S.; Szabo, S. Air pollution induced vegetation stress—The air pollution tolerance index as a quick tool for city health evaluation. Ecol. Ind. 2020, 113, 106234. [Google Scholar] [CrossRef]
- Nadgorska-Socha, A.; Kandziora-Ciupa, M.; Trzesicki, M.; Barczyk, G. Air pollution tolerance index and heavy metal bio-accumulation in selected plant species from urban biotopes. Chemosphere 2017, 183, 471–482. [Google Scholar] [CrossRef]
- Bharti, S.K.; Trivedi, A.; Kumar, N. Air pollution tolerance index of plants growing near an industrial site. Urban Clim. 2018, 24, 820–829. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Tripathi, B.D. Anticipated performance index of some tree species considered for green belt development in and around an urban area: A case study of Varanasi city, India. J. Environ. Manag. 2008, 88, 1343–1349. [Google Scholar] [CrossRef]
- Rai, P.K. Particulate matter tolerance of plants (APTI and API) in a biodiversity hotspot located in a tropical region: Implications for eco-control. Part. Sci. Technol. 2019, 38, 193–202. [Google Scholar] [CrossRef]
- Redondo-Bermudez, M.C.; Gulenc, I.T.; Cameron, R.W.; Inkson, B.J. Green barriers’ for air pollutant capture: Leaf micromorphology as a mechanism to explain plants capacity to capture particulate matter. Environ. Pollut. 2021, 288, 117809. [Google Scholar] [CrossRef]
- Roy, A.; Bhattacharya, T.; Kumari, M. Air pollution tolerance, metal accumulation and dust capturing capacity of common tropical trees in commercial and industrial sites. Sci. Total Environ. 2020, 722, 137622. [Google Scholar] [CrossRef]
- Sahu, C.; Basti, S.; Sahu, S.K. Air pollution tolerance index (APTI) and expected performance index (EPI) of trees in Samabalpur town of India. SN Appl. Sci. 2020, 2, 1327. [Google Scholar] [CrossRef]
- Sahu, C.; Basti, S.; Sahu, S.K. Particulate collection potential of trees as a means to improve the air quality in urban areas in India. Environ. Process. 2021, 8, 377–395. [Google Scholar] [CrossRef]
- Sahu, C.; Sahu, S.K. Ambient air quality and air pollution index of Sambalpur: A major town in Eastern India. Int. J. Environ. Sci. Technol. 2019, 16, 8217–8228. [Google Scholar] [CrossRef]
- Shahrukh, S.; Hossain, S.A.; Huda, M.N.; Moniruzzaman, M.; Islam, M.M.; Shaikh, M.A.A.; Hossain, M.E. Air pollution tolerance, anticipated performance, and metal accumulation indices of four ever green tree species in Dhaka, Bangladesh. Curr. Plant Biol. 2023, 35–36, 100296. [Google Scholar]
- Sharma, O.P. Plant Taxonomy; Tata McGraw Hill Publishing Company Limited: New Delhi, India, 1993; p. 482. [Google Scholar]
- Shrestha, S.; Baral, B.; Dhital, N.B.; Yang, H.H. Assessing air pollution tolerance of plant species in vegetation traffic barriers in Kathmandu Valley, Nepal. Sustain. Environ. Res. 2021, 31, 3. [Google Scholar] [CrossRef]
- Perera, K.; Ziajahromi, S.; Nash, S.B.; Leusch, F.D. Evaluating the retention of airborne microplastics on plant leaf: Influence of leaf morphology. Environ. Pollut. 2024, 346, 123673. [Google Scholar] [CrossRef]
- Sui, M.; Lu, Y.; Wang, Q.; Hu, L.; Huang, X.; Liu, X. Distribution patterns of microplastics in various tissues of the Zhikong scallop (Chlamys farreri) and in the surrounding culture seawater. Mar. Pollut. Bull. 2020, 160, 111595. [Google Scholar] [CrossRef]
- Sun, X.; Li, H.; Guo, X.; Sun, Y.; Li, S. Capacity of six shrub species to retain atmospheric particulates with different diameters. Environ. Sci. Pollut. Res. 2018, 25, 2643–2650. [Google Scholar] [CrossRef]
- Vaid, M.; Mehra, K.; Gupta, A. Microplastics as contaminants in Indian environment: A review. Environ. Sci. Pollut. Res. 2021, 28, 68025–68052. [Google Scholar] [CrossRef]
- Vattanasit, U.; Kongpran, J.; Ikeda, A. Airborne microplastics: A narrative review of potential effects on the human respiratory system. Sci. Total Environ. 2023, 904, 166745. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Gouin, T.; Koelmans, A.A.; Scheuermann, L. Development of screening criteria for microplastic particles in air and atmospheric deposition: Critical review and applicability towards assessing human exposure. Microplastics Nanoplastics 2021, 1, 6. [Google Scholar] [CrossRef]
- Noda, S.; Fujita, M.; Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics 2007, 1, 449–458. [Google Scholar] [CrossRef]
- Nishikida, K.; Coates, J. Infrared and Raman analysis of polymers. In Handbook of Plastics Analysis; CRC Press: Boca Raton, FL, USA, 2003; pp. 198–328. [Google Scholar]
- Chércoles Asensio, R.; San Andrés Moya, M.; De la Roja, J.M.; Gómez, M. Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Anal. Bioanal. Chem. 2009, 395, 2081–2096. [Google Scholar] [CrossRef]
- Mecozzi, M.; Pietroletti, M.; Monakhova, Y.B. FTIR spectroscopy supported by statistical techniques for the structural characterization of plastic debris in the marine environment: Application to monitoring studies. Mar. Pollut. Bull. 2016, 106, 155–161. [Google Scholar] [CrossRef]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, V.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.-J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef]
- Verleye, G.A.; Roeges, N.P.; De Moor, M.O. Easy Identification of Plastics and Rubbers; iSmithers Rapra Publishing: Shrewsbury, UK, 2001. [Google Scholar]
- Beltran, M.; Marcilla, A. Fourier transform infrared spectroscopy applied to the study of PVC decomposition. Eur. Polym. J. 1997, 33, 1135–1142. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Kharazmi, A.; Faraji, N.; Hussin, R.M.; Saion, E.; Yunus, W.M.M.; Behzad, K. Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach. Beilstein J. Nanotechnol. 2015, 6, 529–536. [Google Scholar] [CrossRef]
Linear Regression Equation | R2-Value | p-Value | |
---|---|---|---|
Biochemical parameters | APTI = 15.23 − 0.28(Wind Speedmax) − 0.73(Wind Speedmin) − 0.032(Precipitation) | 0.03 | 0.79 |
Carotenoids = 0.63 + 0.10(Wind Speedmax) − 0.73(Wind Speedmin) − 0.009(Precipitation) | 0.07 | 0.43 | |
RWC = 57.99 + 0.69(Wind Speedmax) + 66.99(Wind Speedmin) − 0.16(Precipitation) | 0.11 | 0.22 | |
pH = 6.286846772 − 0.0031(Wind Speedmax) − 0.33(Wind Speedmin) + 0.0004(Precipitation) | 0.0059 | 0.98 | |
Chl-a = 1.81 − 0.095(Wind Speedmax) + 2.34(Wind Speedmin) + 0.008(Precipitation) | 0.12 | 0.21 | |
Chl-a = 0.76 − 0.029(Wind Speedmax) − 0.31(Wind Speedmin) − 0.012(Precipitation) | 0.03 | 0.76 | |
Ascorbic acid = 1.28 − 0.10(Wind Speedmax) − 0.47(Wind Speedmin) − 0.002(Precipitation) | 0.09 | 0.3 | |
Proline = 2.4 − 0.05(Wind Speedmax) − 1.6(Wind Speedmin) − 0.019(Precipitation) | 0.06 | 0.5 | |
Phenol = 0.29 + 0.01(Wind Speedmax) − 0.038(Wind Speedmin) + 0.001(Precipitation) | 0.02 | 0.83 | |
MDA = 0.95 + 0.08(Wind Speedmax) − 1.16(Wind Speedmin) − 0.021(Precipitation) | 0.06 | 0.54 | |
CAT = 0.13 − 0.005(Wind Speedmax) + 0.045(Wind Speedmin) + 0.0004(Precipitation) | 0.02 | 0.84 | |
POD = 0.028 − 0.0003(Wind Speedmax) − 0.07(Wind Speedmin) + 0.001(Precipitation) | 0.1 | 0.25 | |
SOD = 0.22 + 0.0009(Wind Speedmax) + 0.027(Wind Speedmin) − 0.006(Precipitation) | 0.08 | 0.42 | |
DDMP | Dust = 5.8 − 0.32(Wind Speedmax) − 0.10(Wind Speedmin) + 0.01(Precipitation) | 0.04 | 0.7 |
MPs = 4.22 − 0.20(Wind Speedmax) − 2.83(Wind Speedmin) + 0.05(Precipitation) | 0.030 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandal, M.; Roy, A.; Ghosh, S.; Mondal, A.; Przybysz, A.; Popek, R.; Ghosh, T.; Dash, S.K.; Agrawal, G.K.; Rakwal, R.; et al. Assessing the Influences of Leaf Functional Traits on Plant Performances Under Dust Deposition and Microplastic Retention. Atmosphere 2025, 16, 861. https://doi.org/10.3390/atmos16070861
Mandal M, Roy A, Ghosh S, Mondal A, Przybysz A, Popek R, Ghosh T, Dash SK, Agrawal GK, Rakwal R, et al. Assessing the Influences of Leaf Functional Traits on Plant Performances Under Dust Deposition and Microplastic Retention. Atmosphere. 2025; 16(7):861. https://doi.org/10.3390/atmos16070861
Chicago/Turabian StyleMandal, Mamun, Anamika Roy, Shubhankar Ghosh, Achinta Mondal, Arkadiusz Przybysz, Robert Popek, Totan Ghosh, Sandeep Kumar Dash, Ganesh Kumar Agrawal, Randeep Rakwal, and et al. 2025. "Assessing the Influences of Leaf Functional Traits on Plant Performances Under Dust Deposition and Microplastic Retention" Atmosphere 16, no. 7: 861. https://doi.org/10.3390/atmos16070861
APA StyleMandal, M., Roy, A., Ghosh, S., Mondal, A., Przybysz, A., Popek, R., Ghosh, T., Dash, S. K., Agrawal, G. K., Rakwal, R., & Sarkar, A. (2025). Assessing the Influences of Leaf Functional Traits on Plant Performances Under Dust Deposition and Microplastic Retention. Atmosphere, 16(7), 861. https://doi.org/10.3390/atmos16070861