Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (824)

Search Parameters:
Keywords = physiological plasticity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2816 KiB  
Article
Influence of the Origin, Feeding Status, and Trypanosoma cruzi Infection in the Microbial Composition of the Digestive Tract of Triatoma pallidipennis
by Everardo Gutiérrez-Millán, Alba N. Lecona-Valera, Mario H. Rodriguez and Ana E. Gutiérrez-Cabrera
Biology 2025, 14(8), 984; https://doi.org/10.3390/biology14080984 (registering DOI) - 2 Aug 2025
Viewed by 48
Abstract
Triatoma pallidipennis, the main vector of Chagas disease in central Mexico, hosts a diverse and complex gut bacterial community shaped by environmental and physiological factors. To gain insight into these microbes’ dynamics, we characterised the gut bacterial communities of wild and insectary [...] Read more.
Triatoma pallidipennis, the main vector of Chagas disease in central Mexico, hosts a diverse and complex gut bacterial community shaped by environmental and physiological factors. To gain insight into these microbes’ dynamics, we characterised the gut bacterial communities of wild and insectary insects under different feeding and Trypanosoma cruzi infection conditions, using 16S rRNA gene sequencing. We identified 91 bacterial genera across 8 phyla, with Proteobacteria dominating most samples. Wild insects showed greater bacterial diversity, led by Acinetobacter and Pseudomonas, while insectary insects exhibited lower diversity and were dominated by Arsenophonus. The origin of the insects, whether they were reared in the insectary (laboratory) or collected from wild populations, was the principal factor structuring the gut microbiota, followed by feeding and T. cruzi infection. A stable core microbiota of 12 bacterial genera was present across all conditions, suggesting key functional roles in host physiology. Co-occurrence and functional enrichment analyses revealed that feeding and infection induced condition-specific microbial interactions and metabolic pathways. Our findings highlight the ecological plasticity of the triatomine gut microbiota and its potential role in modulating vector competence, providing a foundation for future microbiota-based control strategies. Full article
(This article belongs to the Special Issue Metabolic Interactions between the Gut Microbiome and Host)
Show Figures

Graphical abstract

16 pages, 1526 KiB  
Article
Effects of Different Phosphorus Addition Levels on Physiological and Growth Traits of Pinus massoniana (Masson Pine) Seedlings
by Zhenya Yang and Hui Wang
Forests 2025, 16(8), 1265; https://doi.org/10.3390/f16081265 - 2 Aug 2025
Viewed by 99
Abstract
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive [...] Read more.
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive strategies of Masson pine to different soil P levels, focusing on root morphological–architectural plasticity and the allocation dynamics of nutrient elements and photosynthetic assimilates. One-year-old potted Masson pine seedlings were exposed to four P addition treatments for one year: P0 (0 mg kg−1), P1 (25 mg kg−1), P2 (50 mg·kg−1), and P3 (100 mg kg−1). In July and December, measurements were conducted on seedling organ biomass, root morphological indices [root length (RL), root surface area (RSA), root diameter (RD), specific root length (SRL), and root length ratio (RLR) for each diameter grade], root architectural indices [number of root tips (RTs), fractal dimension (FD), root branching angle (RBA), and root topological index (TI)], as well as the content of nitrogen (N), phosphorus (P), carbon (C), and non-structural carbohydrates (NSCs) in roots, stems, and leaves. Compared with the P0 treatment, P2 and P3 significantly increased root biomass, root–shoot ratio, RL, RSA, RTs, RLR of finer roots (diameter ≤ 0.4 mm), nutrient accumulation ratio in roots, and starch (ST) content in roots, stems and leaves. Meanwhile, they decreased soluble sugar (SS) content, SS/ST ratio, C and N content, and N/P and C/P ratios in stems and leaves, as well as nutrient accumulation ratio in leaves. The P3 treatment significantly reduced RBA and increased FD and SRL. Our results indicated that Masson pine adapts to low P by developing shallower roots with a reduced branching intensity and promoting the conversion of ST to SS. P’s addition effectively alleviates growth limitations imposed by low P, stimulating root growth, branching, and gravitropism. Although a sole P addition promotes short-term growth and P uptake, it triggers a substantial consumption of N, C, and SS, leading to significant decreases in N/P and C/P ratios and exacerbating N’s limitation, which is detrimental to long-term growth. Under high-P conditions, Masson pine strategically prioritizes allocating limited N and SS to roots, facilitating the formation of thinner roots with low C costs. Full article
Show Figures

Figure 1

18 pages, 2864 KiB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 - 1 Aug 2025
Viewed by 130
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 2446 KiB  
Article
Different Phosphorus Preferences Among Arbuscular and Ectomycorrhizal Trees with Different Acquisition Strategies in a Subtropical Forest
by Yaping Zhu, Jianhua Lv, Pifeng Lei, Miao Chen and Jinjuan Xie
Forests 2025, 16(8), 1241; https://doi.org/10.3390/f16081241 - 28 Jul 2025
Viewed by 159
Abstract
Phosphorus (P) availability is a major constraint on plant growth in many forest ecosystems, yet the strategies by which different tree species acquire and utilize various forms of soil phosphorus remain poorly understood. This study investigated how coexisting tree species with contrasting mycorrhizal [...] Read more.
Phosphorus (P) availability is a major constraint on plant growth in many forest ecosystems, yet the strategies by which different tree species acquire and utilize various forms of soil phosphorus remain poorly understood. This study investigated how coexisting tree species with contrasting mycorrhizal types, specifically arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, respond to different phosphorus forms under field conditions. An in situ root bag experiment was conducted using four phosphorus treatments (control, inorganic, organic, and mixed phosphorus) across four subtropical tree species. A comprehensive set of fine root traits, including morphological, physiological, and mycorrhizal characteristics, was measured to evaluate species-specific phosphorus foraging strategies. The results showed that AM species were more responsive to phosphorus form variation than ECM species, particularly under inorganic and mixed phosphorus treatments. Significant changes in root diameter (RD), root tissue density (RTD), and acid phosphatase activity (RAP) were observed in AM species, often accompanied by higher phosphorus accumulation in fine roots. For example, RD in AM species significantly decreased under the Na3PO4 treatment (0.94 mm) compared to the control (1.18 mm), while ECM species showed no significant changes in RD across treatments (1.12–1.18 mm, p > 0.05). RTD in AM species significantly increased under Na3PO4 (0.030 g/cm3) and Mixture (0.021 g/cm3) compared to the control (0.012 g/cm3, p < 0.05), whereas ECM species exhibited consistently low RTD values across treatments (0.017–0.020 g/cm3, p > 0.05). RAP in AM species increased significantly under Na3PO4 (1812 nmol/g/h) and Mixture (1596 nmol/g/h) relative to the control (1348 nmol/g/h), while ECM species showed limited variation (1286–1550 nmol/g/h, p > 0.05). In contrast, ECM species displayed limited trait variation across treatments, reflecting a more conservative acquisition strategy. In addition, trait correlation analysis revealed stronger coordination among root traits in AM species. And AM species exhibited high variability across treatments, while ECM species maintained consistent trait distributions with limited plasticity. These findings suggest that AM and ECM species adopt fundamentally different phosphorus acquisition strategies. AM species rely on integrated morphological and physiological responses to variable phosphorus conditions, while ECM species maintain stable trait configurations, potentially supported by fungal symbiosis. Such divergence may contribute to functional complementarity and species coexistence in phosphorus-limited subtropical forests. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

35 pages, 638 KiB  
Review
The Influence of Circadian Rhythms on Transcranial Direct Current Stimulation (tDCS) Effects: Theoretical and Practical Considerations
by James Chmiel and Agnieszka Malinowska
Cells 2025, 14(15), 1152; https://doi.org/10.3390/cells14151152 - 25 Jul 2025
Viewed by 534
Abstract
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from [...] Read more.
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from chronobiology, sleep research, and non-invasive brain stimulation, we argue that tDCS produces reliable, polarity-specific after-effects only within a circadian–homeostatic “window of efficacy”. On the circadian (Process C) axis, intrinsic alertness, membrane depolarisation, and glutamatergic gain rise in the late biological morning and early evening, whereas pre-dawn phases are marked by reduced excitability and heightened inhibition. On the homeostatic (Process S) axis, consolidated sleep renormalises synaptic weights, widening the capacity for further potentiation, whereas prolonged wakefulness saturates plasticity and can even reverse the usual anodal/cathodal polarity rules. Human stimulation studies mirror this two-process fingerprint: sleep deprivation abolishes anodal long-term-potentiation-like effects and converts cathodal inhibition into facilitation, while stimulating at each participant’s chronotype-aligned (phase-aligned) peak time amplifies and prolongs after-effects even under equal sleep pressure. From these observations we derive practical recommendations: (i) schedule excitatory tDCS after restorative sleep and near the individual wake-maintenance zone; (ii) avoid sessions at high sleep pressure or circadian troughs; (iii) log melatonin phase, chronotype, recent sleep and, where feasible, core temperature; and (iv) consider mild pre-heating or time-restricted feeding as physiological primers. By viewing Borbély’s two-process model and allied metabolic clocks as adjustable knobs for plasticity engineering, this review provides a conceptual scaffold for personalised, time-sensitive tDCS protocols that could improve reproducibility in research and therapeutic gain in the clinic. Full article
Show Figures

Figure 1

27 pages, 792 KiB  
Review
Double-Edged Sword: Urbanization and Response of Amniote Gut Microbiome in the Anthropocene
by Yi Peng, Mengyuan Huang, Xiaoli Sun, Wenqing Ling, Xiaoye Hao, Guangping Huang, Xiangdong Wu, Zheng Chen and Xiaoli Tang
Microorganisms 2025, 13(8), 1736; https://doi.org/10.3390/microorganisms13081736 - 25 Jul 2025
Viewed by 394
Abstract
Projections indicate that the global urban population is anticipated to reach 67.2% by 2050, accompanied by a threefold increase in urban built-up areas worldwide. Urbanization has profoundly transformed Earth’s natural environment, notably characterized by the drastic reduction and fragmentation of wildlife habitats. These [...] Read more.
Projections indicate that the global urban population is anticipated to reach 67.2% by 2050, accompanied by a threefold increase in urban built-up areas worldwide. Urbanization has profoundly transformed Earth’s natural environment, notably characterized by the drastic reduction and fragmentation of wildlife habitats. These changes contribute to local species extinction, leading to biodiversity loss and profoundly impacting ecological processes and regional sustainable development. However, within urban settings, certain ‘generalist’ species demonstrate survival capabilities contingent upon phenotypic plasticity. The co-evolution of gut microbiota with their hosts emerges as a key driver of this phenotypic plasticity. The presence of diverse gut microbiota constitutes a crucial adaptive mechanism essential for enabling hosts to adjust to rapid environmental shifts. This review comprehensively explores amniote gut microbial changes in the context of urbanization, examining potential drivers of these changes (including diet and environmental pollutants) and their potential consequences for host health (such as physiology, metabolism, immune function, and susceptibility to infectious and non-infectious diseases). Ultimately, the implications of the gut microbiome are highlighted for elucidating key issues in ecology and evolution. This understanding is expected to enhance our comprehension of species adaptation in the Anthropocene. Full article
(This article belongs to the Special Issue Advances in Host-Gut Microbiota)
Show Figures

Figure 1

27 pages, 1706 KiB  
Review
Micro- and Nanoplastics as Emerging Threats to Both Terrestrial and Aquatic Animals: A Comprehensive Review
by Munwar Ali, Chang Xu and Kun Li
Vet. Sci. 2025, 12(8), 688; https://doi.org/10.3390/vetsci12080688 - 23 Jul 2025
Viewed by 466
Abstract
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs [...] Read more.
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs enter animals’ bodies primarily through ingestion of contaminated feed and water, inhalation, and dermal exposure, subsequently accumulating in various organs, disrupting physiological functions. Notably, MNPs facilitate the horizontal transfer of antimicrobial resistance genes (ARGs), exacerbating the global challenge of antimicrobial resistance (AMR). In agricultural environments, sources such as organic fertilizers, wastewater irrigation systems, surface runoff, and littering contribute to soil contamination, adversely affecting plant growth and soil health, which in turn compromises feed quality and ultimately animals’ productivity. This review synthesizes current evidence demonstrating how MNP exposure impairs animal production, reproduction, and survival, and highlights the interconnected risks to food safety and ecosystem health. The findings call for the urgent need for comprehensive research under controlled conditions to underscore the fine details regarding mechanisms of MNP toxicity and to inform effective mitigation strategies. Addressing MNP pollution is crucial for safeguarding animal health, ensuring sustainable livestock production, and promoting environmental sustainability and integrity. Full article
Show Figures

Graphical abstract

20 pages, 8740 KiB  
Article
Agomelatine Ameliorates Cognitive and Behavioral Deficits in Aβ-Induced Alzheimer’s Disease-like Rat Model
by Raviye Ozen Koca, Z. Isik Solak Gormus, Hatice Solak, Burcu Gultekin, Ayse Ozdemir, Canan Eroglu Gunes, Ercan Kurar and Selim Kutlu
Medicina 2025, 61(8), 1315; https://doi.org/10.3390/medicina61081315 - 22 Jul 2025
Viewed by 277
Abstract
Background and Objectives: Alzheimer’s disease (AD) has become a serious health problem. Agomelatine (Ago) is a neuroprotective antidepressant. This study aimed to assess how Ago influences behavioral outcomes in AD-like rat model. Materials and Methods: Forty-eight Wistar albino rats were allocated into four [...] Read more.
Background and Objectives: Alzheimer’s disease (AD) has become a serious health problem. Agomelatine (Ago) is a neuroprotective antidepressant. This study aimed to assess how Ago influences behavioral outcomes in AD-like rat model. Materials and Methods: Forty-eight Wistar albino rats were allocated into four groups: Control (C), Alzheimer’s disease-like model (AD), Alzheimer’s disease-like model treated with Ago (ADAgo), and Ago alone (Ago). Physiological saline was injected intrahippocampally in C and Ago animals, whereas Aβ peptide was delivered similarly in AD and ADAgo rats. On day 15, 0.9% NaCl was administered to the C and AD groups, and Agomelatine (1 mg/kg/day) was infused into ADAgo and Ago rats via osmotic pumps for 30 days. Behavioral functions were evaluated using Open Field (OF), Forced Swim (FST), and Morris Water Maze (MWM) tests. Brain tissues were examined histopathologically. Neuritin, Nestin, DCX, NeuN, BDNF, MASH1, MT1, and MT2 transcripts were quantified by real-time PCR. Statistical analyses were performed in R 4.3.1, with p < 0.05 deemed significant. Results: In the FST, swimming, climbing, immobility time, and mobility percentage differed significantly among groups (p < 0.05). In the MWM, AD rats exhibited impaired learning and memory that was ameliorated by Ago treatment (p < 0.05). DCX expression decreased in AD rats but was elevated by Ago (p < 0.05). Nestin levels differed significantly between control and AD animals; MT1 expression varied between control and AD cohorts; and MT2 transcript levels were significantly lower in AD, ADAgo, and Ago groups compared to C (all p < 0.05). Conclusions: Ago exhibits antidepressant-like activity in this experimental AD model and may enhance cognitive function via mechanisms beyond synaptic plasticity and neurogenesis. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

17 pages, 2163 KiB  
Article
Allometric Growth of Annual Pinus yunnanensis After Decapitation Under Different Shading Levels
by Pengrui Wang, Chiyu Zhou, Boning Yang, Jiangfei Li, Yulan Xu and Nianhui Cai
Plants 2025, 14(15), 2251; https://doi.org/10.3390/plants14152251 - 22 Jul 2025
Viewed by 252
Abstract
Pinus yunnanensis, a native tree species in southwest China, is shading-tolerant and ecologically significant. Light has a critical impact on plant physiology, and decapitation improves canopy light penetration and utilization efficiency. The study of allometric relationships is well-known in forestry, forest ecology, [...] Read more.
Pinus yunnanensis, a native tree species in southwest China, is shading-tolerant and ecologically significant. Light has a critical impact on plant physiology, and decapitation improves canopy light penetration and utilization efficiency. The study of allometric relationships is well-known in forestry, forest ecology, and related fields. Under control (full daylight exposure, 0% shading), L1 (partial shading, 25% shading), L2 (medium shading, 50% shading), and L3 (serious shading, 75% shading) levels, this study used the decapitation method. The results confirmed the effectiveness of decapitation in annual P. yunnanensis and showed that the main stem maintained isometric growth in all shading treatments, accounting for 26.8% of the individual plant biomass, and exhibited dominance in biomass allocation and high shading sensitivity. These results also showed that lateral roots exhibited a substantial biomass proportion of 12.8% and maintained more than 0.5 of higher plasticity indices across most treatments. Moreover, the lateral root exhibited both the lowest slope in 0.5817 and the highest significance (p = 0.023), transitioning from isometric to allometric growth under L1 shading treatment. Importantly, there was a positive correlation between the biomass allocation of an individual plant and that of all components of annual P. yunnanensis. In addition, the synchronized allocation between main roots and lateral branches, as well as between main stems and lateral roots, suggested functional integration between corresponding belowground and aboveground structures to maintain balanced resource acquisition and architectural stability. At the same time, it has been proved that the growth of lateral roots can be accelerated through decapitation. Important scientific implications for annual P. yunnanensis management were derived from these shading experiments on allometric growth. Full article
(This article belongs to the Special Issue Development of Woody Plants)
Show Figures

Figure 1

32 pages, 8017 KiB  
Article
Tumor Organoids Grown in Mixed-Composition Hydrogels Recapitulate the Plasticity of Pancreatic Cancers
by Ioritz Sorzabal-Bellido, Xabier Morales, Iván Cortés-Domínguez, Maider Esparza, Lucía Grande, Pedro Castillo, Silvia Larumbe, María Monteserín, Shruthi Narayanan, Mariano Ponz-Sarvise, Silve Vicent and Carlos Ortiz-de-Solórzano
Gels 2025, 11(7), 562; https://doi.org/10.3390/gels11070562 - 21 Jul 2025
Viewed by 500
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumors exhibit pronounced phenotypic plasticity, alternating between a treatment-sensitive classical phenotype and a more aggressive basal-like state associated with drug resistance and poor prognosis. The frequent coexistence of these phenotypes complicates patient stratification and the selection of effective therapies. [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) tumors exhibit pronounced phenotypic plasticity, alternating between a treatment-sensitive classical phenotype and a more aggressive basal-like state associated with drug resistance and poor prognosis. The frequent coexistence of these phenotypes complicates patient stratification and the selection of effective therapies. Tumor-derived organoids are valuable tools for drug screening; however, their clinical relevance relies on how accurately they recapitulate the phenotypic and functional characteristics of the original tumors. In this study, we present a quantitative analysis of how hydrogel composition influences the phenotype, tissue remodeling, metabolism, and drug resistance of PDAC organoids. Organoids were cultured within three types of hydrogels: Matrigel, collagen-I, and a mixture of collagen-I and Matrigel. Our results demonstrate that: (i) PDAC organoids grown in Matrigel exhibit a classical phenotype, with metabolic and drug response profiles similar to those of low-physiological two-dimensional cultures; (ii) Organoids grown in collagen-containing hydrogels, particularly those in collagen-Matrigel composites, faithfully recapitulate basal-like tumors, characterized by epithelial-to-mesenchymal transition, tissue remodeling, metabolic activity, and drug resistance; (iii) TGFβ induces an exacerbated, highly invasive basal-like phenotype. Summarizing, our findings highlight the importance of 3D hydrogel composition in modulating PDAC organoid phenotype and behavior and suggest collagen-Matrigel hydrogels as the most suitable matrix for modeling PDAC biology. Full article
(This article belongs to the Special Issue Biobased Gels for Drugs and Cells)
Show Figures

Graphical abstract

20 pages, 12298 KiB  
Article
Impact of Metastatic Microenvironment on Physiology and Metabolism of Small Cell Neuroendocrine Prostate Cancer Patient-Derived Xenografts
by Shubhangi Agarwal, Deepti Upadhyay, Jinny Sun, Emilie Decavel-Bueff, Robert A. Bok, Romelyn Delos Santos, Said Al Muzhahimi, Rosalie Nolley, Jason Crane, John Kurhanewicz, Donna M. Peehl and Renuka Sriram
Cancers 2025, 17(14), 2385; https://doi.org/10.3390/cancers17142385 - 18 Jul 2025
Viewed by 408
Abstract
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative [...] Read more.
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative to those with bone metastases alone. The mechanisms that underlie the different behavior of ARPC in bone vs. liver may involve factors intrinsic to the tumor cell, tumor microenvironment, and/or systemic factors, and identifying these factors is critical to improved diagnosis and treatment of SCNC. Metabolic reprogramming is a fundamental strategy of tumor cells to colonize and proliferate in microenvironments distinct from the primary site. Understanding the metabolic plasticity of cancer cells may reveal novel approaches to imaging and treating metastases more effectively. Methods: Using magnetic resonance (MR) imaging and spectroscopy, we interrogated the physiological and metabolic characteristics of SCNC patient-derived xenografts (PDXs) propagated in the bone and liver, and used correlative biochemical, immunohistochemical, and transcriptomic measures to understand the biological underpinnings of the observed imaging metrics. Results: We found that the influence of the microenvironment on physiologic measures using MRI was variable among PDXs. However, the MR measure of glycolytic capacity in the liver using hyperpolarized 13C pyruvic acid recapitulated the enzyme activity (lactate dehydrogenase), cofactor (nicotinamide adenine dinucleotide), and stable isotope measures of fractional enrichment of lactate. While in the bone, the congruence of the glycolytic components was lost and potentially weighted by the interaction of cancer cells with osteoclasts/osteoblasts. Conclusion: While there was little impact of microenvironmental factors on metabolism, the physiological measures (cellularity and perfusion) are highly variable and necessitate the use of combined hyperpolarized 13C MRI and multiparametric (anatomic, diffusion-, and perfusion- weighted) 1H MRI to better characterize pre-treatment tumor characteristics, which will be crucial to evaluate treatment response. Full article
(This article belongs to the Special Issue Magnetic Resonance in Cancer Research)
Show Figures

Figure 1

20 pages, 2866 KiB  
Article
Morphometrics of the Blue Crab Callinectes sapidus Rathbun, 1896 in a Northern Adriatic Saline Marsh Under Environmental Stress
by Neven Iveša, Paolo Paliaga, Matej Čief, Petra Burić, Valentina Pitacco and Moira Buršić
Appl. Sci. 2025, 15(14), 7990; https://doi.org/10.3390/app15147990 - 17 Jul 2025
Viewed by 725
Abstract
The Atlantic blue crab (Callinectes sapidus) has rapidly expanded across the Mediterranean, raising concerns over its ecological and economic impacts. This study examines the morphometric characteristics and environmental influences on C. sapidus populations in the Palud-Palù swamp (western Istrian coast) from [...] Read more.
The Atlantic blue crab (Callinectes sapidus) has rapidly expanded across the Mediterranean, raising concerns over its ecological and economic impacts. This study examines the morphometric characteristics and environmental influences on C. sapidus populations in the Palud-Palù swamp (western Istrian coast) from 2022 to 2024. A total of 203 specimens were analyzed for carapace width, length, depth, and body mass, alongside monthly measurements of temperature, salinity, oxygen saturation, and pH. Statistical analyses (t-tests, ANOVA, PCA, and RDA) revealed pronounced sexual dimorphism, with males consistently larger than females. Interannual differences in size distribution showed larger individuals in 2022, followed by a decline in 2023 and 2024, likely due to environmental stressors (e.g., salinity, temperature, hypoxia) and increased anthropogenic pressures (e.g., trapping and illegal harvesting). RDA identified temperature, oxygen saturation, and pH as key abiotic drivers of morphometric variation. These findings suggest that while C. sapidus demonstrates physiological plasticity, enabling its persistence in estuarine environments, its growth and invasive potential may be constrained under extreme or suboptimal local conditions. This study highlights the importance of long-term monitoring and integrated management to mitigate ecological disruption in sensitive coastal ecosystems. Full article
(This article belongs to the Special Issue New Insights into Marine Ecology and Fisheries Science)
Show Figures

Figure 1

26 pages, 1698 KiB  
Review
Research Progress on the Functional Regulation Mechanisms of ZKSCAN3
by Jianxiong Xu, Xinzhe Li, Jingjing Xia, Wenfang Li and Zhengding Su
Biomolecules 2025, 15(7), 1016; https://doi.org/10.3390/biom15071016 - 14 Jul 2025
Viewed by 473
Abstract
The zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has emerged as a critical regulator of diverse cellular processes, including autophagy, cell cycle progression, and tumorigenesis. Structurally, ZKSCAN3 is characterized by its conserved DNA-binding zinc finger motifs, a SCAN domain mediating [...] Read more.
The zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has emerged as a critical regulator of diverse cellular processes, including autophagy, cell cycle progression, and tumorigenesis. Structurally, ZKSCAN3 is characterized by its conserved DNA-binding zinc finger motifs, a SCAN domain mediating protein–protein interaction, and a KRAB repression domain implicated in transcriptional regulation. Post-translational modifications, such as phosphorylation and ubiquitination, dynamically modulate its subcellular localization and activity, enabling context-dependent functional plasticity. Functionally, ZKSCAN3 acts as a master switch in autophagy by repressing the transcription of autophagy-related genes under nutrient-replete conditions, while its nuclear-cytoplasmic shuttling under stress conditions links metabolic reprogramming to cellular survival. Emerging evidence also underscores its paradoxical roles in cancer: it suppresses tumor initiation by maintaining genomic stability yet promotes metastasis through epithelial–mesenchymal transition induction. Furthermore, epigenetic mechanisms, including promoter methylation and non-coding RNA regulation, fine-tune ZKSCAN3 expression, contributing to tissue-specific outcomes. Despite these insights, gaps remain in understanding the structural determinants governing its interaction with chromatin-remodeling complexes and the therapeutic potential of targeting ZKSCAN3 in diseases. Future investigations should prioritize integrating multi-omics approaches to unravel context-specific regulatory networks and explore small-molecule modulators for translational applications. This comprehensive analysis provides a framework for advancing our mechanistic understanding of ZKSCAN3 and its implications in human health and disease. This review synthesizes recent advances in elucidating the regulatory networks and functional complexity of ZKSCAN3, highlighting its dual roles in physiological and pathological contexts. Full article
(This article belongs to the Special Issue Spotlight on Hot Cancer Biological Biomarkers)
Show Figures

Figure 1

16 pages, 4256 KiB  
Article
Physiological Stress Responses Associated with Microplastic Ingestion in the Benthic Flatfish Bothus podas
by Amanda Cohen-Sánchez, Montserrat Compa, Jessica Lombardo, Maria Magdalena Quetglas-Llabrés, Maria del Mar Ribas-Taberner, Manuel Jiménez-García, Silvia Tejada and Antoni Sureda
Toxics 2025, 13(7), 584; https://doi.org/10.3390/toxics13070584 - 13 Jul 2025
Viewed by 571
Abstract
Bothus podas (wide-eyed flounder) is a benthic flatfish likely exposed to microplastic (MP) pollution. We investigated MP ingestion and associated physiological effects in wild B. podas collected from Mallorca (Balearic Islands), Spain. Markers of oxidative stress, detoxification, and immunity were quantified in intestinal, [...] Read more.
Bothus podas (wide-eyed flounder) is a benthic flatfish likely exposed to microplastic (MP) pollution. We investigated MP ingestion and associated physiological effects in wild B. podas collected from Mallorca (Balearic Islands), Spain. Markers of oxidative stress, detoxification, and immunity were quantified in intestinal, hepatic, and splenic tissues. MPs were observed in the gastrointestinal tracts of 87.5% of the 24 specimens analyzed, with an average of 3.8 ± 0.6 items per fish. Fiber-type MPs predominated in both the gastrointestinal tract (69.6%) and sediment samples (97%). Additionally, micro-Fourier transform infrared spectroscopy analysis confirmed that the majority of ingested MPs were composed of polyethylene, polypropylene, and polyester. Fish were categorized into low (<3 items) and high (≥3 items) MP groups based on the median number of plastic items found in the gastrointestinal tract to assess sublethal impacts. In the gut, high-MP fish exhibited significantly elevated activities of detoxification enzymes: ethoxyresorufin-O-deethylase (phase I) and glutathione s-transferase (phase II), along with increased antioxidant enzyme superoxide dismutase and inflammatory myeloperoxidase. Gut catalase and malondialdehyde (MDA) were not significantly different between groups. In liver tissues, no biomarkers differed significantly with MP exposure. In the spleen, lysozyme and alkaline phosphatase activities were significantly higher in high-MP fish, while splenic MDA remained unchanged. These results indicate that gastrointestinal MP exposure triggers local oxidative stress responses and systemic immune activation in B. podas. Overall, ingestion of environmentally relevant MP levels elicited detoxification and inflammatory responses without significant increases in MDA, an indicator of oxidative damage, highlighting the physiological stress imposed by plastic pollution on benthic fish. Full article
Show Figures

Graphical abstract

36 pages, 1414 KiB  
Review
A Systems Biology Approach to Memory Health: Integrating Network Pharmacology, Gut Microbiota, and Multi-Omics for Health Functional Foods
by Heng Yuan, Junyu Zhou, Hongbao Li, Suna Kang and Sunmin Park
Int. J. Mol. Sci. 2025, 26(14), 6698; https://doi.org/10.3390/ijms26146698 - 12 Jul 2025
Viewed by 420
Abstract
Memory impairment, ranging from mild memory impairment to neurodegenerative diseases such as Alzheimer’s disease, poses an escalating global health challenge that necessitates multi-targeted interventions to prevent progression. Health functional foods (HFFs), which include bioactive dietary compounds that not only provide basic nutrition but [...] Read more.
Memory impairment, ranging from mild memory impairment to neurodegenerative diseases such as Alzheimer’s disease, poses an escalating global health challenge that necessitates multi-targeted interventions to prevent progression. Health functional foods (HFFs), which include bioactive dietary compounds that not only provide basic nutrition but also function beyond that to modulate physiological pathways, offer a promising non-pharmacological strategy to preserve memory function. This review presents an integrative framework for the discovery, evaluation, and clinical translation of biomarkers responsive to HFFs in the context of preventing memory impairment. We examine both established clinical biomarkers, such as amyloid-β and tau in the cerebrospinal fluid, neuroimaging indicators, and memory assessments, as well as emerging nutritionally sensitive markers including cytokines, microRNAs, gut microbiota signatures, epigenetic modifications, and neuroactive metabolites. By leveraging systems biology approaches, we explore how network pharmacology, gut–brain axis modulation, and multi-omics integration can help to elucidate the complex interactions between HFF components and memory-related pathways such as neuroinflammation, oxidative stress, synaptic plasticity, and metabolic regulation. The review also addresses the translational pipeline for HFFs, from formulation and standardization to regulatory frameworks and clinical development, with an emphasis on precision nutrition strategies and cross-disciplinary integration. Ultimately, we propose a paradigm shift in memory health interventions, positioning HFFs as scientifically validated compounds for personalized nutrition within a preventative memory function framework. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Alzheimer’s Disease)
Show Figures

Figure 1

Back to TopTop