Genetic Diversity in the Suppressyn Gene Sequence: From Polymorphisms to Loss-of-Function Mutations
Abstract
1. Introduction
2. Methods
2.1. Cell Cultures
2.2. Site-Directed Mutagenesis
2.3. Stable HTR8 Cell Line Production
2.4. Immunoprecipitation and Western Immunoblotting
2.5. Transient Transfections of Syncytin-1
2.6. Detection of Cell Fusion Rate by Flow Cytometry
2.7. Trans-Well Analysis for Secreted Suppressyn Protein
2.8. Statistical Analyses
3. Results
3.1. Analysis of Suppressyn Polymorphisms Using the 1000 Genomes Database
3.2. Identification of Loss-of-Function Mutations and Deletions in Suppressyn
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gifford, R.; Tristem, M. The Evolution, Distribution and Diversity of Endogenous Retroviruses. Virus Genes 2003, 26, 291–315. [Google Scholar] [CrossRef] [PubMed]
- Jern, P.; Coffin, J.M. Effects of Retroviruses on Host Genome Function. Annu. Rev. Genet. 2008, 42, 709–732. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.A. The Discovery of Endogenous Retroviruses. Retrovirology 2006, 3, 67. [Google Scholar] [CrossRef] [PubMed]
- Kurth, R.; Bannert, N. Beneficial and Detrimental Effects of Human Endogenous Retroviruses. Int. J. Cancer 2010, 126, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The Complete Sequence of a Human Genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Imakawa, K.; Kusama, K.; Kaneko-Ishino, T.; Nakagawa, S.; Kitao, K.; Miyazawa, T.; Ishino, F. Endogenous Retroviruses and Placental Evolution, Development, and Diversity. Cells 2022, 11, 2458. [Google Scholar] [CrossRef] [PubMed]
- Shimode, S. Acquisition and Exaptation of Endogenous Retroviruses in Mammalian Placenta. Biomolecules 2023, 13, 1482. [Google Scholar] [CrossRef] [PubMed]
- Lokossou, A.G.; Toudic, C.; Barbeau, B. Implication of Human Endogenous Retrovirus Envelope Proteins in Placental Functions. Viruses 2014, 6, 4609–4627. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, J.; Sugimoto, M.; Bernstein, H.; Jinno, Y.; Schust, D. A Novel Human Endogenous Retroviral Protein Inhibits Cell-Cell Fusion. Sci. Rep. 2013, 3, 1462. [Google Scholar] [CrossRef] [PubMed]
- Kudaka, W.; Oda, T.; Jinno, Y.; Yoshimi, N.; Aoki, Y. Cellular Localization of Placenta-Specific Human Endogenous Retrovirus (HERV) Transcripts and Their Possible Implication in Pregnancy-Induced Hypertension. Placenta 2008, 29, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, J.; Schust, D.J.; Sugimoto, M.; Jinno, Y.; Kudo, Y. Controlling Trophoblast Cell Fusion in the Human Placenta-Transcriptional Regulation of Suppressyn, an Endogenous Inhibitor of Syncytin-1. Biomolecules 2023, 13, 1627. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, J.; Schust, D.J.; Kinjo, T.; Aoki, Y.; Jinno, Y.; Kudo, Y. Suppressyn Localization and Dynamic Expression Patterns in Primary Human Tissues Support a Physiologic Role in Human Placentation. Sci. Rep. 2019, 9, 19502. [Google Scholar] [CrossRef] [PubMed]
- Khare, S.; Villalba, M.I.; Canul-Tec, J.C.; Cajiao, A.B.; Kumar, A.; Backovic, M.; Rey, F.A.; Pardon, E.; Steyaert, J.; Perez, C.; et al. Receptor-Recognition and Antiviral Mechanisms of Retrovirus-Derived Human Proteins. Nat. Struct. Mol. Biol. 2024, 31, 1368–1376. [Google Scholar] [CrossRef] [PubMed]
- Frank, J.A.; Singh, M.; Cullen, H.B.; Kirou, R.A.; Benkaddour-Boumzaouad, M.; Cortes, J.L.; Garcia Pérez, J.; Coyne, C.B.; Feschotte, C. Evolution and Antiviral Activity of a Human Protein of Retroviral Origin. Science 2022, 378, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Aplin, J.D.; Myers, J.E.; Timms, K.; Westwood, M. Tracking Placental Development in Health and Disease. Nat. Rev. Endocrinol. 2020, 16, 479–494. [Google Scholar] [CrossRef] [PubMed]
- Aplin, J.D.; Jones, C.J.P. Cell Dynamics in Human Villous Trophoblast. Hum. Reprod. Update 2021, 27, 904–922. [Google Scholar] [CrossRef] [PubMed]
- Štafl, K.; Trávníček, M.; Janovská, A.; Kučerová, D.; Pecnová, Ľ.; Yang, Z.; Stepanec, V.; Jech, L.; Salker, M.S.; Hejnar, J.; et al. Receptor Usage of Syncytin-1: ASCT2, but Not ASCT1, Is a Functional Receptor and Effector of Cell Fusion in the Human Placenta. Proc. Natl. Acad. Sci. USA 2024, 121, e2407519121. [Google Scholar] [CrossRef] [PubMed]
- Bastida-Ruiz, D.; Van Hoesen, K.; Cohen, M. The Dark Side of Cell Fusion. Int. J. Mol. Sci. 2016, 17, 638. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.J.; Jeyarajah, M.J. How Trophoblasts Fuse: An in-Depth Look into Placental Syncytiotrophoblast Formation. Cell Mol. Life Sci. 2022, 79, 433. [Google Scholar] [CrossRef] [PubMed]
- Malassiné, A.; Frendo, J.-L.; Blaise, S.; Handschuh, K.; Gerbaud, P.; Tsatsaris, V.; Heidmann, T.; Evain-Brion, D. Human Endogenous Retrovirus-FRD Envelope Protein (Syncytin 2) Expression in Normal and Trisomy 21-Affected Placenta. Retrovirology 2008, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, J.; Schust, D.J.; Yamazaki, T.; Kudo, Y. Involvement of the HERV-Derived Cell-Fusion Inhibitor, Suppressyn, in the Fusion Defects Characteristic of the Trisomy 21 Placenta. Sci. Rep. 2022, 12, 10552. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.-W.; Li, J.; Brost, B.C.; Xia, X.-Y.; Chen, H.B.; Wang, C.-X.; Jiang, S.-W. Decreased Expression and Altered Methylation of Syncytin-1 Gene in Human Placentas Associated with Preeclampsia. Curr. Pharm. Des. 2014, 20, 1796–1802. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.; Toufaily, C.; LeBellego, F.; Rassart, É.; Lafond, J.; Barbeau, B. Reduced Expression of Both Syncytin 1 and Syncytin 2 Correlates with Severity of Preeclampsia. Reprod. Sci. 2011, 18, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Priščáková, P.; Svoboda, M.; Feketová, Z.; Hutník, J.; Repiská, V.; Gbelcová, H.; Gergely, L. Syncytin-1, Syncytin-2 and Suppressyn in Human Health and Disease. J. Mol. Med. 2023, 101, 1527–1542. [Google Scholar] [CrossRef] [PubMed]
- Wich, C.; Kausler, S.; Dotsch, J.; Rascher, W.; Knerr, I. Syncytin-1 and Glial Cells Missing a: Hypoxia-Induced Deregulated Gene Expression along with Disordered Cell Fusion in Primary Term Human Trophoblasts. Gynecol. Obstet. Investig. 2009, 68, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Ruebner, M.; Strissel, P.L.; Ekici, A.B.; Stiegler, E.; Dammer, U.; Goecke, T.W.; Faschingbauer, F.; Fahlbusch, F.B.; Beckmann, M.W.; Strick, R. Reduced Syncytin-1 Expression Levels in Placental Syndromes Correlates with Epigenetic Hypermethylation of the ERVW-1 Promoter Region. PLoS ONE 2013, 8, e56145. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Wang, J.; Yuan, D.-L.; Qi, Y.; Tang, Z.; Zhu, X.; Jiang, S.-W. A Tag SNP in Syncytin-2 3-UTR Significantly Correlates with the Risk of Severe Preeclampsia. Clin. Chim. Acta 2018, 483, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.H.; Hawley, T.S.; Hawley, R.C.; MacDougall, J.R.; Kerbel, R.S.; Khoo, N.; Lala, P.K. Establishment and Characterization of First Trimester Human Trophoblast Cells with Extended Lifespan. Exp. Cell Res. 1993, 206, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Birney, E.; Soranzo, N. The End of the Start for Population Sequencing. Nature 2015, 526, 52–53. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; McGraw, A.; Narayan, K.; Tibebe, H.; Kuriyama, K.; Nishimura, M.; Izumi, T.; Fujimuro, M.; Ohno, S. Conserved Cysteine Residues in Kaposi’s Sarcoma Herpesvirus ORF34 Are Necessary for Viral Production and Viral Pre-Initiation Complex Formation. J. Virol. 2024, 98. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugimoto, J.; Schust, D.J.; Nagamatsu, T.; Jinno, Y.; Kudo, Y. Genetic Diversity in the Suppressyn Gene Sequence: From Polymorphisms to Loss-of-Function Mutations. Biomolecules 2025, 15, 1051. https://doi.org/10.3390/biom15071051
Sugimoto J, Schust DJ, Nagamatsu T, Jinno Y, Kudo Y. Genetic Diversity in the Suppressyn Gene Sequence: From Polymorphisms to Loss-of-Function Mutations. Biomolecules. 2025; 15(7):1051. https://doi.org/10.3390/biom15071051
Chicago/Turabian StyleSugimoto, Jun, Danny J. Schust, Takeshi Nagamatsu, Yoshihiro Jinno, and Yoshiki Kudo. 2025. "Genetic Diversity in the Suppressyn Gene Sequence: From Polymorphisms to Loss-of-Function Mutations" Biomolecules 15, no. 7: 1051. https://doi.org/10.3390/biom15071051
APA StyleSugimoto, J., Schust, D. J., Nagamatsu, T., Jinno, Y., & Kudo, Y. (2025). Genetic Diversity in the Suppressyn Gene Sequence: From Polymorphisms to Loss-of-Function Mutations. Biomolecules, 15(7), 1051. https://doi.org/10.3390/biom15071051