Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (365)

Search Parameters:
Keywords = placental alterations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1926 KiB  
Article
Emotional Brain Development: Neurobiological Indicators from Fetus Through Toddlerhood
by Gerry Leisman, Rahela Alfasi and Amedeo D’Angiulli
Brain Sci. 2025, 15(8), 846; https://doi.org/10.3390/brainsci15080846 - 8 Aug 2025
Viewed by 370
Abstract
The maturation of brain regions involved in emotion regulation—particularly the amygdala and prefrontal cortex—from fetal life to age two is a dynamic process shaped by genetic and environmental factors. Early experiences, especially responsive caregiving, promote the growth of neural circuits supporting emotional expression [...] Read more.
The maturation of brain regions involved in emotion regulation—particularly the amygdala and prefrontal cortex—from fetal life to age two is a dynamic process shaped by genetic and environmental factors. Early experiences, especially responsive caregiving, promote the growth of neural circuits supporting emotional expression and regulation. In contrast, early adversity such as neglect or chronic stress may disrupt these circuits and increase vulnerability to emotional difficulties. Elevated levels of placental CRH are linked to alterations in fetal brain development related to emotion. Neurodevelopmental processes like synaptic pruning and myelination, active during the first years, further shape emotional circuitry. These findings underscore the importance of early caregiving and timely interventions in fostering healthy emotional development. The present article proposes an integrative conceptual framework for early emotional and cognitive development, combining neurobiological models with contemporary theories in developmental psychology. Full article
(This article belongs to the Special Issue Emotional Brain Development in Children)
Show Figures

Figure 1

24 pages, 3915 KiB  
Article
Prothrombotic Genetic Mutations Are Associated with Sub-Clinical Placental Vascular Lesions: A Histopathological and Morphometric Study
by Viorela-Romina Murvai, Anca Huniadi, Radu Galiș, Gelu Florin Murvai, Timea Claudia Ghitea, Alexandra-Alina Vesa and Ioana Cristina Rotar
Curr. Issues Mol. Biol. 2025, 47(8), 612; https://doi.org/10.3390/cimb47080612 - 4 Aug 2025
Viewed by 227
Abstract
Background: Inherited thrombophilia is increasingly recognized as a contributing factor to placental vascular pathology and adverse pregnancy outcomes. While the clinical implications are well-established, fewer studies have systematically explored the histopathological changes associated with specific genetic mutations in thrombophilic pregnancies. Materials and Methods: [...] Read more.
Background: Inherited thrombophilia is increasingly recognized as a contributing factor to placental vascular pathology and adverse pregnancy outcomes. While the clinical implications are well-established, fewer studies have systematically explored the histopathological changes associated with specific genetic mutations in thrombophilic pregnancies. Materials and Methods: This retrospective observational study included two cohorts of placental samples collected between September 2020 and September 2024 at a tertiary maternity hospital. Group 1 included women diagnosed with hereditary thrombophilia, and Group 2 served as controls without known maternal pathology. Placentas were examined macroscopically and histologically, with pathologists blinded to group allocation. Histological lesions were classified according to the Amsterdam Consensus and quantified using a composite score (0–5) based on five key vascular features. Results: Placental lesions associated with maternal vascular malperfusion—including infarctions, intervillous thrombosis, stromal fibrosis, villous stasis, and acute atherosis—were significantly more frequent in the thrombophilia group (p < 0.05 for most lesions). A combination of well-established thrombophilic mutations (Factor V Leiden, Prothrombin G20210A) and other genetic polymorphisms with uncertain clinical relevance (MTHFR C677T, PAI-1 4G/4G) showed moderate-to-strong correlations with histopathological markers of placental vascular injury. A composite histological score ≥3 was significantly associated with thrombophilia (p < 0.001). Umbilical cord abnormalities, particularly altered coiling and hypertwisting, were also more prevalent in thrombophilic cases. Conclusions: Thrombophilia is associated with distinct and quantifiable placental vascular lesions, even in pregnancies without overt clinical complications. The use of a histological scoring system may aid in the retrospective identification of thrombophilia-related placental pathology and support the integration of genetic and histologic data in perinatal risk assessment. Full article
(This article belongs to the Special Issue Feature Papers in Molecular Medicine 2025)
Show Figures

Figure 1

11 pages, 1677 KiB  
Article
Exposure to Treponema pallidum Alters Villous Histomorphology of Human Placentae
by Patience B. Tetteh-Quarcoo, Joana Twasam, John Ahenkorah, Bismarck Afedo Hottor, Nicholas T. K. D. Dayie, Stephen Opoku-Nyarko, Peter Ofori Appiah, Emmanuel Afutu, Fleischer C. N. Kotey, Eric S. Donkor, Emilia Asuquo Udofia, Nii Koney-Kwaku Koney, Benjamin Arko-Boham and Kevin Kofi Adutwum-Ofosu
Acta Microbiol. Hell. 2025, 70(3), 31; https://doi.org/10.3390/amh70030031 - 23 Jul 2025
Viewed by 310
Abstract
Syphilis, which is caused by Treponema pallidum, remains one of the most common congenital infection worldwide and has tremendous consequences for the mother and her developing foetus if left untreated. The complexity of the exposure to this pathogen extends beyond the well-established [...] Read more.
Syphilis, which is caused by Treponema pallidum, remains one of the most common congenital infection worldwide and has tremendous consequences for the mother and her developing foetus if left untreated. The complexity of the exposure to this pathogen extends beyond the well-established clinical manifestations, as it can profoundly affect placental histomorphology. This study aimed to compare T. pallidum-exposed placental villi structures with healthy placentae at term to evaluate the histomorphological differences using stereology. In this case-control study conducted at term (38 weeks ± 2 weeks), 78 placentae were collected from the hospital delivery suites, comprising 39 cases (T. pallidum-exposed) and 39 controls (non-exposed), who were gestational age-matched with other potential confounders excluded. Blood samples from the umbilical vein and placental basal plate were tested for syphilis, using rapid diagnostic test (RDT) kits for T. pallidum (TP) antibodies (IgG and IgM) to classify placentae as exposed to T. pallidum (cases) and non-exposed (controls). Tissue sections were prepared and stained with haematoxylin and eosin, and the mean volume densities of syncytial knots, foetal capillaries, syncytial denuded areas, and intervillous spaces were estimated using stereological methods. Statistical analysis was performed to compare the mean values between the case and control groups. Stereological assessment revealed significant differences between the T. pallidum-exposed and non-exposed groups with regard to syncytial knots (p < 0.0001), syncytial denudation (p < 0.0001), and foetal capillaries (p < 0.0001), but no significant difference in the intervillous space was found (p = 0.1592). Therefore, our study shows, for the first time, that the histomorphology of human placental villi appears to be altered by exposure to T. pallidum. It will, therefore, be interesting to determine whether these changes in the placental villi translate into long-term effects on the baby. Full article
Show Figures

Figure 1

17 pages, 2774 KiB  
Article
Chronic Morphine Treatment Leads to a Global DNA Hypomethylation via Active and Passive Demethylation Mechanisms in mESCs
by Manu Araolaza, Iraia Muñoa-Hoyos, Itziar Urizar-Arenaza, Irune Calzado and Nerea Subirán
Int. J. Mol. Sci. 2025, 26(15), 7056; https://doi.org/10.3390/ijms26157056 - 22 Jul 2025
Viewed by 336
Abstract
Epigenetic regulation, particularly DNA methylation, plays a crucial role in embryonic development by controlling gene expression patterns. The disruption of this regulation by environmental factors can have long-lasting consequences. Opioid drugs, such as morphine, are known to cross the placental barrier and affect [...] Read more.
Epigenetic regulation, particularly DNA methylation, plays a crucial role in embryonic development by controlling gene expression patterns. The disruption of this regulation by environmental factors can have long-lasting consequences. Opioid drugs, such as morphine, are known to cross the placental barrier and affect the developing central nervous system, yet their precise epigenetic effects during early development remain unclear. This study aimed to elucidate the impact of chronic morphine exposure on the DNA methylation landscape and gene expression in mouse embryonic stem cells (mESCs). mESCs were chronically exposed to morphine (10 μM for 24 h). Genome-wide bisulfite sequencing was performed to identify DNA methylation changes, while RNA sequencing (RNA-Seq) assessed corresponding gene expression alterations. Global levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) were quantified using mass spectrometry. Morphine exposure induced global DNA hypomethylation and identified 16,808 differentially methylated genes (DMGs) related to development, cell signalling, metabolism, and transcriptional regulation. Integrative transcriptomic analysis with RNA-Seq data revealed 651 overlapping genes, including alterations in key epigenetic regulators involved on DNA methylation machinery. Specifically, Tet1 was upregulated with promoter hypomethylation, while Dnmt1 was downregulated, without changes in promoter methylation after morphine exposiure. Mass spectrometry results confirmed a global decrease in 5mC levels alongside increased 5hmC, indicating the involvement of both passive and active demethylation pathways. These findings demonstrate for the first time that morphine disrupts the epigenetic homeostasis of mESCs by promoting global and gene-specific DNA demethylation, which might be key to the phenotypic changes that occur in adulthood. This work provides novel mechanistic insights into how opioid exposure during early development may lead to persistent epigenetic alterations, with potential long-term implications for neurodevelopment and disease susceptibility. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

13 pages, 1988 KiB  
Article
Genetic Diversity in the Suppressyn Gene Sequence: From Polymorphisms to Loss-of-Function Mutations
by Jun Sugimoto, Danny J. Schust, Takeshi Nagamatsu, Yoshihiro Jinno and Yoshiki Kudo
Biomolecules 2025, 15(7), 1051; https://doi.org/10.3390/biom15071051 - 21 Jul 2025
Viewed by 471
Abstract
The suppressive regulator of cell fusion, suppressyn, is specifically expressed in the human placenta and is thought to play a crucial role in trophoblast fusion or syncytialization. Previous studies have suggested that alterations in its expression are associated with aberrant placental development, [...] Read more.
The suppressive regulator of cell fusion, suppressyn, is specifically expressed in the human placenta and is thought to play a crucial role in trophoblast fusion or syncytialization. Previous studies have suggested that alterations in its expression are associated with aberrant placental development, such as the immature placental morphology observed in Down syndrome, and may contribute to the pathogenesis of fetal growth restriction. While syncytialization in trophoblasts is an essential process for normal placental development, the precise molecular causes of its dysregulation remain poorly understood. In the present study, we aimed to elucidate the potential contribution of genomic variation to the loss of suppressyn function, extending previous analyses of expression abnormalities in perinatal disorders. Through sequence analysis, (1) we identified six polymorphisms within the coding region of the suppressyn gene, and (2) discovered that certain deletions and specific amino acid substitutions result in a complete loss of suppressyn-mediated inhibition of cell fusion. Although these mutations have not yet been reported in disease-associated genomic databases, our findings suggest that comprehensive genomic studies of perinatal and other disorders may reveal pathogenic variants of suppressyn, thereby uncovering novel genetic contributions to placental dysfunction. It is also anticipated that these findings might direct the development of therapeutic strategies targeting loss-of-function mutations. Full article
Show Figures

Figure 1

17 pages, 3334 KiB  
Article
Alterations in P-glycoprotein Expression in the Placenta of Obese Rats and Humans
by Péter Szatmári, Kata Kira Kemény, Andrea Surányi, Yakov Rachamim and Eszter Ducza
Int. J. Mol. Sci. 2025, 26(14), 6976; https://doi.org/10.3390/ijms26146976 - 20 Jul 2025
Viewed by 339
Abstract
Obesity affects approximately 30% of pregnancies worldwide and is one of the leading metabolic disorders among pregnant women. Maternal obesity is often associated with placental dysfunction and structural alterations, which increase the risk of developing complications. Efflux transporters, including P-glycoprotein (P-gp), may impact [...] Read more.
Obesity affects approximately 30% of pregnancies worldwide and is one of the leading metabolic disorders among pregnant women. Maternal obesity is often associated with placental dysfunction and structural alterations, which increase the risk of developing complications. Efflux transporters, including P-glycoprotein (P-gp), may impact placental function and fetal development. Consequently, our research examined the effects of obesity on P-glycoprotein expression in both a rat model and human placental tissue. P-gp expression was measured by RT-PCR and Western blot techniques in human and rat placental tissues. Moreover, we further characterized the high-fat and high-sugar diet (HFHSD)-induced gestational obesity rat model by measuring tissue weights. Significant decreases were observed in fetal, placental, and uterus weights in the obese animals near the end of pregnancy. In obese rats, mRNA and protein expression of placental P-gp showed a reduction on gestation days 15, 20, and 22. A similar P-gp reduction was observed in the term placenta in obese women in mRNA and protein levels. We hypothesize that the reduced expression of P-gp may heighten the susceptibility of both the fetus and placenta to P-gp substrates. This alteration could potentially result in an increased risk of pregnancy complications and obesity-related drug contraindications linked to P-gp transport during pregnancy. Full article
Show Figures

Figure 1

27 pages, 7011 KiB  
Review
Conceptus Elongation, Implantation, and Early Placental Development in Species with Central Implantation: Pigs, Sheep, and Cows
by Gregory A. Johnson, Thainá Minela, Heewon Seo, Fuller W. Bazer, Robert C. Burghardt, Guoyao Wu, Ky G. Pohler, Claire Stenhouse, Joe W. Cain, Zachary K. Seekford and Dallas R. Soffa
Biomolecules 2025, 15(7), 1037; https://doi.org/10.3390/biom15071037 - 17 Jul 2025
Viewed by 668
Abstract
Species have different strategies for implantation and placentation. Much can be learned about general molecular and cellular biology through the examination and comparison of these differences. To varying degrees, implantation in all species includes alterations in epithelial polarity, the transformation of the endometrial [...] Read more.
Species have different strategies for implantation and placentation. Much can be learned about general molecular and cellular biology through the examination and comparison of these differences. To varying degrees, implantation in all species includes alterations in epithelial polarity, the transformation of the endometrial stroma, the differentiation of the trophoblast, cell-to-cell and tissue-to-tissue signaling through hormones, cytokines, and extracellular vesicles, and the alteration of the maternal immune system. This review focuses on implantation in pigs, sheep, and cows. These species share with mice/rats and humans/primates the key events of early embryonic development, pregnancy recognition, and the establishment of functional placentation. However, there are differences between the pregnancies of livestock and other species that make livestock unique biomedical models for the study of pregnancy and cell biology in general. Pig, sheep, and cow conceptuses (embryo/fetus and associated placental membranes) elongate prior to implantation, displaying central implantation, extended periods of conceptus attachment to the uterus, and epitheliochorial (pigs) and synepitheliochorial (sheep and cows) placentation. This review will discuss what is understood about how the trophoblast and extraembryonic endoderm of pig, sheep, and cow conceptuses elongate, and how a major goal of current in vitro models is to achieve conceptus elongation. It will then examine the adhesion cascade for conceptus implantation that initiates early placental development in pigs, sheep, and cows. Finally, it will conclude with a brief overview of early placental development in pigs, sheep, and cows, with a listing of some important “omics” studies that have been published. Full article
Show Figures

Figure 1

13 pages, 2212 KiB  
Article
Ablation of the Evolutionarily Acquired Functions of the Atp1b4 Gene Increases Metabolic Capacity and Reduces Obesity
by Nikolai N. Modyanov, Lucia Russo, Sumona Ghosh Lester, Tamara R. Castañeda, Himangi G. Marathe, Larisa V. Fedorova, Raymond E. Bourey, Sonia M. Najjar and Ivana L. de la Serna
Life 2025, 15(7), 1103; https://doi.org/10.3390/life15071103 - 14 Jul 2025
Viewed by 401
Abstract
In placental mammals, the co-option of vertebrate orthologous ATP1B4 genes has profoundly altered the properties of the encoded BetaM proteins, which function as bona fide β-subunits of Na,K-ATPases in lower vertebrates. Eutherian BetaM acquired an extended Glu-rich N-terminal domain resulting in the complete [...] Read more.
In placental mammals, the co-option of vertebrate orthologous ATP1B4 genes has profoundly altered the properties of the encoded BetaM proteins, which function as bona fide β-subunits of Na,K-ATPases in lower vertebrates. Eutherian BetaM acquired an extended Glu-rich N-terminal domain resulting in the complete loss of its ancestral function and became a skeletal and cardiac muscle-specific component of the inner nuclear membrane. BetaM is expressed at the highest level during perinatal development and is implicated in gene regulation. Here we report the long-term consequences of Atp1b4 ablation on metabolic parameters in adult mice. Male BetaM-deficient (Atp1b4−/Y) mice have remarkably lower body weight and adiposity than their wild-type littermates, despite higher food intake. Indirect calorimetry shows higher energy expenditure (heat production and oxygen consumption) with a greater spontaneous locomotor activity in Atp1b4−/Y males. Their lower respiratory exchange ratio suggests a greater reliance on fat metabolism compared to their wild-type counterparts. Consistently, Atp1b4−/Y KO mice exhibit enhanced β-oxidation in skeletal muscle, along with improved glucose and insulin tolerance. These robust metabolic changes induced by Atp1b4 disruption demonstrate that eutherian BetaM plays an important role in regulating adult mouse metabolism. This demonstrates that bypassing the co-option of Atp1b4 potentially reduces susceptibility to obesity. Thus, Atp1b4 ablation leading to the loss of evolutionarily acquired BetaM functions serves as a model for a potential alternative pathway in mammalian evolution. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

22 pages, 940 KiB  
Review
Sucralose: A Review of Environmental, Oxidative and Genomic Stress
by Volodymyr V. Tkach, Tetiana V. Morozova, Isabel O’Neill de Mascarenhas Gaivão, Natasha Gomes de Miranda, Yana G. Ivanushko, José Inácio Ferrão de Paiva Martins and Ana Novo Barros
Nutrients 2025, 17(13), 2199; https://doi.org/10.3390/nu17132199 - 1 Jul 2025
Viewed by 1859
Abstract
This review explores current knowledge on the environmental, oxidative, and genomic effects of sucralose (E955), an artificial sweetener widely used in food products, including those for children, and known to cross both the placental barrier and into breast milk. Although initially considered safe, [...] Read more.
This review explores current knowledge on the environmental, oxidative, and genomic effects of sucralose (E955), an artificial sweetener widely used in food products, including those for children, and known to cross both the placental barrier and into breast milk. Although initially considered safe, research conducted over the past two decades has presented conflicting evidence regarding its long-term impact, particularly on ecosystems and biological systems. Structurally similar to chlorinated compounds such as perfluoralkyl substances (PFAS), sucralose is highly persistent in the environment, which complicates its degradation and removal, especially from aquatic systems. Several studies have reported behavioral, metabolic, and even genomic alterations in aquatic organisms exposed to sucralose, raising concerns about its broader ecological safety. In addition, its presence has been linked to shifts in microbiota composition in both environmental and human contexts. Reports of sucralose-induced oxidative stress further highlight the need for caution in its continued use, particularly in sensitive formulations. Given its widespread presence and resistance to degradation, further investigation into the environmental and biological safety of sucralose is urgently needed. Full article
Show Figures

Figure 1

13 pages, 2203 KiB  
Article
Salmonella Typhi-Exposed Placentae: Chorionic Villi Histomorphology and Neonatal Birthweight
by Patience B. Tetteh-Quarcoo, Joana Twasam, Kevin Kofi Adutwum-Ofosu, John Ahenkorah, Bismarck Afedo Hottor, Nicholas T. K. D. Dayie, Peter Ofori Appiah, Emmanuel Afutu, Fleischer C. N. Kotey, Emilia Asuquo Udofia, Nii Koney-Kwaku Koney, Benjamin Arko-Boham and Eric S. Donkor
Diseases 2025, 13(7), 205; https://doi.org/10.3390/diseases13070205 - 30 Jun 2025
Viewed by 746
Abstract
Background: Salmonella infections impose a substantial global health burden, with an estimated 95.1 million cases occurring annually. Pregnant women exhibit a heightened vulnerability due to pregnancy-specific immune adaptations and dietary habits that increase their risk of Salmonella exposure, facilitating possible damage to the [...] Read more.
Background: Salmonella infections impose a substantial global health burden, with an estimated 95.1 million cases occurring annually. Pregnant women exhibit a heightened vulnerability due to pregnancy-specific immune adaptations and dietary habits that increase their risk of Salmonella exposure, facilitating possible damage to the placental barrier. Despite this significant burden, Salmonella-associated placental pathology remains poorly understood, particularly its impact on foetal development through microstructural alterations. Aim: This study utilised stereology to assess histomorphological and functional alterations in term placentae of Salmonella Typhi-exposed placentae, compared to unexposed controls. Methods: A hospital-based case-control study was conducted in Ghana. Of 237 screened women, 62 placentae were selected for analysis, comprising 31 Salmonella-exposed cases (IgG/IgM-positive in placental and cord blood) and 31 gestational age-matched controls (IgG/IgM-negative). Placental tissues were processed for histology and stereology. Neonatal birthweights were also compared. Results: Stereological assessment revealed significantly higher mean volume densities of syncytial knots in the study group (0.4755 ± 0.04) compared to the controls (0.3342 ± 0.04, p = 0.0219). Syncytial denudation was increased in the study group (0.8113 ± 0.09) relative to the controls (0.1975 ± 0.08, p < 0.0001). Foetal capillary volume density was also significantly elevated in the study group (5.1010 ± 0.32) compared to the controls (3.562 ± 0.47, p < 0.0001). In contrast, intervillous space volume was significantly reduced in the study group (9.5810 ± 0.05) compared to the controls (11.593 ± 0.26, p = 0.0053). Neonates of exposed mothers showed a non-significant reduction in birthweight. Conclusion: Salmonella Typhi exposure in pregnancy induces subtle, yet significant alterations in placental architecture, compromising villous integrity and vascular organisation. Although birthweight may appear unaffected, the observed changes point to reduced placental efficiency and merit further research into their developmental consequences and long-term effects on babies. Full article
Show Figures

Figure 1

9 pages, 630 KiB  
Article
Survivin Expression in Placentas with Intrauterine Growth Restriction
by Pavo Perković, Sanja Štifter-Vretenar, Marina Perković, Marko Štefančić, Ena Holjević, Andrea Dekanić and Tea Štimac
Biomedicines 2025, 13(7), 1576; https://doi.org/10.3390/biomedicines13071576 - 27 Jun 2025
Viewed by 380
Abstract
Background/Objectives: Intrauterine growth restriction (IUGR) is a pathological condition defined by a reduced fetal ability to achieve the genetically expected growth potential during gestation. It affects 5–10% of all pregnancies and it is a leading cause of perinatal morbidity and mortality. During the [...] Read more.
Background/Objectives: Intrauterine growth restriction (IUGR) is a pathological condition defined by a reduced fetal ability to achieve the genetically expected growth potential during gestation. It affects 5–10% of all pregnancies and it is a leading cause of perinatal morbidity and mortality. During the initial phases of placentation, complex interlinked processes including cell proliferation, differentiation, apoptosis and the invasion of trophoblasts occur. Alterations in the regulation of these processes lead to placental dysfunction. Survivin, a member of the inhibitor of apoptosis (IAP) family, plays an important role in cell proliferation balance and apoptosis, thus leading to proper placental development. This study aimed to evaluate survivin expression in placentas from IUGR and healthy pregnancies to explore its potential as a biomarker for the early diagnosis, prevention, and treatment of IUGR. Methods: Survivin presence was determined in 153 archival formalin-fixed and paraffin-embedded placental tissues from IUGR (N = 122) and uncomplicated (N = 31) term pregnancies. Tissue microarrays (TMAs) were constructed, and survivin expression was assessed using immunohistochemistry (IHC). Survivin levels were quantified using positive cell proportion (PCP) scores and immunoreactive scores (IRS), with statistical significance determined using mean values, standard deviation (SD), standard error, and Student’s t test in instances of normal distribution, and when this was not the case, the Mann–Whitney test. Chi-square tests, Fisher exact tests, and t-tests (p < 0.05) were used to compare categorical variables. Results: Our results suggested the significantly higher expression of survivin validated with PCP (p < 0.001) and IRS (p < 0.002) in placentas with IUGR compared to placentas from non-complicated term pregnancies. Conclusions: Increased survivin expression in IUGR placentas points to its potential role as a key indicator of placental dysfunction. By signaling early pathological changes, survivin may offer a valuable tool for the early detection of IUGR, potentially allowing for timely clinical interventions that could reduce the risk of serious outcomes, including stillbirth. To fully establish survivin’s clinical value, further research is needed to validate its diagnostic accuracy and to explore its involvement in molecular pathways that may be targeted for therapeutic benefit. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

16 pages, 1248 KiB  
Review
Placental Inflammation in Preterm Premature Rupture of Membranes and Risk of Neurodevelopmental Disorders
by Elizabeth Marie Cervantes and Sylvie Girard
Cells 2025, 14(13), 965; https://doi.org/10.3390/cells14130965 - 24 Jun 2025
Viewed by 1052
Abstract
Preterm premature rupture of membranes (pPROM) is a leading cause of preterm birth (PTB) and is increasingly recognized for its association with neurodevelopmental disorders (NDDs). The disruption of fetal membrane integrity introduces potential infection and inflammation into the intrauterine environment, triggering immune responses [...] Read more.
Preterm premature rupture of membranes (pPROM) is a leading cause of preterm birth (PTB) and is increasingly recognized for its association with neurodevelopmental disorders (NDDs). The disruption of fetal membrane integrity introduces potential infection and inflammation into the intrauterine environment, triggering immune responses that may affect fetal development. Placental inflammation plays a pivotal role in mediating these effects, exposing the fetus to cytokines, oxidative stress, and potential microbial insults that contribute to adverse neurodevelopmental outcomes. This review examines the current evidence of the mechanistic pathways linking pPROM-induced placental inflammation to NDDs, emphasizing the roles of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) in the inflammatory responses. We discuss how these immune activations lead to immune cell recruitment and excessive (or uncontrolled) production of inflammatory mediators, leading to an overall inflammatory imbalance that has been linked to disrupted fetal brain development in animal models. Animal models provide critical insights into how both sterile and pathogenic placental inflammation alter fetal neurodevelopment, while human studies, though limited, highlight promising biomarkers and potential therapeutic targets. This review identifies critical knowledge gaps and outlines future directions to mitigate the impact of placental inflammation on long-term infant health. Full article
(This article belongs to the Special Issue Molecular Insight into the Pathogenesis of Spontaneous Preterm Birth)
Show Figures

Graphical abstract

22 pages, 4566 KiB  
Article
Immune Dysregulation at the Maternal–Fetal Interface Exacerbates Adverse Pregnancy Outcomes in an Inflammatory Arthritis Murine Model
by Chenxi Yang, Wenjuan Li, Xinxin Liu, Zijun Ma, Jun Chen, Quan Gong, Zachary Braunstein, Xiaoquan Rao, Yingying Wei and Jixin Zhong
Biomedicines 2025, 13(6), 1440; https://doi.org/10.3390/biomedicines13061440 - 11 Jun 2025
Cited by 1 | Viewed by 766
Abstract
Objective: Inflammatory arthritis (IA) has been linked to a number of adverse pregnancy outcomes (APOs), but the mechanisms linking IA-related immune dysregulation to compromised reproductive success remain poorly understood. This project will examine how IA affects pregnancy outcomes and alters the associated [...] Read more.
Objective: Inflammatory arthritis (IA) has been linked to a number of adverse pregnancy outcomes (APOs), but the mechanisms linking IA-related immune dysregulation to compromised reproductive success remain poorly understood. This project will examine how IA affects pregnancy outcomes and alters the associated immune microenvironment using SKG (ZAP70W163C) mice, a mouse model that suffers from arthritis resembling human IA. Methods: IA was induced in SKG mice on a C57BL/6J background via mannan exposure. Wild-type C57BL/6 mice served as controls. Pregnancy rates, conception time, embryo resorption rates, and immune parameters (cytokine levels and splenic/lymph node/placental immune cell subsets) were analyzed. Joint pathology was evaluated via histology (HE is staining) and anti-CCP antibody levels. Flow cytometry was used to analyze immune populations within the spleen along with the associated lymphatic nodes. Results: Synovial hyperplasia, elevated anti-CCP, and systemic inflammation were all observed in IA mice. Compared to controls, IA mice demonstrated a reduced mating success rate, prolonged conception time, decreased pregnancy rates, and increased embryo resorption. IA mice showed elevated Th1/Th17 cytokines-IFN-γ, TNF-α, and IL-17, and an expansion of pro-inflammatory immune cells, including NK cells, CD11b+ myeloid cells, neutrophils, M1 macrophages, and Tc1, in the spleen/lymph nodes. Placental immune dysregulation featured increased NKT, NK, and CD4+ cell infiltration. Conversely, anti-inflammatory subsets, such as M2 macrophages and dendritic cells, were reduced. Conclusions: IA increased APOs and skewed the immune microenvironment toward a pro-inflammatory state dominated by Th1/Th17/Tc1 responses and cytotoxic cell activation. These findings highlight immune dysregulation as a key driver of IA-associated pregnancy complications, providing mechanistic insights for therapeutic intervention. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnostics, and Therapeutics for Rheumatic Diseases)
Show Figures

Figure 1

45 pages, 1614 KiB  
Review
Epigenetic Consequences of In Utero PFAS Exposure: Implications for Development and Long-Term Health
by Abubakar Abdulkadir, Shila Kandel, Niya Lewis, Oswald D’Auvergne, Raphyel Rosby and Ekhtear Hossain
Int. J. Environ. Res. Public Health 2025, 22(6), 917; https://doi.org/10.3390/ijerph22060917 - 10 Jun 2025
Cited by 1 | Viewed by 1571
Abstract
In utero exposure to per- and polyfluoroalkyl substances (PFAS) presents significant health concerns, primarily through their role in inducing epigenetic modifications that have lasting consequences. This review aims to elucidate the impact of prenatal PFAS exposure on epigenetic mechanisms, including DNA methylation, histone [...] Read more.
In utero exposure to per- and polyfluoroalkyl substances (PFAS) presents significant health concerns, primarily through their role in inducing epigenetic modifications that have lasting consequences. This review aims to elucidate the impact of prenatal PFAS exposure on epigenetic mechanisms, including DNA methylation, histone modification, and non-coding RNA regulation, focusing on developmental and long-term health outcomes. The review synthesizes findings from various studies that link PFAS exposure to alterations in DNA methylation in fetal tissues, such as changes in the methylation of genes like IGF2 and MEST, which are linked to disruptions in growth, neurodevelopment, immune function, and metabolic regulation, potentially increasing the risk of diseases such as diabetes and obesity. We also highlight the compound-specific effects of different PFAS, such as PFOS and PFOA, each showing unique impacts on epigenetic profiles, suggesting varied health risks. Special attention is given to hormonal disruption, oxidative stress, and changes in histone-modifying enzymes such as histone acetyltransferases (HATs) and deacetylases (HDACs), which are pathways through which PFAS influence fetal development. Additionally, we discuss PFAS-induced epigenetic changes in placental tissues, which can alter fetal nutrient supply and hormone regulation. Despite accumulating evidence, significant knowledge gaps remain, particularly regarding the persistence of these changes across the lifespan and potential sex-specific susceptibilities. We explore how advancements in epigenome-wide association studies could bridge these gaps, providing a robust framework for linking prenatal environmental exposures to lifetime health outcomes. Future research directions and regulatory strategies are also discussed, emphasizing the need for intervention to protect vulnerable populations from these environmental pollutants. Full article
(This article belongs to the Special Issue Environmental Exposures and Epigenomics in Health and Disease)
Show Figures

Figure 1

19 pages, 3200 KiB  
Article
Linking TLR-7 Signaling to Downregulation of Placental P-Glycoprotein: Implications for Fetal Drug Exposure
by Mario Riera-Romo, Eliza R McColl and Micheline Piquette-Miller
Pharmaceutics 2025, 17(6), 741; https://doi.org/10.3390/pharmaceutics17060741 - 5 Jun 2025
Viewed by 590
Abstract
Background/Objectives: Activation of the Toll-like receptor 7 (TLR-7) plays an important role in the pathogenesis of many autoimmune diseases and viral infections. Although we have previously observed inflammation-mediated dysregulation of placental transporters, the role of TLR-7 has not been examined. Using the TLR-7 [...] Read more.
Background/Objectives: Activation of the Toll-like receptor 7 (TLR-7) plays an important role in the pathogenesis of many autoimmune diseases and viral infections. Although we have previously observed inflammation-mediated dysregulation of placental transporters, the role of TLR-7 has not been examined. Using the TLR-7 agonist, imiquimod (IMQ), we evaluated transporter expression in IMQ-treated pregnant rats and ex vivo in cultured rat placental explants. Methods: We administered 5 mg/kg (IP) of IMQ to pregnant Sprague Dawley rats on gestational day (GD) 14. The expression levels of inflammatory biomarkers and transporters were measured in maternal and fetal tissues by qRT-PCR and immunodetection methods, and effects on the placental proteome were assessed using LC/MS/MS. The involvement of TLR-7 was confirmed in rat placental explants. Results: IMQ administration resulted in Irf7 induction and increased levels of IL-6, Tnf-α, and type-I/II interferon pathways in maternal liver and placenta, which is consistent with TLR-7 activation. Proteomic profiling revealed IMQ-mediated activation of pathways involved in immune response, vesicle trafficking, and oxidative stress. Significantly decreased placental, hepatic, and renal protein expression of P-glycoprotein (PGP) was seen in the IMQ group. Likewise, TLR-7 activation using single-stranded RNA resulted in an induction of inflammatory biomarkers and downregulation of PGP in rat placental explants. Conclusions: We demonstrated that the activation of TLR-7 signaling during pregnancy reduces the expression of PGP in placenta and maternal tissues. Further studies are warranted, as decreased protein expression could result in decreased activity and altered fetal exposure to its substrates. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

Back to TopTop