Influence of the Origin, Feeding Status, and Trypanosoma cruzi Infection in the Microbial Composition of the Digestive Tract of Triatoma pallidipennis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Conditions of T. pallidipennis from Insectary and Wild Environments
- (A)
- Insectary, fasting, not infected;
- (B)
- Insectary, blood fed, not infected;
- (C)
- Insectary, fasting, infected with T. cruzi;
- (D)
- Insectary, blood fed, infected with T. cruzi;
- (E)
- Wild, unfed not infected;
- (F)
- Wild, blood fed, not infected;
- (G)
- Wild, unfed, infected with T. cruzi;
- (H)
- Wild, blood fed, infected with T. cruzi.
2.2. Detection of T. cruzi by Amplification of the SL Mini-Exon Gene
2.3. Blood Feeding and T. cruzi Infection
2.4. Preparation of Samples from the Digestive Tract and DNA Extraction
2.5. Amplification of the Bacterial 16S rRNA Gene
2.6. Filtering 16S Sequenced Reads
2.7. Construction of Amplicon Sequence Variants (ASVs) of 16S Sequences
2.8. Analysis of the Composition, Structure, Abundance and Diversity of the Microbiota
2.9. Differential Abundance and Microbiota Correlation Analysis
2.10. Microbial Co-Occurrence Network Analysis
2.11. Inferences and Enrichment of Functional Profiles
3. Results
3.1. Summary of Sequenced Samples
3.2. General Overview of the Gut Microbiota
3.3. Gut Microbiota Features of Insects from Wild Environments
3.4. Gut Microbiota Features of Insectary Insects
3.5. Differences in the Gut Microbiota Between Insectary and Wild Insects
3.6. Inferences and Enrichment of Cluster Functional Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASVs | Amplicon Sequence Variants |
PCoA | Principal Coordinates Analysis |
FDR | False Discovery Rate |
KEGG | Kyoto Encyclopaedia of Genes and Genomes |
KOs | KEGG Orthologs |
ORA | Over-Representation Analysis |
References
- Bull, M.J.; Plummer, N.T. Part 1: The Human Gut Microbiome in Health and Disease. Integr. Med. 2014, 13, 17–22. [Google Scholar]
- Del Campo-Moreno, R.; Alarcón-Cavero, T.; D’Auria, G.; Delgado-Palacio, S.; Ferrer-Martínez, M. Microbiota and Human Health: Characterization techniques and transference. Microbiota en la salud humana: Técnicas de caracterización y transferencia. Enfermedades Infecc. Y Microbiol. Clin. 2018, 36, 241–245. [Google Scholar] [CrossRef]
- Benson, A.K.; Kelly, S.A.; Legge, R.; Ma, F.; Low, S.J.; Kim, J.; Zhang, M.; Oh, P.L.; Nehrenberg, D.; Hua, K.; et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. USA 2010, 107, 18933–18938. [Google Scholar] [CrossRef]
- Blaser, M.; Kirschner, D. The equilibria that allow bacterial persistence in human hosts. Nature 2007, 449, 843–849. [Google Scholar] [CrossRef]
- Engel, P.; Moran, N.A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef]
- Chapman, R.F. The Insects: Structure and Function, 5th ed.; Simpson, S.J., Douglas, A.E., Eds.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Yun, J.H.; Roh, S.W.; Whon, T.W.; Jung, M.J.; Kim, M.S.; Park, D.S.; Yoon, C.; Nam, Y.D.; Kim, Y.J.; Choi, J.H.; et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 2014, 80, 5254–5264. [Google Scholar] [CrossRef]
- Ni, J.; Tokuda, G. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol. Adv. 2013, 31, 838–850. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, J.P.; Moran, N.A. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol. Evol. 2010, 2, 708–718. [Google Scholar] [CrossRef]
- Ricci, I.; Valzano, M.; Ulissi, U.; Epis, S.; Cappelli, A.; Favia, G. Symbiotic control of mosquito borne disease. Pathog. Glob. Health 2012, 106, 380–385. [Google Scholar] [CrossRef]
- Chouaia, B.; Rossi, P.; Epis, S.; Mosca, M.; Ricci, I.; Damiani, C.; Ulissi, U.; Crotti, E.; Daffonchio, D.; Bandi, C.; et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 2012, 12 (Suppl. 1), S2. [Google Scholar] [CrossRef] [PubMed]
- Tarabai, H.; Floriano, A.M.; Zima, J., Jr.; Filová, N.; Brown, J.J.; Roachell, W.; Smith, R.L.; Beatty, N.L.; Vogel, K.J.; Nováková, E. Microbiomes of Blood-Feeding Triatomines in the Context of Their Predatory Relatives and the Environment. Microbiol. Spectr. 2023, 11, e0168123. [Google Scholar] [CrossRef]
- Coon, K.L.; Brown, M.R.; Strand, M.R. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasites Vectors 2016, 9, 375. [Google Scholar] [CrossRef] [PubMed]
- Tobias, N.J.; Brehm, J.; Kresovic, D.; Brameyer, S.; Bode, H.B.; Heermann, R. New Vocabulary for Bacterial Communication. Chembiochem A Eur. J. Chem. Biol. 2020, 21, 759–768. [Google Scholar] [CrossRef]
- De Fuentes-Vicente, J.A.; Gutiérrez-Cabrera, A.E. Kissing Bugs (Triatominae). Encycl. Infect. Immun. 2022, 2, 953–970. [Google Scholar] [CrossRef]
- WHO. Chagas Disease (American Trypanosomiasis). In: Epidemiology. 2020. Available online: https://www.who.int/chagas/en/ (accessed on 16 May 2024).
- Gourbière, S.; Dorn, P.; Tripet, F.; Dumonteil, E. Genetics and evolution of triatomines: From phylogeny to vector control. Heredity 2012, 108, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.L.; Cury, J.C.; Gurgel-Gonçalves, R.; Bahia, A.C.; Monteiro, F.A. Field-collected Triatoma sordida from central Brazil display high microbiota diversity that varies with regard to developmental stage and intestinal segmentation. PLoS Neglected Trop. Dis. 2018, 12, e0006709. [Google Scholar] [CrossRef]
- Mann, A.E.; Mitchell, E.A.; Zhang, Y.; Curtis-Robles, R.; Thapa, S.; Hamer, S.A.; Allen, M.S. Comparison of the Bacterial Gut Microbiome of North American Triatoma spp. With and Without Trypanosoma cruzi. Front. Microbiol. 2020, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- de Fuentes-Vicente, J.A.; Gutiérrez-Cabrera, A.E.; Flores-Villegas, A.L.; Lowenberger, C.; Benelli, G.; Salazar-Schettino, P.M.; Córdoba-Aguilar, A. What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. Acta Trop. 2018, 183, 23–31. [Google Scholar] [CrossRef]
- Enger, K.S.; Ordoñez, R.; Wilson, M.L.; Ramsey, J.M. Evaluation of risk factors for rural infestation by Triatoma pallidipennis (Hemiptera: Triatominae), a Mexican vector of Chagas disease. J. Med. Entomol. 2004, 41, 760–767. [Google Scholar] [CrossRef]
- Souto, R.P.; Fernandes, O.; Macedo, A.M.; Campbell, D.A.; Zingales, B. DNA Markers Define Two Major Phylogenetic Lineages of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1996, 83, 141–152. [Google Scholar] [CrossRef]
- Gonzalez, M.S.; Hamedi, A.; Albuquerque-Cunha, J.M.; Nogueira, N.F.; De Souza, W.; Ratcliffe, N.A.; Azambuja, P.; Garcia, E.S.; Mello, C.B. Antiserum against perimicrovillar membranes and midgut tissue reduces the development of Trypanosoma cruzi in the insect vector, Rhodnius prolixus. Exp. Parasitol. 2006, 114, 297–304. [Google Scholar] [CrossRef]
- Guarneri, A.A. Infecting Triatomines with Trypanosomes. Methods Mol. Biol. 2020, 2116, 69–79. [Google Scholar] [CrossRef]
- Ferreira, R.C.; Kessler, R.L.; Lorenzo, M.G.; Paim, R.M.; De Lima Ferreira, L.; Probst, C.M.; Alves-Silva, J.; Guarneri, A.A. Colonization of Rhodnius prolixus gut by Trypanosoma cruzi involves an extensive parasite killing. Parasitology 2016, 143, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Chiari, E.; Camargo, E.P. Culturing and cloning of Trypanosoma cruzi. In Genes and Antigens of Parasites; Morel, M., Ed.; Institute Oswaldo Cruz: Rio de Janeiro, Brazil, 1984; pp. 23–26. [Google Scholar]
- Bacci, G.; Casbarra, L.; Ramazzotti, M. 16S rRNA-based taxonomy profiling in the metagenomics era. In Metagenomics: Perspective, Methods and Applications, 2nd ed.; Nagarajan, M., Ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 189–208. ISBN 978-0-323-91631-8. [Google Scholar]
- Nam, N.N.; Do, H.D.K.; Loan Trinh, K.T.; Lee, N.Y. Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods 2023, 12, 2140. [Google Scholar] [CrossRef]
- Peck, M.A.; Sturk-Andreaggi, K.; Thomas, J.T.; Oliver, R.S.; Barritt-Ross, S.; Marshall, C. Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples. Forensic Sci. Int. Genet. 2018, 34, 25–36. [Google Scholar] [CrossRef]
- Bargiela, R.; Méndez-García, C.; Martínez-Martínez, M.; Ferrer, M. Metagenomic protocols and strategies. In Metagenomics: Perspective, Methods and Applications, 2nd ed.; Nagarajan, M., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 20, pp. 17–56. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Schliep, K.P. Phangorn: Phylogenetic analysis in R. Bioinformatics 2011, 27, 592–593. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, L.; Do, K.A.; Peterson, C.B.; Jenq, R.R. aPCoA: Covariate adjusted principal coordinates analysis. Bioinformatics 2020, 36, 4099–4101. [Google Scholar] [CrossRef]
- Oksanen, J.; Guillaume Blanchet, F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.D.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Vegan Vers. Available online: https://github.com/vegandevs/vegan (accessed on 20 February 2025).
- Bakker, J.D. Applied Multivariate Statistics in R; University of Washington: Seattle, WA, USA, 2024; p. 545. [Google Scholar]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Li, D.; Zand, M.; Dye, T.; Goniewicz, M.; Rahman, I.; Xie, Z. An evaluation of RNA-seq differential analysis methods. PLoS ONE 2022, 17, e0263626. [Google Scholar] [CrossRef] [PubMed]
- Schurch, N.; Schofield, P.; Gierliński, M.; Cole, C.; Sherstnev, A.; Singh, V.; Barton, G. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 2016, 22, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Friede, T.; Beissbarth, T. Reporting FDR analogous confidence intervals for the log fold change of differentially expressed genes. BMC Bioinform. 2011, 12, 288. [Google Scholar] [CrossRef] [PubMed]
- Smith, S. Phylosmith: An R-package for reproducible and efficient microbiome analysis with phyloseq-objects. J. Open Source Softw. 2019, 4, 1442. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: An R package for comparing biological themes among gene clusters. Omics A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Flury, P.; Vesga, P.; Péchy-Tarr, M.; Aellen, N.; Dennert, F.; Hofer, N.; Kupferschmied, K.; Kupferschmied, P.; Metla, Z.; Siegfried, S.; et al. Antimicrobial and Insecticidal: Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas Strains CHA0, CMR12a, and PCL1391 Contribute to Insect Killing. Front. Microbiol. 2017, 8, 100. [Google Scholar] [CrossRef]
- Vacheron, J.; Péchy-Tarr, M.; Brochet, S.; Heiman, C.; Stojiljkovic, M.; Maurhofer, M.; Keel, C. T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. ISME J. 2019, 13, 1318–1329. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, R.; Xing, D.; Zhao, C.; Gao, H.; Wu, J.; Zhang, N.; Zhang, H.; Chen, Y.; Zhao, T.; et al. Metagenome Sequencing Reveals the Midgut Microbiota Makeup of Culex pipiens quinquefasciatus and Its Possible Relationship With Insecticide Resistance. Front. Microbiol. 2021, 12, 625539. [Google Scholar] [CrossRef]
- Bextine, B.R.; Shipman, L.C.; Hail, D.; Dowd, S.E. Hemolymph-Associated Symbionts: Identification of Delftia Sp. In Glassy-Winged Sharpshooters and Investigation into Their Putative Function; Tyler, TX, USA, 2011. Available online: https://static.cdfa.ca.gov/PiercesDisease/proceedings/2010/hemolymph-associated-symbionts-identification-of-delftia-sp.pdf (accessed on 14 May 2024).
- Haack, F.; Poehlein, A.; Kröger, C.; Voigt, C.; Piepenbring, M.; Bode, H.; Daniel, R.; Schäfer, W.; Streit, W. Molecular Keys to the Janthinobacterium and Duganella spp. Interaction with the Plant Pathogen Fusarium graminearum. Front. Microbiol. 2016, 7, 1668. [Google Scholar] [CrossRef]
- Wu, X.; Kazakov, A.; Gushgari-Doyle, S.; Yu, X.; Trotter, V.; Stuart, R.; Chakraborty, R. Comparative Genomics Reveals Insights into Induction of Violacein Biosynthesis and Adaptive Evolution in Janthinobacterium. Microbiol. Spectr. 2021, 9, e01414-21. [Google Scholar] [CrossRef]
- Kumar, V.; Tyagi, I.; Tyagi, K.; Chandra, K. Diversity and Structure of Bacterial Communities in the Gut of Spider: Thomisidae and Oxyopidae. Front. Ecol. Evol. 2020, 8, 588102. [Google Scholar] [CrossRef]
- Sadaiappan, B.; PrasannaKumar, C.; Nambiar, V.U.; Subramanian, M.; Gauns, M.U. Meta-analysis cum machine learning approaches address the structure and biogeochemical potential of marine copepod associated bacteriobiomes. Sci. Rep. 2021, 11, 3312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Du, L.; Xue, H.; Hu, F.; Zhu, X.; Wang, L.; Zhang, K.; Li, D.; Ji, J.; Niu, L.; Luo, J.; et al. Dynamics of symbiotic bacterial community in whole life stage of Harmonia axyridis (Coleoptera: Coccinellidae). Front. Microbiol. 2022, 13, 1050329. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Srygley, R.; Healy, F.; Swaminath, K.; Mueller, U. Spatial Structure of the Mormon Cricket Gut Microbiome and its Predicted Contribution to Nutrition and Immune Function. Front. Microbiol. 2017, 8, 801. [Google Scholar] [CrossRef]
- Vuong, H.; McFrederick, Q. Comparative Genomics of Wild Bee and Flower Isolated Lactobacillus Reveals Potential Adaptation to the Bee Host. Genome Biol. Evol. 2019, 11, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, L.; Zhang, K.; Zhu, X.; Li, D.; Ji, J.; Luo, J.; Cui, J. Variation of Helicoverpa armigera symbionts across developmental stages and geographic locations. Front. Microbiol. 2023, 14, 1251627. [Google Scholar] [CrossRef]
- Gilliland, C.A.; Patel, V.; McCormick, A.C.; Mackett, B.M.; Vogel, K.J. Using axenic and gnotobiotic insects to examine the role of different microbes on the development and reproduction of the kissing bug Rhodnius prolixus (Hemiptera: Reduviidae). Mol. Ecol. 2023, 32, 920–935. [Google Scholar] [CrossRef]
- Montoya-Porras, L.M.; Omar, T.C.; Alzate, J.F.; Moreno-Herrera, C.X.; Cadavid-Restrepo, G.E. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop. 2018, 178, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Baranova, A.A.; Zakalyukina, Y.V.; Ovcharenko, A.A.; Korshun, V.A.; Tyurin, A.P. Antibiotics from Insect-Associated Actinobacteria. Biology 2022, 11, 1676. [Google Scholar] [CrossRef]
- Feng, G.; Zeng, Y.; Wang, H.Z.; Chen, Y.T.; Tang, Y.Q. Proteiniphilum and Methanothrix harundinacea became dominant acetate utilizers in a methanogenic reactor operated under strong ammonia stress. Front. Microbiol. 2023, 13, 1098814. [Google Scholar] [CrossRef] [PubMed]
- Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Kadmiri, I. Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front. Microbiol. 2021, 12, 628379. [Google Scholar] [CrossRef]
- Sun, Y.; Guan, Y.; Zeng, D.; He, K.; Wu, G. Metagenomics-based interpretation of AHLs-mediated quorum sensing in Anammox biofilm reactors for low-strength wastewater treatment. Chem. Eng. J. 2018, 344, 42–52. [Google Scholar] [CrossRef]
- Davis, T.; Crippen, T.; Hofstetter, R.; Tomberlin, J. Microbial Volatile Emissions as Insect Semiochemicals. J. Chem. Ecol. 2013, 39, 840–859. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, J.; Song, K.; Yin, C.; Chen, L.; Yang, K.; Yang, J.; Dai, Y. Efficient Biodegradation of the Neonicotinoid Insecticide Flonicamid by Pseudaminobacter salicylatoxidans CGMCC 1.17248: Kinetics, Pathways, and Enzyme Properties. Microorganisms 2024, 12, 1063. [Google Scholar] [CrossRef]
- Adhya, T.K.; Patnaik, P.; Rao, V.R.; Sethunathan, N. Nitrification of ammonium in different components of a flooded rice soil system. Biol. Fertil. Soils 1996, 23, 321–326. [Google Scholar] [CrossRef]
- Tang, X.; Sun, Y.; Liang, Y.; Yang, K.; Chen, P.; Li, H.; Huang, Y.; Pang, H. Metabolism, digestion, and horizontal transfer: Potential roles and interaction of symbiotic bacteria in the ladybird beetle Novius pumilus and their prey Icerya aegyptiaca. Microbiol. Spectr. 2024, 12, e02955-23. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, J.; Skaar, E. Acinetobacter baumannii can use multiple siderophores for iron acquisition, but only acinetobactin is required for virulence. PLoS Pathog. 2020, 16, e1008995. [Google Scholar] [CrossRef] [PubMed]
- Skowronek, M.; Sajnaga, E.; Pleszczyńska, M.; Kazimierczak, W.; Lis, M.; Wiater, A. Bacteria from the Midgut of Common Cockchafer (Melolontha melolontha L.) Larvae Exhibiting Antagonistic Activity Against Bacterial Symbionts of Entomopathogenic Nematodes: Isolation and Molecular Identification. Int. J. Mol. Sci. 2020, 21, 580. [Google Scholar] [CrossRef] [PubMed]
- Kutsuna, R.; Mashima, I.; Miyoshi-Akiyama, T.; Muramatsu, Y.; Tomida, J.; Kawamura, Y. Chryseobacterium lecithinasegens sp. nov., a siderophore-producing bacterium isolated from soil at the bottom of a pond. Int. J. Syst. Evol. Microbiol. 2021, 71, 005135. [Google Scholar] [CrossRef]
- White, D. Respiratory Systems In The Hemin-Requiring Haemophilus Species. J. Bacteriol. 1963, 85, 84–96. [Google Scholar] [CrossRef]
- Dai, Z.; Yang, W.; Fan, Z.; Guo, L.; Liu, Z.; Dai, Y. Actinomycetes Rhodococcus ruber CGMCC 17550 degrades neonicotinoid insecticide nitenpyram via a novel hydroxylation pathway and remediates nitenpyram in surface water. Chemosphere 2020, 270, 128670. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, S.; Parapatla, H.; Nandavaram, A.; Palmer, T.; Siddavattam, D. Organophosphate Hydrolase Is a Lipoprotein and Interacts with Pi-specific Transport System to Facilitate Growth of Brevundimonas diminuta Using OP Insecticide as Source of Phosphate. J. Biol. Chem. 2016, 291, 7774–7785. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, N.; Xie, S.; Zhang, X.; He, J.; Muhammad, A.; Sun, C.; Lu, X.; Shao, Y. Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environ. Int. 2020, 143, 105886. [Google Scholar] [CrossRef]
- Sänger, P.; Wagner, S.; Liebler-Tenorio, E.; Fuchs, T. Dissecting the invasion of Galleria mellonella by Yersinia enterocolitica reveals metabolic adaptations and a role of a phage lysis cassette in insect killing. PLOS Pathog. 2022, 18, e1010991. [Google Scholar] [CrossRef]
- Arenskötter, M.; Bröker, D.; Steinbüchel, A. Biology of the Metabolically Diverse Genus Gordonia. Appl. Environ. Microbiol. 2004, 70, 3195–3204. [Google Scholar] [CrossRef] [PubMed]
- Kupferschmied, P.; Chai, T.; Flury, P.; Blom, J.; Smits, T.; Maurhofer, M.; Keel, C. Specific surface glycan decorations enable antimicrobial peptide resistance in plant-beneficial pseudomonads with insect-pathogenic properties. Environ. Microbiol. 2016, 11, 4265–4281. [Google Scholar] [CrossRef] [PubMed]
- Ganley, J.; Carr, G.; Ioerger, T.; Sacchettini, J.; Clardy, J.; Derbyshire, E. Discovery of Antimicrobial Lipodepsipeptides Produced by a Serratia sp. within Mosquito Microbiomes. ChemBioChem 2018, 19, 1590–1594. [Google Scholar] [CrossRef]
- Hegde, S.; Nilyanimit, P.; Kozlova, E.; Anderson, E.; Narra, H.; Sahni, S.; Heinz, E.; Hughes, G. CRISPR/Cas9-mediated gene deletion of the ompA gene in symbiotic Cedecea neteri impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes. PLoS Neglected Trop. Dis. 2019, 12, e0007883. [Google Scholar] [CrossRef]
- Takeishi, H.; Anzai, H.; Urai, M.; Aizawa, T.; Wada, N.; Iwabuchi, N.; Sunairi, M.; Nakajima, M. Xylanolytic and Alkaliphilic Dietzia sp. Isolated from Larvae of the Japanese Horned Beetle, Trypoxylus dichotomus. Actinomycetologica 2006, 20, 49–54. [Google Scholar] [CrossRef]
- Meng, F.; Bar-Shmuel, N.; Shavit, R.; Behar, A.; Segoli, M. Gut bacteria of weevils developing on plant roots under extreme desert conditions. BMC Microbiol. 2019, 19, 311. [Google Scholar] [CrossRef]
- Kukutla, P.; Lindberg, B.; Pei, D.; Rayl, M.; Yu, W.; Steritz, M.; Faye, I.; Xu, J. Insights from the Genome Annotation of Elizabethkingia anophelis from the Malaria Vector Anopheles gambiae. PLoS ONE 2014, 9, e97715. [Google Scholar] [CrossRef]
- Upfold, J.; Rejasse, A.; Nielsen-Leroux, C.; Jensen, A.; Sanchis-Borja, V. The immunostimulatory role of an Enterococcus-dominated gut microbiota in host protection against bacterial and fungal pathogens in Galleria mellonella larvae. Front. Insect Sci. 2023, 3, 1260333. [Google Scholar] [CrossRef]
- Ciolfi, S.; Marri, L. Dominant symbiotic bacteria associated with wild medfly populations reveal a bacteriocin-like killing phenotype: A ‘cold-case’ study. Bull. Entomol. Res. 2019, 110, 457–462. [Google Scholar] [CrossRef]
- Franco, L.; Pariente, C. A computational approach to identify possible symbiotic mechanisms between Klebsiella and the Mediterranean fly (Ceratitis capitata). bioRxiv 2021. [Google Scholar] [CrossRef]
- Baldani, J.; Baldani, V.; Seldin, L.; Döbereiner, J. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a Root-Associated Nitrogen-Fixing Bacterium. Int. J. Syst. Evol. Microbiol. 1986, 36, 86–93. [Google Scholar] [CrossRef]
- Delamuta, J.; Ribeiro, R.; Ormeño-Orrillo, E.; Parma, M.; Melo, I.; Martínez-Romero, E.; Hungria, M. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int. J. Syst. Evol. Microbiol. 2015, 12, 4424–4433. [Google Scholar] [CrossRef]
- Chang, H.; Guo, J.; Qi, G.; Gao, Y.; Wang, S.; Wang, X.; Liu, Y. Comparative analyses of the effects of sublethal doses of emamectin benzoate and tetrachlorantraniliprole on the gut microbiota of Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Insect Sci. 2023, 23, 7. [Google Scholar] [CrossRef]
- Lerner, H.; Öztürk, B.; Dohrmann, A.; Thomas, J.; Marchal, K.; De Mot, R.; Dehaen, W.; Tebbe, C.; Springael, D. DNA-SIP and repeated isolation corroborate Variovorax as a key organism in maintaining the genetic memory for linuron biodegradation in an agricultural soil. FEMS Microbiol. Ecol. 2021, 97, fiab051. [Google Scholar] [CrossRef]
- Satola, B.; Wübbeler, J.; Steinbüchel, A. Metabolic characteristics of the species Variovorax paradoxus. Appl. Microbiol. Biotechnol. 2012, 97, 541–560. [Google Scholar] [CrossRef] [PubMed]
- Verma, H.; Dhingra, G.; Sharma, M.; Gupta, V.; Negi, R.; Singh, Y.; Lal, R. Comparative genomics of Sphingopyxis spp. unravelled functional attributes. Genomics 2019, 112, 1956–1969. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Giraldo, S.; Gutiérrez-Urrego, A.; Niño-Castro, A.; López-Peña, A.; Montoya-Lerma, J. Bacterial microbiota associated with the leaf-cutting ant Atta cephalotes (Hymenoptera: Myrmicinae): Dynamics during development and potential role in defence. Physiol. Entomol. 2023, 49, 23–38. [Google Scholar] [CrossRef]
- Maltz, M.; Levarge, B.; Graf, J. Identification of iron and heme utilization genes in Aeromonas and their role in the colonization of the leech digestive tract. Front. Microbiol. 2015, 6, 763. [Google Scholar] [CrossRef] [PubMed]
- Teng, T.; Xi, B.; Chen, K.; Pan, L.; Xie, J.; Xu, P. Comparative transcriptomic and proteomic analyses reveal upregulated expression of virulence and iron transport factors of Aeromonas hydrophila under iron limitation. BMC Microbiol. 2018, 18, 52. [Google Scholar] [CrossRef]
- Senderovich, Y.; Halpern, M. The protective role of endogenous bacterial communities in chironomid egg masses and larvae. ISME J. 2013, 7, 2147–2158. [Google Scholar] [CrossRef]
- Chouikha, I.; Hinnebusch, B.J. Yersinia--flea interactions and the evolution of the arthropod-borne transmission route of plague. Curr. Opin. Microbiol. 2012, 15, 239–246. [Google Scholar] [CrossRef]
- Hinnebusch, B.; Jarrett, C.; Bland, D. “Fleaing” the Plague: Adaptations of Yersinia pestis to Its Insect Vector That Lead to Transmission. Annu. Rev. Microbiol. 2017, 71, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Manzano-Marín, A.; Kvist, S.; Oceguera-Figueroa, A. Evolution of an Alternative Genetic Code in the Providencia Symbiont of the Hematophagous Leech Haementeria acuecueyetzin. Genome Biol. Evol. 2023, 15, evad164. [Google Scholar] [CrossRef]
- Pandey, N.; Rajagopal, R. Tissue damage induced midgut stem cell proliferation and microbial dysbiosis in Spodoptera litura. FEMS Microbiol. Ecol. 2017, 93, fix132. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A.; Funaro, C.F.; Giraldo, Y.M.; Goldman-Huertas, B.; Suh, D.; Kronauer, D.J.; Moreau, C.S.; Pierce, N.E. A Veritable Menagerie of Heritable Bacteria from Ants, Butterflies, and Beyond: Broad Molecular Surveys and a Systematic Review. PLoS ONE 2012, 7, e51027. [Google Scholar] [CrossRef]
- Santos-García, D.; Juravel, K.; Freilich, S.; Zchori-Fein, E.; Latorre, A.; Moya, A.; Morin, S.; Silva, F. To B or Not to B: Comparative Genomics Suggests Arsenophonus as a Source of B Vitamins in Whiteflies. Front. Microbiol. 2018, 9, 2254. [Google Scholar] [CrossRef]
- Tian, P.; Zhang, Y.; Huang, J.; Li, W.; Liu, X. Arsenophonus Interacts with Buchnera to Improve Growth Performance of Aphids under Amino Acid Stress. Microbiol. Spectr. 2023, 11, e01792-23. [Google Scholar] [CrossRef]
- Tagliavia, M.; Messina, E.; Manachini, B.; Cappello, S.; Quatrini, P. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol. 2014, 14, 136. [Google Scholar] [CrossRef]
- Nandavaram, A.; Nandakumar, A.; Kashif, G.; Sagar, A.; Shailaja, G.; Ramesh, A.; Siddavattam, D. Unusual Relationship between Iron Deprivation and Organophosphate Hydrolase Expression. Appl. Environ. Microbiol. 2023, 89, e01903-22. [Google Scholar] [CrossRef] [PubMed]
- Earl, S.; Rogers, M.; Keen, J.; Bland, D.; Houppert, A.; Miller, C.; Temple, I.; Anderson, D.; Marketon, M. Resistance to Innate Immunity Contributes to Colonization of the Insect Gut by Yersinia pestis. PLoS ONE 2015, 10, e0133318. [Google Scholar] [CrossRef]
- Cirimotich, C.M.; Dong, Y.; Clayton, A.M.; Sandiford, S.L.; Souza-Neto, J.A.; Mulenga, M.; Dimopoulos, G. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 2011, 332, 855–858. [Google Scholar] [CrossRef]
- Azambuja, P.; Garcia, E.S.; Ratcliffe, N.A. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 2005, 21, 568–572. [Google Scholar] [CrossRef]
- Bando, H.; Okado, K.; Guelbeogo, W.M.; Badolo, A.; Aonuma, H.; Nelson, B.; Fukumoto, S.; Xuan, X.; Sagnon, N.; Kanuka, H. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Sci. Rep. 2013, 3, 1641. [Google Scholar] [CrossRef]
- Huang, W.; Rodrigues, J.; Bilgo, E.; Tormo, J.R.; Challenger, J.D.; De Cozar-Gallardo, C.; Pérez-Victoria, I.; Reyes, F.; Castañeda-Casado, P.; Gnambani, E.J.; et al. Delftia tsuruhatensis TC1 symbiont suppresses malaria transmission by anopheline mosquitoes. Science 2023, 381, 533–540. [Google Scholar] [CrossRef]
- Orantes, L.C.; Monroy, C.; Dorn, P.L.; Stevens, L.; Rizzo, D.M.; Morrissey, L.; Hanley, J.P.; Rodas, A.G.; Richards, B.; Wallin, K.F.; et al. Uncovering vector, parasite, blood meal and microbiome patterns from mixed-DNA specimens of the Chagas disease vector Triatoma dimidiata. PloS Negl. Trop. Dis. 2018, 12, e0006730. [Google Scholar] [CrossRef] [PubMed]
- Waltmann, A.; Willcox, A.C.; Balasubramanian, S.; Borrini Mayori, K.; Mendoza Guerrero, S.; Salazar Sanchez, R.S.; Roach, J.; Condori Pino, C.; Gilman, R.H.; Bern, C.; et al. Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLoS Neglected Trop. Dis. 2019, 13, e0007383. [Google Scholar] [CrossRef]
- Salcedo-Porras, N.; Umaña-Diaz, C.; Bitencourt, R.O.B.; Lowenberger, C. The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms 2020, 8, 1438. [Google Scholar] [CrossRef]
- Case, R.J.; Boucher, Y.; Dahllöf, I.; Holmström, C.; Doolittle, W.F.; Kjelleberg, S. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl. Environ. Microbiol. 2007, 73, 278–288. [Google Scholar] [CrossRef]
- Díaz, S.; Villavicencio, B.; Correia, N.; Costa, J.M.; Haag, K.L. Triatomine bugs, their microbiota and Trypanosoma cruzi: Asymmetric responses of bacteria to an infected blood meal. Parasites Vectors 2016, 9, 636. [Google Scholar] [CrossRef]
- Dumonteil, E.; Ramirez-Sierra, M.J.; Pérez-Carrillo, S.; Teh-Poot, C.; Herreram, C.; Gourbiere, S.; Waleckx, E. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: Implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci. Rep. 2018, 8, 4140. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xie, H.; Gao, M.; Huang, P.; Zhou, H.; Ma, Y.; Zhou, M.; Liang, J.; Yang, J.; Lv, Z. Dynamic of Composition and Diversity of Gut Microbiota in Triatoma rubrofasciata in Different Developmental Stages and Environmental Conditions. Front. Cell Infect Microbiol. 2020, 10, 587708. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Cortés, J.G.; García-Contreras, R.; Bucio-Torres, M.; Cabrera-Bravo, M.; López-Jácome, L.E.; Franco-Cendejas, R.; Vences-Blanco, M.; Salazar-Schettino, P.M. Bacteria cultured from the gut of Meccus pallidipennis (Hemiptera: Reduviidae), a triatomine species endemic to Mexico. Med. Vet. Entomol. 2020, 34, 495–504. [Google Scholar] [CrossRef]
- Li, Z.; Huang, S.; He, X.; Zhou, H.; Lin, H.; Zhang, S. Specific Enriched Acinetobacter in Camellia Weevil Gut Facilitate the Degradation of Tea Saponin: Inferred from Bacterial Genomic and Transcriptomic Analyses. Microbiol. Spectr. 2022, 10, e02272-22. [Google Scholar] [CrossRef] [PubMed]
- Fieck, A.; Hurwitz, I.; Kang, A.S.; Durvasula, R. Trypanosoma cruzi: Synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp. Parasitol. 2010, 125, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Taracena, M.L.; Oliveira, P.L.; Almendares, O.; Umaña, C.; Lowenberger, C.; Dotson, E.M.; Paiva-Silva, G.O.; Pennington, P.M. Genetically modifying the insect gut microbiota to control Chagas disease vectors through systemic RNAi. PLoS Neglected Trop. Dis. 2015, 9, e0003358. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.P.; Moraes, C.S.; Gonzalez, M.S.; Ratcliffe, N.A.; Azambuja, P.; Garcia, E.S. Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. PLoS ONE 2012, 7, e36591. [Google Scholar] [CrossRef]
- Vieira, C.S.; Waniek, P.J.; Castro, D.P.; Mattos, D.P.; Moreira, O.C.; Azambuja, P. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Parasit Vectors 2016, 9, 119. [Google Scholar] [CrossRef]
- Rodríguez-Ruano, S.M.; Škochová, V.; Rego, R.O.M.; Schmidt, J.O.; Roachell, W.; Hypša, V.; Nováková, E. Microbiomes of North American Triatominae: The Grounds for Chagas Disease Epidemiology. Front. Microbiol. 2018, 9, 1167. [Google Scholar] [CrossRef]
- Coyte, K.Z.; Schluter, J.; Foster, K.R. The ecology of the microbiome: Networks, competition, and stability. Science 2015, 350, 663–666. [Google Scholar] [CrossRef]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Montgomery, B.L.; Popovici, J.; Iturbe-Ormaetxe, I.; Johnson, P.H.; Muzzi, F.; Greenfield, M.; Durkan, M.; Leong, Y.S.; Dong, Y.; et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011, 476, 454–457. [Google Scholar] [CrossRef]
Condition | Cluster | Genera | Associated Functions | References |
---|---|---|---|---|
Wild Unfed | Cluster 1 (C1) | Acinetobacter, Aeromonas, Arsenophonus, Pseudomonas | Pseudomonas and Aeromonas regulate the gut microbiota and degrade toxins via hydrogen cyanide, cyclic lipopeptides, and type VI secretion systems in S. littoralis and Culex pipiens. Comamonas and Delftia synthesise D-alanine and D-glutamate through racemases in H. vitripennis. Janthinobacterium inhibits F. graminearum by producing violacein regulated by the vioABCDE gene cluster. | [48,49,50,51,52,53] |
Cluster 2 (C2) | Cutibacterium, Enhydrobacter, Lawsonella | Cutibacterium, Enhydrobacter, and Lawsonella fix nitrogen and ferment carbohydrates via nitrogenases and dehydrogenases, reported in the gut microbiota of arthropods such as hunting spiders and marine copepods. | [54,55] | |
Cluster 3 (C3) | Altererythrobacter, Enterobacter, Glutamicibacter, Lactobacillus, Pseudaminobacter | Enterobacter and Lactobacillus enhance carbohydrate metabolism via glycolytic and fermentation pathways and tolerate pH and temperature shifts through membrane adaptations and stress response proteins, reported in beetles and lepidopterans. Glutamicibacter and Enterobacter support environmental adaptation by activating oxidative stress pathways involving catalases and peroxidases. | [56,57,58,59] | |
Cluster 4 (C4) | Corynebacterium, Rhodococcus, Williamsia | Corynebacterium, Rhodococcus, and Williamsia promote the development of R. prolixus by producing B vitamins, including biotin and riboflavin, through key biosynthetic enzymes such as BioA/B/C/D/F and RibA/B/D/E, aiding host growth under nutrient stress. | [60,61] | |
Cluster 5 (C5) | Actinomyces, Campylobacter, Jonquetella, Negativicoccus, Proteiniphilum | Actinomyces, Campylobacter, Jonquetella, Negativicoccus, and Proteiniphilum degrade complex organic compounds via hydrolases and anaerobic metabolic enzymes, contributing to stress tolerance in the insect gut. Specifically, Proteiniphilum and Actinomyces produce antimicrobial compounds, observed in Helicoverpa armigera and Methanothrix-dominated systems under ammonia stress. | [62,63] | |
Cluster 6 (C6) | Azotobacter, Gemella, Lautropia, Neisseria | Azotobacter fixes atmospheric nitrogen via nitrogenase, reported in the rhizosphere and insect gut environments. Neisseria and Gemella reduce nitrate through nitrate reductases, documented in the intestinal microbiota of spiders (Thomisidae and Oxyopidae). | [64,65] | |
Cluster 7 (C7) | Kocuria, Micrococcus, Pseudarthrobacter, Tardiphaga | Kocuria and Micrococcus, from Aedes aegypti, produce volatile organic compounds (VOCs) via fatty acid and amino acid catabolism, acting as semiochemicals that influence host behaviour. Pseudarthrobacter and Tardiphaga, from H. armigera, degrade flonicamid through xenobiotic pathways (benzoate, toluene, aminobenzoate) using monooxygenases, dioxygenases, aldehyde dehydrogenases, and amidases. | [66,67] | |
Wild—Fed | Cluster 1 (C1) | Blastocatella, Leuconostoc, Pseudarthrobacter, Sphingomonas | Pseudarthrobacter and Sphingomonas, isolated from H. armigera, degrade insecticides like flonicamid through xenobiotic catabolic pathways (e.g., benzoate, aminobenzoate, toluene degradation), involving enzymes such as flavin-dependent monooxygenases, aldehyde dehydrogenases, and organophosphate hydrolases. | [67,68] |
Cluster 2 (C2) | Acinetobacter, Aquitalea, Lactococcus | In Novius pumilus, Aquitalea and Lactococcus contribute to prey digestion by degrading hydrocarbons, fatty acids, and chitin through catabolic pathways. Acinetobacter, known from leech gut studies, enhances survival under stress via iron acquisition systems such as acinetobactin-mediated siderophore uptake. | [69,70] | |
Cluster 3 (C3) | Chryseobacterium, Gemella, Haemophilus, Knoellia | Chryseobacterium, isolated from Melolontha melolontha larvae, inhibits mutualistic bacteria of entomopathogenic nematodes and acquires iron via the citrate-based siderophore chryseochelin A. Haemophilus enhances respiration by modifying its electron transport chain in response to hemin, promoting growth under iron-limiting conditions. | [71,72,73] | |
Cluster 4 (C4) | Brevundimonas, Herbaspirillum, Rhodococcus | Brevundimonas and Rhodococcus, isolated from aquatic environments, degrade insecticides such as nitenpyram via hydroxylation and organophosphate hydrolase pathways. | [74,75] | |
Cluster 5 (C5) | Comamonas, Cutibacterium, Delftia, Enhydrobacter, Lawsonella, Shewanella, Stenotrophomonas, Tardiphaga, Wilimasia, Yersinia | Comamonas in Aedes atropalpus promotes host development and egg production by supporting nutrient metabolism. Stenotrophomonas, isolated from B. mori, increases biosynthesis of essential amino acids (e.g., Arg, Thr, Leu, Val, Glu) via enzymes such as acetolactate synthase and prephenate dehydratase. Yersinia, studied in Galleria mellonella, resists host antimicrobial peptides through outer membrane modifications regulated by the PhoPQ system. | [13,76,77] | |
Cluster 6 (C6) | Actinomyces, Jonquetella, Negativicoccus, Proteiniphillum, Sphingobium | Proteiniphilum and Actinomyces, reported in insect microbiota including S. frugiperda, degrade complex organic matter under stress via anaerobic enzymes and produce antimicrobial compounds (polyketides, cyclic lipopeptides, and RiPPs). Sphingobium, also identified in S. frugiperda, expresses an iron-regulated organophosphate hydrolase that enables pesticide degradation under iron-limited conditions. | [62,63] | |
Cluster 7 (C7) | Aeromonas, Gordonia, Hafnia- Obesumbacterium, Janthinobacterium, Pseudomonas, Serratia | Pseudomonas (in S. littoralis) modulates gut microbiota via type VI secretion and glycan modifications conferring resistance to antimicrobial peptides. Aeromonas (in H. verbana) acquires iron and heme under stress using ahu/hmu transporters. Serratia (in mosquitoes) produces antimicrobial lipodepsipeptides that impair gut colonisation and motility. | [49,70,78,79,80] | |
Cluster 8 (C8) | Cedecea, Dietzia, Kocuria | Cedecea colonises the gut of A. aegypti by forming biofilms that support stable gut persistence. Dietzia, isolated from the alkaline gut of Trypoxylus dichotomus larvae, exhibits alkaliphilic metabolic traits, including xylanolytic activity, which supports survival under high-pH conditions. | [81,82] | |
Wild—Blood-fed + T. cruzi | Cluster 1 (C1) | Citrobacter, Elizabethkingia, Enterococcus, Klebsiella oxytoca | Citrobacter contributes to nitrogen recycling and cellulose degradation via cellulases and deaminases in desert weevil larvae. Elizabethkingia protects A. gambiae from oxidative stress by producing antioxidant enzymes such as superoxide dismutase and catalase. Enterococcus enhances host antimicrobial defences in G. mellonella by inducing innate immune responses and defensin production. Klebsiella oxytoca promotes nitrogen metabolism and outcompetes microbes in Ceratitis capitata by producing colicin-like bacteriocins and nitrate reductases. | [83,84,85,86,87] |
Cluster 3 (C3) | Bradyrhizobium, Herbaspirillum, Flavobacterium, Variovorax, Sphingopyxis, Microbacterium | Bradyrhizobium and Herbaspirillum fix atmospheric nitrogen via nitrogenase activity, reported in association with tropical forage legumes. Flavobacterium and Variovorax, identified in S. frugiperda and agricultural soils, respectively, contribute to pesticide detoxification through xenobiotic degradation pathways. Sphingopyxis, isolated from various environments, performs anaerobic respiration via nitrate reduction. Microbacterium, associated with Atta cephalotes, protects the host against fungal pathogens through the secretion of antimicrobial metabolites. | [88,89,90,91,92,93,94] | |
Cluster 4 (C4) | Acinetobacter, Aeromonas, Pseudomonas | Acinetobacter and Aeromonas, isolated from H. verbana and C. pipiens, acquire iron via siderophores and iron/heme transporters (e.g., acinetobactin, ahu/hmu). Pseudomonas, reported in S. littoralis, modulates gut microbiota through type VI secretion systems and resistance to antimicrobial peptides via glycan surface modifications. | [49,70,79,95,96] | |
Cluster 6 (C6) | Campylobacter, Negativicoccus, Proteiniphilum | Campylobacter, Negativicoccus, Proteiniphilum degrade organic matter in G. mellonella via acetogenic fermentation pathways, producing acetate and other short-chain fatty acids through enzymes like glutamate dehydrogenase and acetyl-CoA synthetase, enabling adaptation to anaerobic and nutrient-rich gut environments. | [63] | |
Wild—Unfed + T. cruzi | C1-C2 (C1-C2) | Janthinobacterium, Aeromonas, Yersinia, Providencia | Janthinobacterium, identified in F. graminearum interactions, produces violacein via the vioABCDE cluster, contributing to antimicrobial activity. Aeromonas, found in C. pipiens, regulates gut microbiota and detoxifies through iron uptake systems. Yersinia, studied in fleas, resists host antimicrobial peptides via lipid A modifications and PhoPQ-regulated responses. Providencia, detected in leeches, synthesises B vitamins like biotin through symbiotic genome reduction. | [50,52,97,98,99,100] |
Insectary—Fasting | Cluster 1 (C1) | Acinetobacter, Aeromonas, Arsenophonus, Pseudomonas | Acinetobacter and Aeromonas promote survival under nutrient stress via iron acquisition using acinetobactin and ahu/hmu transporters in leeches. Pseudomonas modulates gut microbiota in Spodoptera littoralis by producing cyclic lipopeptides and hydrogen cyanide. Arsenophonus aids nutrition in aphids and whiteflies by synthesising biotin (bioA–F) and riboflavin (ribA–E) through horizontally transferred genes. | [42,48,49,97,101,102,103,104] |
Cluster 2 (C2) | Aquitalea, Comamonas, Delftia, and Janthinobacterium | Comamonas and Delftia promote insect development by producing D-alanine and D-glutamate in Homalodisca vitripennis. Janthinobacterium inhibits Fusarium graminearum by synthesising violacein via the quorum-sensing gene cluster vioABCDE. | [51,52,53] | |
Insectary—Blood-fed | Cluster 1 (C1) | Acinetobacter, Aeromonas, Budvicia, Delftia, Hafnia-Obesumbacterium, Janthinobacterium, Pseudomonas | Acinetobacter and Aeromonas acquire iron via acinetobactin and ahu/hmu transporters to cope with nutrient stress in Hirudo verbana. Pseudomonas modulates the gut microbiota in S. littoralis through T6SS effectors and surface glycan modifications for AMP resistance. Budvicia ferments glucose into acetic acid to aid digestion in Rhynchophorus ferrugineus larvae. | [49,70,79,95,96,105] |
Cluster 2 (C2) | Flavobacterium, Lonsdalea, Pseudarthrobacter, Sphingobium, Stenotrophomonas | Flavobacterium degrades insecticides in Spodoptera frugiperda via xenobiotic degradation pathways. Stenotrophomonas, from Bombyx mori, enhances Arg, Thr, Leu, Val, and Glu biosynthesis through enzymes like acetolactate synthase and prephenate dehydratase. Sphingobium, also in S. frugiperda, expresses iron-regulated organophosphate hydrolase under iron scarcity, breaking down pesticides. | [76,90,106] | |
Insectary—Blood-fed + T. cruzi | Cluster 1 (C1) | Aquitalea, Comamonas, Telluria, Yersinia | Aquitalea, Comamonas (H. vitripennis), and Telluria aid insect metabolism by producing D-amino acids and ammonia via racemases and deaminases. Yersinia pestis, in fleas, resists antimicrobial peptides through outer membrane changes regulated by the PhoPQ system. | [51,77,107] |
Cluster 2 (C2) | Acinetobacter, Arsenophonus, Pseudomonas | Acinetobacter and Pseudomonas (Anopheles gambiae) use siderophores and T6SS to outcompete microbes and evade host immunity. Arsenophonus (aphids, whiteflies) synthesises B vitamins (biotin, riboflavin) via horizontally acquired genes (e.g., bioA, bioB, ribD, ribE), aiding host nutrition under stress. | [102,103,104,108] | |
Cluster 3 (C2) | Aeromonas, Budvicia, Delftia, Hafnia-Obesumbacterium, Janthinobacterium, Serratia | Serratia (R. prolixus, Anopheles stephensi) produces lipodepsipeptides that impair gut colonisation and motility, affecting T. cruzi and Plasmodium transmission. Pseudomonas and Acinetobacter (Anopheles gambiae) use T6SS and glycan-modified membranes to resist antimicrobial peptides and influence Plasmodium infection. Delftia (Anopheles) synthesises D-amino acids (D-Ala, D-Glu) via racemases, supporting host development and potentially modulating parasite dynamics. | [52,53,109,110,111] | |
Insectary—Fasting + T. cruzi | Cluster 1 (C3) | Aeromonas | Aeromonas (Culex pipiens quinquefasciatus) regulates gut microbiota and detoxifies insecticides through iron uptake systems and xenobiotic degradation pathways. | [50,97] |
Cluster 2 (C3) | Janthinobacterium and Pseudomonas | Janthinobacterium (F. graminearum) modulates microbiota via violacein synthesis regulated by the vioABCDE quorum-sensing cluster. Pseudomonas (S. littoralis) shapes gut ecology through cyclic lipopeptides, hydrogen cyanide, and T6SS, promoting microbial regulation during infection. | [48,49,52,53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Millán, E.; Lecona-Valera, A.N.; Rodriguez, M.H.; Gutiérrez-Cabrera, A.E. Influence of the Origin, Feeding Status, and Trypanosoma cruzi Infection in the Microbial Composition of the Digestive Tract of Triatoma pallidipennis. Biology 2025, 14, 984. https://doi.org/10.3390/biology14080984
Gutiérrez-Millán E, Lecona-Valera AN, Rodriguez MH, Gutiérrez-Cabrera AE. Influence of the Origin, Feeding Status, and Trypanosoma cruzi Infection in the Microbial Composition of the Digestive Tract of Triatoma pallidipennis. Biology. 2025; 14(8):984. https://doi.org/10.3390/biology14080984
Chicago/Turabian StyleGutiérrez-Millán, Everardo, Alba N. Lecona-Valera, Mario H. Rodriguez, and Ana E. Gutiérrez-Cabrera. 2025. "Influence of the Origin, Feeding Status, and Trypanosoma cruzi Infection in the Microbial Composition of the Digestive Tract of Triatoma pallidipennis" Biology 14, no. 8: 984. https://doi.org/10.3390/biology14080984
APA StyleGutiérrez-Millán, E., Lecona-Valera, A. N., Rodriguez, M. H., & Gutiérrez-Cabrera, A. E. (2025). Influence of the Origin, Feeding Status, and Trypanosoma cruzi Infection in the Microbial Composition of the Digestive Tract of Triatoma pallidipennis. Biology, 14(8), 984. https://doi.org/10.3390/biology14080984