Conceptus Elongation, Implantation, and Early Placental Development in Species with Central Implantation: Pigs, Sheep, and Cows
Abstract
1. Introduction
2. The Trophoblast and Extraembryonic Endoderm of Pig, Sheep, and Cow Conceptuses Elongate Prior to, and During, Implantation
3. A Major Goal of Current In Vitro Models Is to Achieve Conceptus Elongation
4. The Adhesion Cascade for Conceptus Implantation That Initiates Early Placental Development in Pigs, Sheep, and Cows
5. Conceptus Implantation in the Pig
6. Conceptus Implantation in Sheep and Cows
7. An Overview of Early Placental Development in Pigs, Sheep, and Cows
8. Conclusions: A Listing of “Omic” Studies in Pigs, Sheep, and Cows That Can Be Used to Link the Physiology of Early Pregnancy in These Species Together
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wildeman, D.E.; Chen, C.; Erez, O.; Grossman, L.I.; Goodman, M.; Romero, R. Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc. Natl. Acad. Sci. USA 2006, 103, 3203–3208. [Google Scholar] [CrossRef] [PubMed]
- Forde, N.; Lonergan, P. Transcriptomic Analysis of the Bovine Endometrium: What is Required to Establish Uterine Receptivity to Implantation in Cattle? J. Reprod. Develop. 2012, 58, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W.; Johnson, G.A. Pig blastocyst-uterine interactions. Differentiation 2014, 87, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Geisert, R.D.; Johnson, G.A.; Burghardt, R.C. Implantation and establishment of pregnancy in the pig. Adv. Anat. Embryo. Cell Biol. 2015, 216, 137–163. [Google Scholar]
- Waclawik, A.; Kaczemarek, M.M.; Blitek, A.; Kaczynski, P.; Ziecik, A.J. Embryo-maternal dialogue during pregnancy establishment and implantation in the pig. Mol. Reprod. Dev. 2017, 784, 842–855. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Bazer, F.W.; Burghardt, R.C.; Wu, G.; Seo, H.; Kramer, A.C.; McLendon, B.A. Cellular events during ovine implantation and impact for gestation. Anim. Reprod. 2018, 15, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Spencer, T.E.; Wu, G. Mechanisms for the establishment and maintenance of pregnancy: Synergies from scientific collaborations. Biol. Reprod. 2018, 99, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A. Domestic animal placentation. In Encyclopedia of Reproduction; Skinner, M.K., Ed.; Academic Press: New York, NY, USA, 2018; Volume 2, pp. 448–454. [Google Scholar]
- Johnson, G.A.; Bazer, F.W.; Seo, H. The Early Stages of Implantation and Placentation in the Pig. Adv. Anat. Embryol. Cell Biol. 2021, 234, 61–89. [Google Scholar] [PubMed]
- Green, J.A.; Geisert, R.; Johnson, G.A.; Spencer, T.E. Implantation and Placentation in Ruminants. Adv. Anat. Embrol. Cell Biol. 2021, 234, 129–154. [Google Scholar]
- Stenhouse, C.; Wu, G.; Seo, H.; Johnson, G.A.; Bazer, F.W. Insights into the Regulation of Implantation and Placentation in Humans, Rodents, Sheep, and Pigs. Adv. Exp. Med. Biol. 2022, 1354, 25–48. [Google Scholar] [PubMed]
- Johnson, G.A.; Bazer, F.W.; Seo, H.; Burghardt, R.C.; Wu, G.; Pohler, K.G.; Cain, J.W. Understanding placentation in ruminants: A review focusing on cows and sheep. Reprod. Fertil. Develop. 2023, 36, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Davenport, K.M.; Ortega, M.S.; Johnson, G.A.; Seo, H.; Spencer, T.E. Review: Implantation and placentation in ruminants. Animal 2023, 17, 100796. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, P.; Goryszewska-Szczurek, E.; Baryla, M.; Waclawik, A. Novel insight into conceptus-maternal signaling during pregnancy establishment in pigs. Mol. Reprod. Dev. 2023, 90, 658–672. [Google Scholar] [CrossRef] [PubMed]
- Heuser, C.H.; Streeter, G.L. Early stages in the development of pig embryos from the period of initial cleavage to the time of the appearance f limb buds. Contrib. Embryol. Carnegie Inst. 1929, 20, 3–29. [Google Scholar]
- Perry, J.S.; Rowlands, I.W. Early pregnancy in the pig. J. Reprod. Fertil. 1962, 4, 175–188. [Google Scholar] [CrossRef]
- Anderson, L.L. Growth, protein content, and distribution of early pig embryos. Anat. Rec. 1978, 190, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Betteridge, K.J.; Eaglesome, M.D.; Randall, G.C.; Mitchell, D. Collection, description and transfer of embryos from cattle 10–16 days after oestrus. J. Reprod. Fert. 1980, 59, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Guillomot, M.; Fléchon, J.E.; Wintenberger-Torres, S. Conceptus attachment in the ewe: An ultrastructural study. Placenta 1981, 2, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Guillomot, M.; Guay, P. Ultrastructural features of the cell surfaces of uterine and trophoblastic epithelia during embryo attachment in the cow. Anatom. Rec. 1982, 204, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Geisert, R.D.; Brookbank, J.W.; Roberts, R.M.; Bazer, F.W. Establishment of pregnancy in the pig. II. Cellular remodeling of the porcine blastocyst during elongation on day 12 of pregnancy. Biol. Reprod. 1982, 27, 941–955. [Google Scholar] [CrossRef] [PubMed]
- Betteridge, K.J. The anatomy and physiology of the pre-attachment bovine embryos. Theriogenology 1988, 29, 155–187. [Google Scholar] [CrossRef]
- Stroband, H.W.J.; Taverne, N.; Bogard, M.V.D. The pig blastocyst: Its ultra-structure and the uptake of protein molecules. Cell Tissue Res. 1989, 235, 347–356. [Google Scholar]
- Wales, R.G.; Cuneo, C.L. Morphology and Chemical Analysis of the Sheep Conceptus from the 13th to the 19th Day of Pregnancy. Reprod. Fertil. Develop. 1989, 1, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Mattson, B.A.; Overstrom, E.W.; Albertini, D.F. Transitions in trophectoderm cellular shape and cytoskeletal organization in the elongating pig blastocyst. Biol. Reprod. 1990, 42, 195–205. [Google Scholar] [CrossRef]
- Bazer, F.W.; Johnson, G.A.; Spencer, T.E. Growth and development: Pre-implantation embryo. In Encyclopedia of Animal Science; CRC Press: Boca Raton, FL, USA, 2005; Volume 1, pp. 1–3. [Google Scholar]
- Spencer, T.E.; Johnson, G.A.; Bazer, F.W.; Burghardt, R.C. Fetal-maternal interactions during the establishment of pregnancy in ruminants. Soc. Reprod. Fertil. 2007, 64, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Brooks, K.; Burns, G.; Spencer, T.E. Conceptus elongation in ruminants: Roles of progesterone, prostaglandin, interferon tau and cortisol. J. Anim. Sci. Biotech. 2014, 5, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W.; Seo, H.; Johnson, G.A.; Wu, G. One-carbon metabolism and development of the conceptus during pregnancy: Lessons from studies with sheep and pigs. In Amino Acids in Nutrition and Health; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2021; Volume 1285, pp. 1–16. [Google Scholar]
- Seo, H.; Johnson, G.A.; Bazer, F.W.; Wu, G.; McLendon, B.A.; Kramer, A.C. Cell-specific expression of enzymes required for serine biosynthesis and glutaminolysis in farm animals. Adv. Exp. Med. Biol. 2021, 1285, 17–28. [Google Scholar] [PubMed]
- Seo, H.; Kramer, A.C.; McLendon, B.A.; Cain, J.W.; Burghardt, R.C.; Wu, G.; Bazer, F.W.; Johnson, G.A. Elongating porcine coneptuses utilize glutaminolysis as an anaplerotic pathway to maintain the TCA cycle. Biol. Reprod. 2022, 107, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Moses, R.M.; Kramer, A.C.; Seo, H.; Wu, G.; Johnson, G.; Bazer, F.W. A Role for Fructose Metabolism in Development of Sheep and Pig Conceptuses. Adv. Exp. Med. Biol. 2022, 1354, 109–125. [Google Scholar]
- Johnson, G.A.; Seo, H.; Bazer, F.W.; Wu, G.; Kramer, A.C.; McLendon, B.A.; Cain, J.W. Metabolic Pathways Utilized by the Porcine Conceptus, Uterus and Placenta. Mol. Reprod. Develop. 2023, 90, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Zavy, M.T.; Clark, W.R.; Sharp, D.C.; Roberts, R.M.; Bazer, F.W. Comparison of glucose, fructose, ascorbic acid and glucosephosphate isomerase enzymatic activity in uterine flushings from nonpregnant and pregnant tils and pony mares. Biol. Reprod. 1982, 27, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wu, G.; Spencer, T.E.; Johnson, G.A.; Li, X.; Bazer, F.W. Select nutrients in the ovine uterine lumen: I. amino acids, glucose and ions in uterine luminal fluid from cyclic and pregnant ewes. Biol. Reprod. 2009, 80, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.C.; Steinhauser, C.B.; Gao, H.; Seo, H.; McLendon, B.A.; Burghardt, R.C.; Wu, G.; Bazer, F.W.; Johnson, G.A. Steroids Regulate Expression of SLC2A1 and SLC2A3 to Deliver Glucose into Trophectoderm for Metabolism via glycolysis. Endocrinology 2020, 161, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.Q.; Keating, A.F. Functional properties and genomics of glucose transporters. Curr. Genom. 2007, 8, 113–128. [Google Scholar] [CrossRef] [PubMed]
- DeBosch, B.J.; Chen, Z.; Saben, J.L.; Finck, B.N.; Moley, K.H. Glucose Transporter 8 (GLUT8) Mediates Fructose-induced de Novo Lipogenesis and Macrosteatosis. J. Biol. Chem. 2014, 289, 10989–10998. [Google Scholar] [CrossRef] [PubMed]
- Steinhauser, C.B.; Landers, M.; Myatt, L.; Burghardt, R.C.; Vallet, J.L.; Bazer, F.B.; Johnson, G.A. Fructose Synthesis and Transport at the Uterine-Placental Interface of Pigs: Cell-Specific Localization of SLC2A5, SLC2A8, and Components of the Polyol Pathway. Biol. Reprod. 2016, 95, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wu, G.; Spencer, T.E.; Johnson, G.A.; Bazer, F.W. Select nutrients in the ovine uterine lumen: II. Glucose transporters in the uterus and peri-implantation conceptuses. Biol. Reprod. 2009, 80, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Wooding, F.B.; Fowden, A.L.; Bell, A.W.; Ehrhardt, R.A.; Limesand, S.W.; Hay, W.W. Localisation of glucose transport in the ruminant placenta: Implications for sequential use of transporter isoforms. Placenta 2005, 26, 626–640. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.; Bazer, F.W.; Song, G.; Kim, J. Expression of hypoxia-inducible factor-1 by trophectoderm cells in response to hypoxia and epidermal growth factor. Biochem. Biophys. Res. Commun. 2016, 469, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E.; Murray, A.J. Oxygen and placental development; parallels and differences with tumour biology. Placenta 2017, 56, 14–18. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, L.A.; Kishton, R.J.; Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016, 16, 553–565. [Google Scholar] [CrossRef] [PubMed]
- McNamee, E.N.; Korns Johnson, D.; Homann, D.; Clambey, E.T. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol. Rev. 2013, 55, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W.; Wu, G.; Johnson, G.A. Fructose metabolism is unregulated in cancers and placentae. Exp. Biol. Med. 2024, 249, 10200. [Google Scholar] [CrossRef] [PubMed]
- Moses, R.M.; Stenhouse, C.; Halloran, K.M.; Sah, N.; Hoskins, E.C.; Washburn, S.E.; Johnson, G.A.; Wu, G.; Bazer, F.W. Metabolic pathways of glucose and fructose: I. Synthesis and metabolism of fructose by ovine conceptuses. Biol. Reprod. 2024, 111, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Moses, R.M.; Stenhouse, C.; Halloran, K.M.; Sah, N.; Newton, M.G.; Hoskins, E.C.; Washburn, S.E.; Johnson, G.A.; Wu, G.; Bazer, F.W. Metabolic pathways of glucose and fructose: II. Spatiotemporal expression of genes involved in synthesis and transport of lactate in ovine conceptuses. Biol. Reprod. 2024, 111, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Song, G.; Wu, G.; Bazer, F.W. Functional roles of fructose. Proc. Natl. Acad. Sci. USA 2012, 109, E1619–E1628. [Google Scholar] [CrossRef] [PubMed]
- Moses, R.M.; Halloran, K.M.; Stenhouse, C.; Sah, N.; Kramer, A.C.; McLendon, B.A.; Seo, H.; Johnson, G.A.; Wu, G.; Bazer, F.W. Ovine conceptus tissue metabolizes fructose for metabolic support during the peri-implantation period of pregnancy. Biol. Reprod. 2022, 107, 1084–1096. [Google Scholar] [CrossRef] [PubMed]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [PubMed]
- Halloran, K.M.; Stenhouse, C.; Moses, R.M.; Kramer, A.C.; Sah, N.; Seo, H.; Lamarre, S.G.; Johnson, G.A.; Wu, G.; Bazer, F.W. The ovine conceptus utilizes extracellular serine, glucose and fructose to generate formate via the one carbon metabolism pathway. Amino Acids 2023, 55, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Sah, N.; Stenhouse, C.; Halloran, K.M.; Moses, R.M.; Seo, H.; Burghardt, R.C.; Johnson, G.A.; Wu, G.; Bazer, F.W. Inhibition of SHMT2 mRNA translation increases embryonic mortality in sheep. Biol. Reprod. 2022, 107, 1279–1295. [Google Scholar] [CrossRef] [PubMed]
- Mullen, A.R.; Wheaton, W.W.; Jin, E.S.; Chen, P.H.; Sullivan, L.B.; Cheng, T.; Yang, Y.; Linehan, W.M.; Chandel, N.S.; DeBerardinis, R.J. Reductive carboxylation supports growth in tumor cells with defective mitochondria. Nature 2011, 481, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Vennetim, S.; Nagrath, D. Glutaminolysis: A hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 2017, 19, 163–194. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Song, G.; Wu, G.; Gao, H.; Johnson, G.A.; Bazer, F.W. Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction Pathway. Biol. Reprod. 2013, 88, 113. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A. Immunohistochemical examination of trophoblast syncytialization during early placentation in sheep. Int. J. Mol. Sci. 2019, 20, 4530. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Li, X.; Wu, G.; Bazer, F.W.; Burghardt, R.C.; Bayless, K.J.; Johnson, G.A. Mechanotransduction drives morphogenesis to develop folding at the uterine-placental interface of pigs. Placenta 2020, 90, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Bazer, F.W.; Johnson, G.A. Early Syncytialization of the Ovine Placenta Revisited. Results Probl. Cell Differ. 2024, 71, 127–142. [Google Scholar] [PubMed]
- Seo, H.; Melo, G.D.; Oliveira, R.V.; Franco-Johannsen, F.A.; Bazer, F.W.; Pohler, K.G.; Johnson, G.A. Immunohistochemical examination of the utero-placental interface of cows on days 21, 31, 40, and 67 of gestation. Reproduction 2024, 167, e230444. [Google Scholar]
- Smith, G.D.; Takayama, S.; Swain, J.E. Rethinking in Vitro Embryo Culture: New Developments in Culture Platforms and Potential to Improve Assisted Reproductive Technologies. Biol. Reprod. 2012, 86, 62. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.S.; Cabrera, L.M.; Bormann, C.L.; Shah, C.T.; Takayama, S.; Smith, G.D. Dynamic Microfunnel Culture Enhances Mouse Embryo Development and Pregnancy Rates. Hum. Reprod. 2010, 25, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Pranomphon, T.; López-Valiñas, Á.; Almiñana, C.; Mahé, C.; Brair, V.L.; Parnpai, R.; Mermillod, P.; Bauersachs, S.; Saint-Dizier, M. Oviduct Epithelial Spheroids during in Vitro Culture of Bovine Embryos Mitigate Oxidative Stress, Improve Blastocyst Quality and Change the Embryonic Transcriptome. Biol. Res. 2024, 57, 73–92. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Ding, J.; Smith, G.W.; Smith, G.D.; Takayama, S. Slow and Steady Cell Shrinkage Reduces Osmotic Stress in Bovine and Murine Oocyte and Zygote Vitrification. Hum. Reprod. 2015, 30, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Massip, A.; Mulnard, J. Time-Lapse Cinematographic Analysis of Hatching of Normal and Frozen-Thawed Cow Blastocysts. J. Reprod. Fertil. 1980, 58, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Miles, J.R.; Walsh, S.C.; Rempel, L.A.; Pannier, A.K. Mechanisms Regulating the Initiation of Porcine Conceptus Elongation. Mol. Reprod. Dev. 2023, 90, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Tinning, H.; Edge, J.C.; DeBem, T.H.C.; Deligianni, F.; Giovanardi, G.; Pensabene, V.; Meirelles, F.V.; Forde, N. Review: Endometrial Function in Pregnancy Establishment in Cattle. Animal 2023, 17, 100751. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, M.d.A.M.M.; Ferronato, G.d.A. Opportunities Involving Microfluidics and 3D Culture Systems to the in Vitro Embryo Production. Anim. Reprod. 2023, 20, e20230058. [Google Scholar] [CrossRef] [PubMed]
- Simintiras, C.A.; Sánchez, J.M.; McDonald, M.; Lonergan, P. The Biochemistry Surrounding Bovine Conceptus Elongation. Biol. Reprod. 2019, 101, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.A.; Taylor, K.M.; Ramsey, W.S.; Hill, J.R.; Bazer, F.W.; Bartol, F.F.; Spencer, T.E. Endometrial Glands Are Required for Preimplantation Conceptus Elongation and Survival. Biol. Reprod. 2001, 64, 1608–1613. [Google Scholar] [CrossRef] [PubMed]
- Sargus-Patino, C.N.; Wright, E.C.; Plautz, S.A.; Miles, J.R.; Vallet, J.L.; Pannier, A.K. In Vitro Development of Preimplantation Porcine Embryos Using Alginate Hydrogels as a Three-Dimensional Extracellular Matrix. Reprod. Fertil. Dev. 2014, 26, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, T.D.; Miles, J.R.; Wright-Johnson, E.C.; Rempel, L.A.; Lents, C.A.; Pannier, A.K. Development of Pre-Implantation Porcine Blastocysts Cultured within Alginate Hydrogel Systems Either Supplemented with Secreted Phosphoprotein 1 or Conjugated with Arg-Gly-Asp Peptide. Reprod. Fertil. Dev. 2017, 29, 2345–2356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, Z.X.; Gao, H.; Wu, Y.; Fang, Y.; Wu, S.S.; Li, M.J.; Bai, J.H.; Liu, Y.; Evans, A.; et al. A Three-Dimensional Culture System Using Alginate Hydrogel Prolongs Hatched Cattle Embryo Development in Vitro. Theriogenology 2015, 84, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Brandão, D.O.; Maddox-Hyttel, P.; Løvendahl, P.; Rumpf, R.; Stringfellow, D.; Callesen, H. Post Hatching Development: A Novel System for Extended in Vitro Culture of Bovine Embryos. Biol. Reprod. 2004, 71, 2048–2055. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Ibeas, P.; Lamas-Toranzo, I.; Martínez-Moro, Á.; de Frutos, C.; Quiroga, A.C.; Zurita, E.; Bermejo-Álvarez, P. Embryonic Disc Formation Following Post-Hatching Bovine Embryo Development in Vitro. Reproduction 2020, 160, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Vajta, G.; Alexopoulos, N.I.; Callesen, H. Rapid Growth and Elongation of Bovine Blastocysts in Vitro in a Three-Dimensional Gel System. Theriogenology 2004, 62, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Squires, T.M. Microfluidics: Fluid Physics at the Nanoliter Scale. Rev. Mod. Phys. 2005, 77, 977–1026. [Google Scholar] [CrossRef]
- Wang, H.; Pilla, F.; Anderson, S.; Martínez-Escribano, S.; Herrer, I.; Moreno-moya, J.M.; Musti, S.; Bocca, S.; Oehninger, S.; Horcajadas, J.A. A Novel Model of Human Implantation: 3D Endometrium-like Culture System to Study Attachment of Human Trophoblast (Jar) Cell Spheroids. Mol. Hum. Reprod. 2012, 18, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Haeger, J.D.; Hambruch, N.; Dilly, M.; Froehlich, R.; Pfarrer, C. Formation of Bovine Placental Trophoblast Spheroids. Cells Tissues Organs 2011, 193, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Aisenbrey, E.A.; Murphy, W.L. Synthetic Alternatives to Matrigel. Nat. Rev. Mater. 2020, 5, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, M.A.M.M.; Rho, H.S.; Hemerich, D.; Henning, H.H.W.; van Tol, H.T.A.; Hölker, M.; Besenfelder, U.; Mokry, M.; Vos, P.L.A.M.; Stout, T.A.E.; et al. An Oviduct-on-a-Chip Provides an Enhanced in Vitro Environment for Zygote Genome Reprogramming. Nat. Commun. 2018, 9, 4934–4948. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, M.A.M.M.; Henning, H.H.W.; Costa, P.F.; Malda, J.; Melchels, F.P.; Wubbolts, R.; Stout, T.A.E.; Vos, P.L.A.M.; Gadella, B.M. Improved Bovine Embryo Production in an Oviduct-on-a-Chip System: Prevention of Poly-Spermic Fertilization and Parthenogenic Activation. Lab Chip 2017, 17, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Sugino, Y.; Sato, T.; Yamamoto, Y.; Kimura, K. Evaluation of Bovine Uterine Gland Functions in 2D and 3D Culture System. J. Reprod. Dev. 2022, 68, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Nishino, D.; Kotake, A.; Yun, C.S.; Rahman, A.N.M.I.; El-Sharawy, M.; Yamanaka, K.I.; Khandoker, M.A.M.Y.; Yamauchi, N. Gene Expression of Bovine Endometrial Epithelial Cells Cultured in Matrigel. Cell Tissue Res. 2021, 385, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, A.; Hori, T.; Nashimoto, Y.; Nakato, R.; Hamada, H.; Kaji, H.; Kikutake, C.; Suyama, M.; Saito, M.; Yaegashi, N.; et al. Modeling Embryo-Endometrial Interface Recapitulating Human Embryo Implantation. Sci. Adv. 2024, 10, eadi4819. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Bai, H.; Bai, R.; Arai, M.; Iwazawa, M.; Zhang, J.; Konno, T.; Godkin, J.D.; Okuda, K.; Imakawa, K. Coculture System That Mimics in Vivo Attachment Processes in Bovine Trophoblast Cells. Biol. Reprod. 2012, 87, 60. [Google Scholar] [CrossRef] [PubMed]
- Yamakoshi, S.; Bai, R.; Chaen, T.; Ideta, A.; Aoyagi, Y.; Sakurai, T.; Konno, T.; Imakawa, K. Expression of Mesenchymal-Related Genes by the Bovine Trophectoderm Following Conceptus Attachment to the Endometrial Epithelium. Reproduction 2012, 143, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Cain, J.W.; Lefevre, C.; Ross, A.; Johnson, G.A. Hormones and reproductive cycles in ungulates. In Hormones and Reproduction of Vertebrates; Norris, D.O., Lopez., K.H., Eds.; Academic Press: New York, NY, USA, 2024; pp. 365–375. [Google Scholar]
- Lefèvre, F.; Guillomot, M.; D’Andrea, S.; Battegay, S.; La Bonnardière, C. Interferon-delta: The first member of a novel type I interferon family. Biochimie 1988, 80, 779–788. [Google Scholar] [CrossRef] [PubMed]
- La Bonnardière, C.; Martinat-Botté, F.; Terqui, M.; Lefèvre, F.; Zouari, K.; Martal, J.; Bazer, F.W. Production of two species of interferon by Large White and Meishan pig conceptuses during the peri-attachment period. J. Reprod. Fert. 1991, 91, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Bazer, F.W.; Burghardt, R.C.; Spencer, T.E.; Wu, G.; Bayless, K.J. Conceptus-uterus interactions in pigs: Endometrial gene expression in response to estrogens and interferons from conceptuses. Soc. Reprod. Fertil. Suppl. 2009, 66, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Harney, J.P.; Bazer, F.W. Effect of porcine conceptus secretory proteins on interestrous interval and uterine secretion of prostaglandins. Biol. Reprod. 1989, 41, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, F.; Martinat-Botté, F.; Locatelli, A.; De Niu, P.; Terqui, M.; La Bonnardière, C. Intrauterine infusion of high doses of pig trophoblast interferons has no antiluteolytic effect in cyclic gilts. Biol. Reprod. 1988, 58, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Geisert, R.D.; Johns, D.N.; Pfeiffer, C.A.; Sullivan, R.M.; Lucas, C.G.; Simintiras, C.A.; Redel, B.K.; Wells, K.D.; Spencer, T.E.; Prather, R.S. Gene editing provides a tool to investigate genes involved in reproduction of pigs. Mol. Reprod. Dev. 2023, 90, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Geisert, R.D.; Bazer, F.W.; Lucas, C.G.; Pfeiffer, C.A.; Meyer, A.E.; Sullivan, R.; Johns, D.N.; Sponchiado, M.; Prather, R.S. Maternal recognition of pregnancy in the pig: A servomechanism involving sex steroids, cytokines and prostaglandins. Anim. Reprod. Sci. 2024, 264, 10742–10765. [Google Scholar] [CrossRef] [PubMed]
- Cain, J.W.; Seo, H.; Bumgardner, K.; Lefever, C.; Burghardt, R.C.; Bazer, F.W.; Johnson, G.A. Pig conceptuses release extracelluar vesicles containing IFNG for paracrine communication with the endometrium. Biol. Reprod. 2024, 111, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Joyce, M.M.; Burghardt, R.C.; Geisert, R.D.; Burghardt, J.R.; Hooper, R.N.; Ross, J.W.; Ashworth, M.D.; Johnson, G.A. Pig conceptuses secrete estrogen and interferons to differentially regulate uterine STAT1 in a temporal and cell-type specific manner. Endocrinology 2007, 148, 4420–4431. [Google Scholar] [CrossRef] [PubMed]
- Joyce, M.M.; Burghardt, J.R.; Burghardt, R.C.; Hooper, R.N.; Jaeger, L.A.; Spencer, T.E.; Bazer, F.W.; Johnson, G.A. Pig conceptuses increase uterine interferon regulatory factor-1 (IRF-1), but restrict expression to stroma through estrogen-induced IRF-2 in luminal epithelium. Biol. Reprod. 2007, 77, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Joyce, M.M.; Burghardt, J.R.; Burghardt, R.C.; Hooper, R.N.; Bazer, F.W.; Johnson, G.A. Uterine major histocompatibility class I molecules and beta 2 microglobulin are regulated by progesterone and conceptus interferons during pig pregnancy. J. Immunol. 2008, 81, 2494–2505. [Google Scholar] [CrossRef] [PubMed]
- McLendon, B.A.; Seo, H.; Kramer, A.C.; Burghardt, R.C.; Bazer, F.W.; Johnson, G.A. Pig conceptuses secrete interferon gamma to recruit T cells to the endometrium during the peri-implantation period. Biol. Reprod. 2020, 103, 1018–1029. [Google Scholar] [CrossRef] [PubMed]
- Johns, D.N.; Lucas, C.G.; Pfeiffer, C.A.; Chen, P.R.; Meyer, A.E.; Perry, S.C.; Spate, L.D.; Cecil, R.F.; Fudge, M.A.; Samuel, M.S.; et al. Conceptus interferon gamma is essential for establishment of pregnancy in the pig. Riol. Reprod. 2021, 105, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.R.; Austin, K.J.; Johnson, G.A. Transient ubiquitin cross-reactive protein gene expression in bovine endometrium. Endocrinology 1997, 138, 5079–5082. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Austin, K.J.; Collins, A.M.; Murdoch, W.J.; Hansen, T.R. Endometrial ISG17 mRNA and a related mRNA are induced by interferon-tau and localized to glandular epithelial and stromal cells from pregnant cows. Endocrine 1999, 10, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Joyce, M.M.; White, F.J.; Burghardt, R.C.; Muñiz, J.J.; Spencer, T.E.; Bazer, F.W.; Johnson, G.A. Interferon stimulated gene 15 (ISG15) conjugates to cytosolic proteins and is expressed at the uterine-placental interface throughout ovine pregnancy. Endocrinology 2005, 146, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Bazer, F.W.; Burghardt, R.C.; Seo, H.; Wu, G.; Cain, J.W.; Pohler, K.G. The history of interferon stimulated genes (ISGs) in pregnant cattle, sheep, and pigs. Reproduction 2024, 168, e240130. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gonzalez, I.; Xu, J.; Wang, X.; Burghardt, R.C.; Dunlap, K.A.; Bazer, F.W. Exosomes, endogenous retroviruses and toll-like receptors: Pregnancy recognition in ewes. Reproduction 2015, 149, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Burns, G.W.; Brooks, K.E.; Spencer, T.E. Extracellular vesicles originate from the conceptus and uterus during early pregnancy in sheep. Biol. Reprod. 2016, 94, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Godkin, J.D.; Bazer, F.W.; Thatcher, W.W.; Roberts, R.M. Proteins released by cultured day 15–16 conceptuses prolong luteal maintenance when introduced into the uterine lumen of cyclic ewes. J. Reprod. Fertil. 1984, 71, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.E.; Becker, W.C.; George, P.; Mirando, M.A.; Ogle, T.F.; Bazer, F.W. Ovine interferon-τ regulates expression of endometrial receptors for estrogen and oxytocin by not progesterone. Biol. Reprod. 1995, 53, 732–745. [Google Scholar] [CrossRef] [PubMed]
- Wathes, D.C.; Lamming, G.E. The oxytocin receptor, luteolysis and the maintenance of pregnancy. J. Reprod. Fertil. Suppl. 1995, 49, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Fleming, J.G.W.; Spencer, T.E.; Safe, S.S.; Bazer, F.W. Estrogen regulates transcription of the ovine oxytocin receptor gene through GC-rich SP1 promoter elements. Endocrinology 2006, 147, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W.; Johnson, G.A.; Burghardt, R.C. Implantation. In Encyclopedia of Animal Science; Pond, W.G., Bell, A.W., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 555–558. [Google Scholar]
- Denker, H.W. Implantation: A cell biological paradox. J. Exp. Zool. 1993, 266, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Guillomot, M. Cellular interactions during implantation in domestic ruminants. J. Reprod. Fertil. 1995, 49, 39–51. [Google Scholar] [CrossRef]
- Burghardt, R.C.; Johnson, G.A.; Jaeger, L.A.; Ka, H.; Garlow, J.E.; Spencer, T.E.; Bazer, F.W. Integrins and extracellular matrix proteins at the maternal/fetal interface in domestic animals. Cells Tissues Organs 2022, 172, 202–217. [Google Scholar] [CrossRef] [PubMed]
- Aplin, J.D.; Meseguer, M.; Simon, C.; Ortiz, M.E.; Croxatto, H.; Jones, C.J. MUC1, glycans and the cell-surface barrier to embryo implantation. Biochem. Soc. Trans. 2001, 29, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Kimber, S.J.; Illingworth, I.M.; Glasser, S.R. Expression of carbohydrate antigens in the rat uterus during early pregnancy and after ovariectomy and steroid replacement. J. Reprod. Fertil. 1995, 103, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Lessey, B.A. Adhesion molecules and implantation. J. Reprod. Immunol. 2002, 55, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Aplin, J.D.; Kimber, S.J. Trophoblast-uterine interactions at implantation. Reprod. Biol. Endocrinol. 2004, 2, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Burghardt, R.C.; Bazer, F.W.; Seo, H.; Cain, J.W. Integrins and their potential roles in mammalian pregnancy. J. Anim. Sci. Biotech. 2023, 14, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J. Placental types. In Benirschke’s Pathology of the Human Placenta; Springer: Cham, Switzerland, 2022; pp. 23–38. [Google Scholar]
- Roberts, R.M.; Green, J.A.; Schulz, L.C. The evolution of the placenta. Reproduction 2016, 152, R179–R189. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, C.M.; Cain, J.W.; Kramer, A.C.; Seo, H.; Lopez, A.N.; Sah, N.; Wu, G.; Bazer, F.W.; Johnson, G.A. Evidence for metabolism of creatine by the conceptus, placenta, and uterus for production of ATP during conceptus development in pigs. Biol. Reprod. 2024, 111, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Bailey, D.W.; Dunlap, K.A.; Burghardt, R.C.; Spencer, T.E.; Bazer, F.W.; Johnson, G.A. Cathepsin B, Cathepsin L and Cystatin C in the Porcine Uterus and Placenta: Potential Roles in Endometrial/Placental Remodeling and in Fluid-Phase Transport of Proteins Secreted by Uterine Epithelia Across Placental Areolae and Neonatal Gut. Biol. Reprod. 2010, 82, 854–864. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Burghardt, R.C.; Bazer, F.W. Osteopontin: A leading candidate adhesion molecule for implantation in pigs and sheep. J. Anim. Sci. Biotechnol. 2014, 5, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.W.; Dunlap, K.L.; Erikson, D.W.; Patel, A.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A. Effects of Long-Term Progesterone Exposure on Porcine Uterine Gene Expression: Progesterone Alone Does Not Induce Secreted Phosphoprotein 1 (Osteopontin) in Glandular Epithelium. Reproduction 2010, 140, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Steinhauser, C.B.; Bazer, F.B.; Burghardt, R.C.; Johnson, G.A. Expression of Progesterone Receptor in the Porcine Uterus and Placenta throughout Gestation: Correlation with Expression of Uteroferrin and Osteopontin. Domestic. Anim. Endocrinol. 2017, 58, 19–29. [Google Scholar] [CrossRef] [PubMed]
- McLendon, B.A.; Kramer, A.C.; Seo, H.; Burghardt, R.C.; Bazer, F.W.; Wu, G.; Johnson, G.A. Temporal and spatial expression of aquaporins 1, 5, 8, and 9: Potential transport of water across the endometrium and chorioallantois of pigs. Placenta 2022, 124, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Li, X.; Seo, H.; McLendon, B.A.; Kramer, A.C.; Bazer, F.W.; Johnson, G.A. Osteopontin (OPN)/Secreted Phosphoprotein 1 (SPP1) binds integrins to activate transport of ions across the porcine placenta. Front. Biosci. 2022, 27, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.W.; Dunlap, K.A.; Frank, J.W.; Erikson, D.W.; White, B.G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A. Effects of long-term progesterone on developmental and functional aspects of porcine uterine epithelia: Progesterone alone does not support glandular development of pregnancy. Reproduction 2010, 140, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, V. Electron microscopy of the initial stages of placentation in the pig. Anat. Embryol. 1985, 172, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Brayman, M.; Thathiah, A.; Carson, D.D. MUC1: A multifunctional cell surface component of reproductive tissue epithelia. Reprod. Biol. Endocrinol. 2004, 2, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Geisert, R.D.; Pratt, T.N.; Bazer, F.W.; Mayes, J.S.; Watson, G.H. Immunocytochemical localization and changes in endometrial progestin receptor protein during the porcine oestrous cycle and early pregnancy. Reprod. Fertil. Dev. 1994, 6, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.A.; Bazer, F.W.; Burghardt, R.C. Spatial and temporal analysis of integrin and Muc-1 expression in porcine uterine epithelium and trophectoderm in vivo. Biol. Reprod. 1996, 55, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.A.; Newton, G.R.; Weise, D.W.; Bazer, F.W.; Burghardt, R.C. Characterization of a polarized porcine uterine epithelial model system. Biol. Reprod. 1996, 55, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Kimber, S.J.; Spanswick, C. Blastocyst implantation: The adhesion cascade. Semin. Cell Dev. Biol. 2000, 11, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.E.; Johnson, G.A.; Bazer, F.W.; Burghardt, R.C. Implantation mechanisms: Insights from the sheep. Reproduction 2004, 128, 656–668. [Google Scholar] [CrossRef] [PubMed]
- Kling, D.; Fingerle, J.; Harlan, J.M. Inhibition of leukocyte extravasation with a monoclonal antibody to CD18 during formation of experimental intimal thickening in rabbit carotid arteries. Arterioscler. Thromb. 1992, 12, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Red-Horse, K.; Zhou, Y.; Genbacev, O.; Prakobphol, A.; Foulk, R.; McMaster, M.; Fisher, S.J. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J. Clin. Investig. 2004, 114, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.K.; Glasser, S.R.; Woldesenbet, S.; Burghardt, R.E.; Newton, G.R. Expression of carbohydrate antigens in the goat uterus during early pregnancy and on steroid-treated polarized uterine epithelial cells in vitro. Biol. Reprod. 2000, 62, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.E.; Bartol, F.F.; Bazer, F.W.; Johnson, G.A.; Joyce, M.M. Identification and characterization of glycosylation dependent cell adhesion molecule 1 (GlyCAM-1) expression in the ovine uterus. Biol. Reprod. 1999, 60, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Giancotti, F.G.; Ruoslahti, E. Integrin signaling. Science 1990, 285, 1028–1032. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, R.C.; Burghardt, J.R.; Taylor II, J.D.; Reeder, A.T.; Nguyen, B.T.; Spencer, T.E.; Johnson, G.A. Enhanced focal adhesion assembly reflects increased mechanosensation and mechanotransduction along the maternal/conceptus interface during pregnancy in sheep. Reproduction 2009, 137, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Gallant, N.D.; Michael, K.E.; García, A.J. Cell adhesion strengthening: Contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 2005, 16, 4329–4340. [Google Scholar] [CrossRef] [PubMed]
- Humphries, J.D.; Byron, A.; Humphries, M.J. Integrin ligands at a glance. J. Cell Sci. 2006, 119, 3901–3903. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Dekaney, C.M.; Bazer, F.W.; Madrigal, M.M.; Jaeger, L.A. Beta transforming growth factors (TGFβs) at the porcine conceptus-maternal interface. Part II: Uterine TGFβ bioactivity and expression of immunoreactive TGFβs (TGFβ1, TGFβ2, and TGFβ3) and their receptors (Type I and Type II). Biol. Reprod. 1998, 59, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Geisert, R.D.; Yelich, J.V.; Pratt, T.; Pomp, D. Expression of an inter-α-trypsin inhibitor heavy chain-like protein in the pig endometrium during the oestrous cycle and early pregnancy. J. Reprod. Fert. 1998, 114, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Garlow, J.E.; Ka, H.; Johnson, G.A.; Burghardt, R.C.; Jaeger, L.A.; Bazer, F.W. Analysis of osteopontin at the maternal-placental interface in pigs. Biol. Reprod. 2002, 66, 718–725. [Google Scholar] [CrossRef] [PubMed]
- White, F.J.; Ross, J.W.; Joyce, M.M.; Geisert, R.D.; Burghardt, R.C.; Johnson, G.A. Steroid regulation of cell specific secreted phosphoprotein 1 (osteopontin) expression in the pregnant porcine uterus. Biol. Reprod. 2005, 73, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Erikson, D.W.; Burghardt, R.C.; Bayless, K.J.; Johnson, G.A. Secreted phosphoprotein 1 (SPP1, osteopontin) binds to integrin alphavbeta6 on porcine trophectoderm cells and integrin alphavbeta3 on uterine luminal epithelial cells, and promotes trophectoderm cell adhesion and migration. Biol. Reprod. 2009, 81, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Massuto, D.A.; Kneese, E.C.; Johnson, G.A.; Hooper, N.H.; Burghardt, R.C.; Ing, N.H.; Jaeger, L.A. Transforming growth factor beta (TGFB) signaling is activated during porcine implantation: Proposed role for latency associated peptide-integrins at the conceptus-maternal interface. Reproduction 2009, 139, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Frank, J.W.; Seo, H.; Burghardt, R.C.; Bayless, K.J.; Johnson, G.A. ITGAV (Alpha V Integrins) Bind SPP1 (Osteopontin) to Support Trophoblast Cell Adhesion. Reproduction 2017, 153, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Bazer, F.W.; Jaeger, L.A.; Ka, H.; Garlow, J.E.; Pfarrer, C.; Spencer, T.E.; Burghardt, R.C. Muc-1, integrin and osteopontin expression during the implantation cascade in sheep. Biol. Reprod. 2001, 65, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Wooding, F.B.; Flint, A.P.; Heap, R.B.; Morgan, G.; Buttle, H.L.; Young, I.R. Control of binucleate cell migration in the placenta of sheep and goats. J. Reprod. Fertil. 1986, 76, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Wooding, F.B.P. The ruminant placental trophoblast binucleate cell: An evolutionary breakthrough. Biol. Reprod. 2022, 107, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Frank, J.W.; Burghardt, R.C.; Bazer, F.W.; Johnson, G.A. Integrins and OPN localize to adhesion complexes during placentation in sheep. Reproduction 2020, 160, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Spencer, T.E.; Burghardt, R.C.; Bazer, F.W. Ovine Osteopontin: I. Cloning and expression of mRNA in the uterus during the peri-implantation period. Biol. Reprod. 1999, 61, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Burghardt, R.C.; Spencer, T.E.; Newton, G.R.; Ott, T.L.; Bazer, F.W. Ovine Osteopontin: II. Osteopontin and αvβ3 integrin expression in the uterus and conceptus during the peri-implantation period. Biol. Reprod. 1999, 61, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Burghardt, R.C.; Bazer, F.W.; Spencer, T.E. Minireview: Osteopontin: Roles in implantation and placentation. Biol. Reprod. 2003, 69, 1458–1471. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.A.; Adelson, D.L.; Bazer, F.W.; Burghardt, R.C.; Meeusen, E.N.; Spencer, T.E. Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm. Proc. Natl. Acad. Sci. USA 2004, 101, 7982–7987. [Google Scholar] [CrossRef] [PubMed]
- Muñiz, J.J.; Joyce, M.M.; Taylor, J.D.; Burghardt, J.R.; Burghardt, R.C.; Johnson, G.A. Glycosylation Dependent Cell Adhesion Molecule 1 (GlyCAM-1)-like protein and L-Selectin expression in sheep interplacentomal and placentomal endometrium. Reproduction 2006, 131, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Spencer, T.E.; Burghardt, R.C.; Taylor, K.M.; Gray, C.A.; Bazer, F.W. Progesterone modulation of osteopontin gene expression in the ovine uterus. Biol. Reprod. 2000, 62, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Frank, J.W.; Steinhauser, C.B.; Wang, X.; Bughardt, R.C.; Bazer, F.W.; Johnson, G.A. Loss of ITGB3 in ovine conceptuses decreases conceptus expression of NOS3 and SPP1: Implications for the developing placental vasculature. Biol. Reprod. 2021, 104, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Erikson, D.W.; Burghardt, R.C.; Spencer, T.E.; Wu, G.; Bayless, K.J.; Johnson, G.A.; Bazer, F.W. Secreted phosphoprotein 1 binds integrins to initiate multiple cell signaling pathways, including FRAP1/mTOR, to support attachment and force-generated migration of trophectoderm cells. Matrix Biol. 2010, 29, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Johnson, G.A.; Burghardt, R.C.; Wu, G.; Bazer, F.W. Uterine Histotroph and Conceptus Development. II. Arginine and Secreted Phosphoprotein 1 Cooperatively Stimulate Migration and Adhesion of Ovine Trophectoderm Cells via Focal Adhesion-MTORC2 mediated Cytoskeleton Reorganization. Biol. Reprod. 2016, 95, 71. [Google Scholar] [CrossRef] [PubMed]
- King, G.J.; Atkinson, B.A.; Robertson, H.A. Development of the bovine placentome from days 20 to 29 of gestation. J. Reprod. Fertil. 1980, 59, 95–100. [Google Scholar] [CrossRef] [PubMed]
- King, G.J.; Atkinson, B.A.; Robertson, H.A. Development of the intercaruncular areas during early gestation and establishment of the bovine placenta. J. Reprod. Fertil. 1981, 61, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Wooding, F.B. The role of the binucleate cell in ruminant placental structure. J. Reprod. Fertil. 1982, 31, 31–39. [Google Scholar]
- Reese, S.T.; Pereira, M.H.C.; Edwards, J.L.; Vasconcelos, J.L.M.; Pohler, K.G. Pregnancy diagnosis in cattle using pregnancy associated glycoprotein concentration in circulation at day 24 of gestation. Theriogenology 2018, 106, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Vallet, J.L.; Freking, B.A. Differences in placental structure during gestation associated with large and small pig fetuses. J. Anim. Sci. 2007, 85, 3267–3275. [Google Scholar] [CrossRef] [PubMed]
- Vallet, J.L.; Miles, J.R.; Freking, B.A. Development of the pig placenta. Soc. Reprod. Fertil. Suppl. 2009, 66, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, V.; Leiser, R. Initial vascularisation in the pig placenta: I. Demonstration of nonglandular areas by histology and corrosion casts. Anat. Rec. 1994, 238, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Friess, A.E.; Sinowatz, F.; Skolek-Winnisch, R.; Traautner, W. The placenta of the pig. I. Finestructural changes of the placental barrier during pregnancy. Anat. Embryol. 1980, 158, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Friess, A.E.; Sinowatz, F.; Skolek-Winnisch, R.; Traautner, W. The placenta of the pig. II. Finestructural changes of the placental barrier during pregnancy. Anat. Embryol. 1981, 163, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, F.W.; Wislocki, B.; Amoroso, E.C. Electron microscopy of the pig’s placenta, with especial reference to the cell membranes of the endometrium and chorion. Am. J. Anat. 1955, 91, 65–101. [Google Scholar] [CrossRef] [PubMed]
- Wooding, F.B.; Burton, G.J. Chapter 6, Synepitheliochorial placentation: Ruminants (ewe and cow). In Comparative Placentation: Structure, Function and Evolution; Springer: Heidelberg, Germany, 2008; pp. 133–144. [Google Scholar]
- Assis Neto, A.C.; Pereira, F.T.V.; Santos, T.C.; Ambrosio, C.E.; Leiser, R.; Miglino, M.A. Morpho-physical recording of bovine conceptus (Bos indicus) and placenta from days 20 to 70 of pregnancy. Reprod. Domest. Anim. 2010, 45, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, V.; Leiser, R. Microvascularization of regular and irregular areolae of the areola-gland submunit of the porcine placenta: Structural and functional aspects. Anat. Embryol. 1993, 188, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Leiser, R.; Dantzer, V. Initial vascularization in the pig placenta: II. Demonstration of gland and areola-gland subunits by histology and corrosion casts. Anat. Rec. 1994, 238, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.W.; Bazer, F.W.; Thatcher, W.W.; Franke, D.E.; Wallace, H.D. Conceptus development in intact and unilaterally hysterectomized ovariectomized gilts: Interrelations among hormonal status, placental development, fetal fluids and fetal growth. J. Anim. Sci. 1977, 44, 620–637. [Google Scholar] [CrossRef] [PubMed]
- Grosser, O. Vergleichende Anatomie und Entwicklungsgeschichte der Eihaute und der Placenta mit Besonderer Berücksichtigung des Menschen; Braumüller Verlag: Wien, Austira, 1909. [Google Scholar]
- Grosser, O. Fruhentwicklung, Eihautbidung und Placentation des Menschen und der Saugetiere; J. F. Bergmann: Munchen, Germany, 1927. [Google Scholar]
- Sasser, R.G.; Ruder, C.A.; Ivani, K.A.; Butler, J.E.; Hamilton, W.C. Detection of pregnancy by radioimmunoassay of a novel pregnancy-specific protein in serum of cows and a profile of serum concentrations during gestation. Biol. Reprod. 1986, 35, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Ruder, C.A.; Stellflug, J.N.; Dahmen, J.J.; Sasser, R.G. Detection of pregnancy in sheep by radioimmunoassay of sera for pregnancy-specific protein B. Theriogenology 1988, 29, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Karen, A.; Beckers, J.F.; Sulon, J.; de Sousa, N.M.; Szabados, K.; Reczigel, J.; Szenci, O. Early pregnancy diagnosis in sheep by progesterone and pregnancy-associated glycoprotein tests. Theriogenology 2003, 59, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Pohler, K.G.; Geary, T.W.; Johnson, C.L.; Atkins, J.A.; Jinks, E.M.; Busch, D.C.; Green, J.A.; MacNeil, M.D.; Smith, M.F. Circulating bovine pregnancy associated glycoproteins are associated with late embryonic/fetal survival but not ovulatory follicle size in suckled beef cows. J. Anim. Sci. 2013, 91, 4158–4167. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.M.; Pohler, K.G.; Smith, M.F.; Green, J.A. Placental PAGs: Gene origins, expression patterns, and use as markers of pregnancy. Reproduction 2015, 149, R115–R126. [Google Scholar] [CrossRef] [PubMed]
- Pohler, K.G.; Pereira, M.; Lopes, F.R.; Lawrence, J.C.; Keisler, D.H.; Smith, M.F.; Vasconcelos, J.; Green, J.A. Circulating concentrations of bovine pregnancy-associated glycoproteins and late embryonic mortality in lactating dairy herds. J. Dairy Sci. 2016, 99, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Samborski, A.; Graf, A.; Krebs, A.; Kessler, S.; Bauersachs, S. Deep sequencing of the porcine endometrial transcriptome on day 14 of pregnancy. Biol. Reprod. 2013, 88, 84. [Google Scholar] [CrossRef] [PubMed]
- Samborski, A.; Graf, A.; Krebs, A.; Kessler, S.; Reichenbach, M.; Reichenbach, H.D.; Ulbrich, S.E.; Bauersachs, S. Transcriptome changes in the porcine endometrium during the preattachement phase. Biol. Reprod. 2013, 89, 134. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, P.; Bauersachs, S.; Baryla, S.; Goryszewska, E.; Muszak, J.; Grzegorzewski, W.J.; Waclawik, A. Eatradiol-17β-induced changes in the porcine endometrial transcriptome in vivo. Int. J. Mol. Sci. 2020, 21, 890. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Gu, T.; Hu, Q.; Xu, Z.; Xie, Y.; Zhou, C.; Zheng, E.; Huang, S.; Xu, Z.; Fanming, M.; et al. Global transcriptomic analyses reveal genes involved in conceptus development during the implantation stages in pigs. Front. Genet. 2021, 12, 584995. [Google Scholar] [PubMed]
- Tian, Q.; He, J.-P.; Zhu, C.; Zhu, Q.-Y.; Li, Y.-G.; Liu, J.-I. Revisiting the transcriptome landscape of pig embryo implantation site at single-cell resolution. Front. Cell Dev. Biol. 2022, 10, 796358. [Google Scholar] [CrossRef] [PubMed]
- Brooks, K.; Burns, G.W.; Moraes, J.G.N.; Spencer, T.E. Analysis of the uterine epithelial and conceptus transcriptome and luminal fluid proteome during the peri-implantation period of pregnancy in sheep. Biol. Reprod. 2016, 95, 88. [Google Scholar] [CrossRef] [PubMed]
- Matrsuno, Y.; Kusama, K.; Imakawa, K. Characterization of lncRNA functioning in ovine conceptuses and endometria during the peri-implantation period. Biochem. Biophy. Res. Commun. 2022, 594, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.-X.; Ma, W.-J.; Wu, Z.-B.; Li, S.; Zhang, X.-Q.; He, Z.; Wu, S.-X.; Tao, H.-P.; Fang, Y.; Song, Y.-W.; et al. Single-cell transcriptomic characterization of sheep conceptus elongation and implantation. Cell Rep. 2023, 42, 112860. [Google Scholar] [CrossRef] [PubMed]
- Bauersachs, S.; Ulbrich, S.E.; Gross, K.; Schmidt, S.E.; Meyer, H.H.; Wenigerkind, H.; Vermehren, M.; Sinowatz, F.; Blum, H.; Wolf, E. Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity. Reproduction 2006, 132, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Bauersachs, S.; Mitko, K.; Ulbrich, S.E.; Blum, H.; Wolf, E. Transcriptome studies of bovine endometrium reveal molecular profiles characteristic for specific stages of estrous cycle and early pregnancy. Exp. Clin. Endocrinol. Diabetes 2008, 116, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Forde, N.; Carter, F.; Spencer, T.E.; Bazer, F.W.; Sandra, O.; Mansouri-Attia, N.; Okumu, L.A.; McGettigan, P.A.; Mehta, J.P.; McBride, R.; et al. Conceptus-induced changes in the endometrial transcriptome: How soon does the cow know she is pregnant? Biol. Reprod. 2011, 85, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Biase, F.H.; Rabel, C.; Guillomot, M.; Hue, I.; Andropolis, K.; Olmstead, C.A.; Oliveira, R.; Wallace, R.; Le Bourhis, D.L.; Richard, C.; et al. Massive dysregulation of genes involved in cell signaling an dplacental development in cloned cattle conceptus and maternal endometrium. Proc. Natl. Acad. Sci. USA 2016, 113, 14492–14501. [Google Scholar] [CrossRef] [PubMed]
- Moraes, J.G.N.; Behura, S.K.; Geary, T.S.; Hansen, P.J.; Neibergs, H.L.; Spencer, T.E. Uterine influences on conceptus development in fertility-classified animals. Proc. Natl. Acad. Sci. USA 2018, 115, E1749–E1758. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, E.O.; Sanchez, J.M.; Rabaglino, M.B.; McDonald, M.; Liu, H.; Spencer, T.E.; Fair, S.; Kenny, D.A.; Lonergan, P. Influence of sire fertility status on conceptus-induced transcriptomic response of the bovine endometrium. Front. Cell Dev. Biol. 2022, 10, 950443. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, P.M.; Bromfield, J.J.; Ribeiro, E.S.; Santos, J.E.P.; Thatcher, W.W.; Bisinotto, R.S. Transcriptome changes associated with elongation of bovine conceptuses I: Differentially expressed transcripts in the conceptus on day 17 after insemination. J. Dairy Sci. 2023, 106, 9745–9762. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, P.M.; Bromfield, J.J.; Ribeiro, E.S.; Santos, J.E.P.; Thatcher, W.W.; Bisinotto, R.S. Transcriptome changes associated with elongation of bovine conceptuses II: Differentially expressed transcripts in the endometrium on day 17 after insemination. J. Dairy Sci. 2023, 106, 9763–9777. [Google Scholar] [CrossRef] [PubMed]
- Biase, F.H.; Moorey, S.E.; Schnuelle, J.G.; Rodning, S.; Ortega, M.S.; Spencer, T.E. Extensive rewiring of the gene regulatory interactions between in vitro-produced conceptuses and endometrium during attachment. Proc. Natl. Acad. Sci. Nexus 2023, 2, pgad284. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, G.A.; Minela, T.; Seo, H.; Bazer, F.W.; Burghardt, R.C.; Wu, G.; Pohler, K.G.; Stenhouse, C.; Cain, J.W.; Seekford, Z.K.; et al. Conceptus Elongation, Implantation, and Early Placental Development in Species with Central Implantation: Pigs, Sheep, and Cows. Biomolecules 2025, 15, 1037. https://doi.org/10.3390/biom15071037
Johnson GA, Minela T, Seo H, Bazer FW, Burghardt RC, Wu G, Pohler KG, Stenhouse C, Cain JW, Seekford ZK, et al. Conceptus Elongation, Implantation, and Early Placental Development in Species with Central Implantation: Pigs, Sheep, and Cows. Biomolecules. 2025; 15(7):1037. https://doi.org/10.3390/biom15071037
Chicago/Turabian StyleJohnson, Gregory A., Thainá Minela, Heewon Seo, Fuller W. Bazer, Robert C. Burghardt, Guoyao Wu, Ky G. Pohler, Claire Stenhouse, Joe W. Cain, Zachary K. Seekford, and et al. 2025. "Conceptus Elongation, Implantation, and Early Placental Development in Species with Central Implantation: Pigs, Sheep, and Cows" Biomolecules 15, no. 7: 1037. https://doi.org/10.3390/biom15071037
APA StyleJohnson, G. A., Minela, T., Seo, H., Bazer, F. W., Burghardt, R. C., Wu, G., Pohler, K. G., Stenhouse, C., Cain, J. W., Seekford, Z. K., & Soffa, D. R. (2025). Conceptus Elongation, Implantation, and Early Placental Development in Species with Central Implantation: Pigs, Sheep, and Cows. Biomolecules, 15(7), 1037. https://doi.org/10.3390/biom15071037