Salmonella Typhi-Exposed Placentae: Chorionic Villi Histomorphology and Neonatal Birthweight
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Location, and Sample Collection
2.2. Study Groups and Classification
2.3. Serological Testing for Salmonella Typhi
2.4. Placental Tissue Collection and Processing
2.5. Tissue Sectioning and Staining
2.6. Stereological Investigations
2.6.1. Sampling of Photomicrographs of Placental Sections
2.6.2. Stereological Analysis of Placental Photomicrographs
2.7. Statistical Analysis
2.8. Ethical Consideration
3. Results
3.1. Sample Characteristics
3.2. Placental Histomorphological Parameters
4. Discussion
Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andoh, L.A.; Ahmed, S.; Olsen, J.E.; Obiri-Danso, K.; Newman, M.J.; Opintan, J.A.; Barco, L.; Dalsgaard, A. Prevalence and characterization of Salmonella among humans in Ghana. Trop. Med. Health 2017, 45, 3. [Google Scholar] [CrossRef] [PubMed]
- Bassat Orellana, Q. The global burden of non-typhoidal Salmonella invasive disease: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 1312–1324. [Google Scholar]
- Betancourt, D.M.; Noto Llana, M.; Sarnacki, S.H.; Cerquetti, M.C.; Monzalve, L.S.; Pustovrh, M.C.; Giacomodonato, M.N. Salmonella Enteritidis foodborne infection induces altered placental morphometrics in the murine model. Placenta 2021, 109, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Lenchenko, E.M.; Vatnikov, Y.A.; Kulikov, E.V.; Lozovoi, D.A.; Gavrilov, V.A.; Gnezdilova, L.A.; Zimina, V.N.; Kuznetsov, V.I.; Annikov, V.V.; Medvedev, I.N. Aspects of Salmonellosis pathogenesis using chicken models. Bali Med. J. 2019, 8, 206–210. [Google Scholar]
- Trejo-Ruiz, L.T.; Guzmán Martínez, N.; Ruvalcaba Ledezma, J.C. Knowledge of mechanisms of transmission and complications of salmonellosis in over 18 years of Pachuca, Hidalgo, Mexico. Biomed. Pharmacol. J. 2015, 7, 111–116. [Google Scholar] [CrossRef]
- Chattopadhyay, A. Role of Salmonella Typhimurium Virulence in Differentially Modulating Immune Response and Host Susceptibility During Pregnancy. Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada, 2009. [Google Scholar]
- Coe, C.L.; Lubach, G.R. Mother-infant interactions and the development of immunity from conception through weaning. Psychoneuroimmunology 2007, 4, 455–474. [Google Scholar]
- Shukla, G.; Verma, I.; Sharma, L. Effect of Salmonella enteric serovar Typhimurium in pregnant mice: A biochemical and histopathological study. Gastroenterol. Res. 2012, 5, 103. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Robinson, N.; Sandhu, J.K.; Finlay, B.B.; Sad, S.; Krishnan, L. Salmonella enterica Serovar Typhimurium-Induced Placental Inflammation and Not Bacterial Burden Correlates with Pathology and Fatal Maternal Disease. Infect. Immun. 2010, 78, 2292–2301. [Google Scholar] [CrossRef]
- Hedriana, H.L.; Mitchell, J.L.; Williams, S.B. Salmonella typhi chorioamnionitis in a human immunodeficiency virus-infected pregnant woman. A case report. J. Reprod. Med. 1995, 40, 157–159. [Google Scholar]
- Schloesser, R.L.; Schaefer, V.; Groll, A.H. Fatal Transplacental Infection with Non-typhoidal Salmonella. Scand. J. Infect. Dis. 2004, 36, 773–774. [Google Scholar] [CrossRef]
- Heerema-McKenney, A. Defense and infection of the human placenta. APMIS 2018, 126, 570–588. [Google Scholar] [CrossRef] [PubMed]
- Resta, L.; Rossi, R.; Fulcheri, E. The Placenta as the Mirror of the Foetus. In Management and Therapy of Late Pregnancy Complications; Malvasi, A., Tinelli, A., Di Renzo, G.C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–20. ISBN 978-3-319-48730-4. [Google Scholar]
- Sankar, K.D.; Bhanu, P.S.; Ramalingam, K.; Kiran, S.; Ramakrishna, B.A. Histomorphological and morphometrical changes of placental terminal villi of normotensive and preeclamptic mothers. Anat. Cell Biol. 2013, 46, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, C. Gross examination of the placenta. Surg. Pathol. Clin. 2013, 6, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Dezfoolian, A.; Panahi, M.; Feizi, F. Stereological evaluation of renal glomeruli in offspring of diabetic female rats. Cell J. 2009, 11, 17–22. [Google Scholar]
- Heidari, Z.; Sakhavar, N.; Mahmoudzadeh-Sagheb, H.; Ezazi-Bojnourdi, T. Stereological analysis of human placenta in cases of placenta previa in comparison with normally implanted controls. J. Reprod. Infertil. 2015, 16, 90. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Ahenkorah, J.; Tetteh-Quarcoo, P.B.; Nuamah, M.A.; Kwansa–Bentum, B.; Nuamah, H.G.; Hottor, B.; Korankye, E.; Torto, M.; Ntumy, M.; Addai, F.K. The Impact of Plasmodium Infection on Placental Histomorphology: A Stereological Preliminary Study. Infect. Dis. Obstet. Gynecol. 2019, 2019, 5080843. [Google Scholar] [CrossRef]
- Burton, G.J.; Jauniaux, E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 2018, 218, S745–S761. [Google Scholar] [CrossRef]
- Mumuni, M.; Adutwum-Ofosu, K.K.; Arko-Boham, B.; Hottor, B.A.; Koney, N.K.-K.; Adu-Bonsaffoh, K.; Oppong, S.A.; Appiah, P.O.; Ahenkorah, J. Histomorphology of placentae of women with sickle cell disease during pregnancy–A case control study. PLoS ONE 2025, 20, e0319011. [Google Scholar] [CrossRef]
- Dougan, G.; Baker, S. Salmonella enterica Serovar Typhi and the Pathogenesis of Typhoid Fever. Annu. Rev. Microbiol. 2014, 68, 317–336. [Google Scholar] [CrossRef]
- Mousa, B.A.; Al Joborae, S.F. Study of placental shape and histopathological changes in pregnant ladies with preeclampsia. Iraq Med. J. 2019, 3. Available online: https://www.iraqmedj.org/index.php/imj/article/view/639 (accessed on 17 June 2025).
- Saeed, I.; Iqbal, I.; Sarfaraz, R.; Qamar, K.; Butt, S.A.; Shaukat, S. Histomorphological changes in placentae of preeclamptic mothers with reference to vasculosyncytial membrane thickness and syncytial knot formation. J. Rawalpindi Med. Coll. 2012, 16, 51–54. [Google Scholar]
- Cohen, M.C.; Scheimberg, I.; Hunson, J.C. Anatomy and Pathology of the Placental Membranes. In Benirschke’s Pathology of the Human Placenta; Baergen, R.N., Burton, G.J., Kaplan, C.G., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 281–343. ISBN 978-3-030-84724-1. [Google Scholar]
- Roland, C.S.; Hu, J.; Ren, C.-E.; Chen, H.; Li, J.; Varvoutis, M.S.; Leaphart, L.W.; Byck, D.B.; Zhu, X.; Jiang, S.-W. Morphological changes of placental syncytium and their implications for the pathogenesis of preeclampsia. Cell. Mol. Life Sci. 2016, 73, 365–376. [Google Scholar] [CrossRef]
- Nguyen, T. Mode of Entry and Survival of Salmonella enterica Serovar Typhimurium in Trophoblast Cells. Ph.D. Thesis, Université d’Ottawa/University of Ottawa, Ottawa, ON, Canada, 2017. [Google Scholar]
- Zhu, Q.; Han, Y.; Wang, X.; Jia, R.; Zhang, J.; Liu, M.; Zhang, W. Hypoxia exacerbates intestinal injury and inflammatory response mediated by myeloperoxidase during Salmonella Typhimurium infection in mice. Gut Pathog 2023, 15, 62. [Google Scholar] [CrossRef]
- Noto Llana, M.; Sarnacki, S.H.; Aya Castañeda, M.d.R.; Pustovrh, M.C.; Gartner, A.S.; Buzzola, F.R.; Cerquetti, M.C.; Giacomodonato, M.N. Salmonella enterica serovar Enteritidis enterocolitis during late stages of gestation induces an adverse pregnancy outcome in the murine model. PLoS ONE 2014, 9, e111282. [Google Scholar] [CrossRef]
- Reese, J.; Paria, B.C.; Brown, N.; Zhao, X.; Morrow, J.D.; Dey, S.K. Coordinated regulation of fetal and maternal prostaglandins directs successful birth and postnatal adaptation in the mouse. Proc. Natl. Acad. Sci. USA 2000, 97, 9759–9764. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, X.; Ding, X.; Bin, P.; Zhu, G. The vertical transmission of Salmonella Enteritidis in a one-health context. One Health 2023, 16, 100469. [Google Scholar] [CrossRef]
- Palmeira, P.; Quinello, C.; Silveira-Lessa, A.L.; Zago, C.A.; Carneiro-Sampaio, M. IgG placental transfer in healthy and pathological pregnancies. Clin. Dev. Immunol. 2012, 2012, 985646. [Google Scholar] [CrossRef]
- Ernst, L.M. Maternal vascular malperfusion of the placental bed. APMIS 2018, 126, 551–560. [Google Scholar] [CrossRef]
- Ravishankar, S.; Redline, R.W. The placenta. Handb. Clin. Neurol. 2019, 162, 57–66. [Google Scholar] [CrossRef]
- Souza, R.M.; Ataíde, R.; Dombrowski, J.G.; Ippólito, V.; Aitken, E.H.; Valle, S.N.; Álvarez, J.M.; Epiphânio, S.; Marinho, C.R.F. Placental Histopathological Changes Associated with Plasmodium vivax Infection during Pregnancy. PLoS Neglected Trop. Dis. 2013, 7, e2071. [Google Scholar] [CrossRef]
- Brabin, B.J.; Romagosa, C.; Abdelgalil, S.; Menéndez, C.; Verhoeff, F.H.; McGready, R.; Fletcher, K.A.; Owens, S.; d’Alessandro, U.; Nosten, F.; et al. The sick placenta—The role of malaria. Placenta 2004, 25, 359–378. [Google Scholar] [CrossRef]
- Chaikitgosiyakul, S.; Rijken, M.J.; Muehlenbachs, A.; Lee, S.J.; Chaisri, U.; Viriyavejakul, P.; Turner, G.D.; Pongponratn, E.; Nosten, F.; McGready, R. A morphometric and histological study of placental malaria shows significant changes to villous architecture in both Plasmodium falciparum and Plasmodium vivax infection. Malar. J. 2014, 13, 4. [Google Scholar] [CrossRef]
- Rainey, A.; Mayhew, T.M. Volumes and Numbers of Intervillous Pores and Villous Domains in Placentas Associated with Intrauterine Growth Restriction and/or Pre-eclampsia. Placenta 2010, 31, 602–606. [Google Scholar] [CrossRef]
- Kingdom, J.; Huppertz, B.; Seaward, G.; Kaufmann, P. Development of the placental villous tree and its consequences for fetal growth. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 92, 35–43. [Google Scholar] [CrossRef]
- Zhang, S.; Regnault, T.R.; Barker, P.L.; Botting, K.J.; McMillen, I.C.; McMillan, C.M.; Roberts, C.T.; Morrison, J.L. Placental adaptations in growth restriction. Nutrients 2015, 7, 360–389. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, W.; Tian, X. Analysis of risk factors of early intraventricular hemorrhage in very-low-birth-weight premature infants: A single center retrospective study. BMC Pregnancy Childbirth 2022, 22, 890. [Google Scholar] [CrossRef]
- Diabelková, J.; Rimárová, K.; Urdzík, P.; Dorko, E.; Houžvičková, A.; Andraščíková, Š.; Drabiščák, E.; Škrečková, G. Risk factors associated with low birth weight. Cent. Eur. J. Public Health 2022, 30, S43–S49. [Google Scholar] [CrossRef]
- GSS; GHS; ICF. International Ghana demographic health survey. Demogr. Health Surv. 2014, 2015, 530. [Google Scholar]
- Wang, J.; Qian, R.; Wang, Y.; Dong, M.; Liu, X.; Zhou, H.; Ye, Y.; Chen, G.; Chen, D.; Yuan, L. The mediation effect of placental weight change in the association between prenatal exposure to selenium and birth weight: Evidence from a prospective birth cohort study in China. Environ. Epidemiol. 2021, 5, e139. [Google Scholar] [CrossRef]
- Agarwal, N.; Papanna, R.; Sibai, B.M.; Garcia, A.; Lai, D.; Soto Torres, E.E.; Amro, F.H.; Blackwell, S.C.; Hernandez-Andrade, E. Evaluation of fetal growth and birth weight in pregnancies with placenta previa with and without placenta accreta spectrum. J. Perinat. Med. 2025, 53, 9–14. [Google Scholar] [CrossRef]
- Hietalati, S.; Pham, D.; Arora, H.; Mochizuki, M.; Santiago, G.; Vaught, J.; Lin, E.T.; Mestan, K.K.; Parast, M.; Jacobs, M.B. Placental pathology and fetal growth outcomes in pregnancies complicated by maternal obesity. Int. J. Obes. 2024, 48, 1248–1257. [Google Scholar] [CrossRef]
Salmonella Typhi | ||||
---|---|---|---|---|
Variable | Control | Study | t-Value | p-Value |
Syncytial knot | 0.3342 ± 0.04 | 0.4755 ± 0.04 | 1.820 | 0.0219 |
Syncytial denudation | 0.1975 ± 0.08 | 0.8113 ± 0.09 | 5.066 | <0.0001 |
Intervillous spaces | 11.593 ± 0.26 | 9.5810 ± 0.05 | 2.278 | 0.0053 |
Foetal capillaries | 3.562 ± 0.47 | 5.1010 ± 0.32 | 3.008 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tetteh-Quarcoo, P.B.; Twasam, J.; Adutwum-Ofosu, K.K.; Ahenkorah, J.; Hottor, B.A.; Dayie, N.T.K.D.; Appiah, P.O.; Afutu, E.; Kotey, F.C.N.; Udofia, E.A.; et al. Salmonella Typhi-Exposed Placentae: Chorionic Villi Histomorphology and Neonatal Birthweight. Diseases 2025, 13, 205. https://doi.org/10.3390/diseases13070205
Tetteh-Quarcoo PB, Twasam J, Adutwum-Ofosu KK, Ahenkorah J, Hottor BA, Dayie NTKD, Appiah PO, Afutu E, Kotey FCN, Udofia EA, et al. Salmonella Typhi-Exposed Placentae: Chorionic Villi Histomorphology and Neonatal Birthweight. Diseases. 2025; 13(7):205. https://doi.org/10.3390/diseases13070205
Chicago/Turabian StyleTetteh-Quarcoo, Patience B., Joana Twasam, Kevin Kofi Adutwum-Ofosu, John Ahenkorah, Bismarck Afedo Hottor, Nicholas T. K. D. Dayie, Peter Ofori Appiah, Emmanuel Afutu, Fleischer C. N. Kotey, Emilia Asuquo Udofia, and et al. 2025. "Salmonella Typhi-Exposed Placentae: Chorionic Villi Histomorphology and Neonatal Birthweight" Diseases 13, no. 7: 205. https://doi.org/10.3390/diseases13070205
APA StyleTetteh-Quarcoo, P. B., Twasam, J., Adutwum-Ofosu, K. K., Ahenkorah, J., Hottor, B. A., Dayie, N. T. K. D., Appiah, P. O., Afutu, E., Kotey, F. C. N., Udofia, E. A., Koney, N. K.-K., Arko-Boham, B., & Donkor, E. S. (2025). Salmonella Typhi-Exposed Placentae: Chorionic Villi Histomorphology and Neonatal Birthweight. Diseases, 13(7), 205. https://doi.org/10.3390/diseases13070205