Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,968)

Search Parameters:
Keywords = photovoltaic integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2505 KiB  
Article
Battery Energy Storage Systems: Energy Market Review, Challenges, and Opportunities in Frequency Control Ancillary Services
by Gian Garttan, Sanath Alahakoon, Kianoush Emami and Shantha Gamini Jayasinghe
Energies 2025, 18(15), 4174; https://doi.org/10.3390/en18154174 - 6 Aug 2025
Abstract
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of [...] Read more.
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of BESS’ participation in frequency control ancillary service (FCAS) markets. This review synthesises the current state of knowledge on the evolution of the energy market and the role of battery energy storage systems in providing grid stability, particularly frequency control services, with a focus on their integration into evolving high-renewable-energy-source (RES) market structures. Specifically, solar PV and wind energy are emerging as the main drivers of RES expansion, accounting for approximately 61% of the global market share. A BESS offers greater flexibility in storage capacity, scalability and rapid response capabilities, making it an effective solution to address emerging security risks of the system. Moreover, a BESS is able to provide active power support through power smoothing when coupled with solar photovoltaic (PV) and wind generation. In this paper, we provide an overview of the current status of energy markets, the contribution of battery storage systems to grid stability and flexibility, as well as the challenges that BESS face in evolving electricity markets. Full article
Show Figures

Figure 1

12 pages, 3840 KiB  
Article
Evaluation of Incident Light Characteristics for Vehicle-Integrated Photovoltaics Installed on Roofs and Hoods Across All Types of Vehicles: A Case Study of Commercial Passenger Vehicles
by Shota Matsushita, Kenji Araki, Yasuyuki Ota and Kensuke Nishioka
Appl. Sci. 2025, 15(15), 8702; https://doi.org/10.3390/app15158702 (registering DOI) - 6 Aug 2025
Abstract
The output of vehicle-integrated photovoltaics (VIPVs) varies due to complex surface interactions, shading, weather conditions, module temperature, and module configuration, making accurate predictions of power generation challenging. This study examines the characteristics of incident light on VIPVs, focusing on installations on automobile roofs [...] Read more.
The output of vehicle-integrated photovoltaics (VIPVs) varies due to complex surface interactions, shading, weather conditions, module temperature, and module configuration, making accurate predictions of power generation challenging. This study examines the characteristics of incident light on VIPVs, focusing on installations on automobile roofs and hoods. Surface element data were collected from areas near the target locations (hood and roof), with shading effects taken into account. The calculations evaluated how the angle of incoming light impacts the intensity on specific parts of the vehicle, identifying which surfaces are most likely to receive maximum illumination. For example, the hood exhibited the highest incident light intensity when sunlight approached directly from the front at a solar altitude of 71°, reaching approximately 98% of the light intensity. These calculations enable the assessment of incident light intensity characteristics for various vehicle parts, including the hood and roof. Additionally, by utilizing database information, it is possible to calculate the incident light on vehicle surfaces at any given time and location. Full article
(This article belongs to the Special Issue New Insights into Solar Cells and Their Applications)
Show Figures

Figure 1

27 pages, 7775 KiB  
Article
Fourier–Bessel Series Expansion and Empirical Wavelet Transform-Based Technique for Discriminating Between PV Array and Line Faults to Enhance Resiliency of Protection in DC Microgrid
by Laxman Solankee, Avinash Rai and Mukesh Kirar
Energies 2025, 18(15), 4171; https://doi.org/10.3390/en18154171 - 6 Aug 2025
Abstract
The growing demand for power and the rising awareness of the need to reduce carbon footprints have led to wider acceptance of photovoltaic (PV)-integrated microgrids. PV-based microgrids have numerous significant advantages over other distributed energy resources; however, creating a dependable protection scheme for [...] Read more.
The growing demand for power and the rising awareness of the need to reduce carbon footprints have led to wider acceptance of photovoltaic (PV)-integrated microgrids. PV-based microgrids have numerous significant advantages over other distributed energy resources; however, creating a dependable protection scheme for the DC microgrid is difficult due to the closely resembling current and voltage profiles of PV array faults and line faults in the DC network. The conventional methods fail to clearly discriminate between them. In this regard, a fault-resilient scheme exploiting the inherent characteristics of Fourier–Bessel Series Expansion and Empirical Wavelet Transform (FBSE-EWT) has been utilized in the present work. In order to enhance the efficacy of the bagging tree-based ensemble classifier, Artificial Gorilla Troop Optimization (AGTO) has been used to tune the hyperparameters. The hybrid protection approach is proposed for accurate fault detection, discrimination between scenarios (source-side fault and line-side fault), and classification of various fault types (pole–pole and pole–ground). The discriminatory attributes derived from voltage and current signals recorded at the DC bus using the hybrid FBSE-EWT have been utilized as an input feature set for the AGTO tuned bagging tree-based ensemble classifier to perform the intended tasks of fault detection and discrimination between source faults (PV array faults) and line faults (DC network). The proposed approach has been found to outperform the decision tree and SVM techniques, demonstrating reliability in terms of discriminating between the PV array faults and the DC line faults and resilience against fluctuations in PV irradiance levels. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

21 pages, 2441 KiB  
Article
Reliability Enhancement of Puducherry Smart Grid System Through Optimal Integration of Electric Vehicle Charging Station–Photovoltaic System
by M. A. Sasi Bhushan, M. Sudhakaran, Sattianadan Dasarathan and V. Sowmya Sree
World Electr. Veh. J. 2025, 16(8), 443; https://doi.org/10.3390/wevj16080443 - 6 Aug 2025
Abstract
Distributed generation strengthens distribution network reliability by placing generators close to load centers. The integration of electric vehicle charging stations (EVCSs) with PV systems mitigates the effects of EV charging burden. In this research, the objective is to combineEVCSs with distributed generation (DG) [...] Read more.
Distributed generation strengthens distribution network reliability by placing generators close to load centers. The integration of electric vehicle charging stations (EVCSs) with PV systems mitigates the effects of EV charging burden. In this research, the objective is to combineEVCSs with distributed generation (DG) units in the Puducherry smart grid system to obtain optimized locations and enhance their reliability. To determine the right nodes for DGs and EVCSs in an uneven distribution network, the modified decision-making (MDM) algorithm and the model predictive control (MPC) approach are used. The Indian utility 29-node distribution network (IN29NDN), which is an unbalanced network, is used for testing. The effects of PV systems and EVCS units are studied in several settings and at various saturation levels. This study validates the correctness of its findings by evaluating the outcomes of proposed methodological approaches. DIgSILENT Power Factory is used to conduct the simulation experiments. The results show that optimizing the location of the DG unit and the size of the PV system can significantly minimize power losses and make a distribution network (DN) more reliable. Full article
Show Figures

Figure 1

30 pages, 3996 KiB  
Article
Incentive-Compatible Mechanism Design for Medium- and Long-Term/Spot Market Coordination in High-Penetration Renewable Energy Systems
by Sicong Wang, Weiqing Wang, Sizhe Yan and Qiuying Li
Processes 2025, 13(8), 2478; https://doi.org/10.3390/pr13082478 - 6 Aug 2025
Abstract
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems [...] Read more.
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems with high renewable energy penetration. A three-stage joint operation framework is proposed. First, a medium- and long-term trading game model is established, considering multiple energy types to optimize the benefits of market participants. Second, machine learning algorithms are employed to predict renewable energy output, and a contract decomposition mechanism is developed to ensure a smooth transition from medium- and long-term contracts to real-time market operations. Finally, a day-ahead market-clearing strategy and an incentive-compatible settlement mechanism, incorporating the constraints from contract decomposition, are proposed to link the two markets effectively. Simulation results demonstrate that the proposed mechanism effectively enhances resource allocation and stabilizes market operations, leading to significant revenue improvements across various generation units and increased renewable energy utilization. Specifically, thermal power units achieve a 19.12% increase in revenue, while wind and photovoltaic units show more substantial gains of 38.76% and 47.52%, respectively. Concurrently, the mechanism drives a 10.61% increase in renewable energy absorption capacity and yields a 13.47% improvement in Tradable Green Certificate (TGC) utilization efficiency, confirming its overall effectiveness. This research shows that coordinated optimization between medium- and long-term/spot markets, combined with a well-designed settlement mechanism, significantly strengthens the market competitiveness of renewable energy, providing theoretical support for the market-based operation of the new power system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 3337 KiB  
Article
Imbalance Charge Reduction in the Italian Intra-Day Market Using Short-Term Forecasting of Photovoltaic Generation
by Cristina Ventura, Giuseppe Marco Tina and Santi Agatino Rizzo
Energies 2025, 18(15), 4161; https://doi.org/10.3390/en18154161 - 5 Aug 2025
Abstract
In the Italian intra-day electricity market (MI-XBID), where energy positions can be adjusted up to one hour before delivery, imbalance charges due to forecast errors from non-programmable renewable sources represent a critical issue. This work focuses on photovoltaic (PV) systems, whose production variability [...] Read more.
In the Italian intra-day electricity market (MI-XBID), where energy positions can be adjusted up to one hour before delivery, imbalance charges due to forecast errors from non-programmable renewable sources represent a critical issue. This work focuses on photovoltaic (PV) systems, whose production variability makes them particularly sensitive to forecast accuracy. To address these challenges, a comprehensive methodology for assessing and mitigating imbalance penalties by integrating a short-term PV forecasting model with a battery energy storage system is proposed. Unlike conventional approaches that focus exclusively on improving statistical accuracy, this study emphasizes the economic and regulatory impact of forecast errors under the current Italian imbalance settlement framework. A hybrid physical-artificial neural network is developed to forecast PV power one hour in advance, combining historical production data and clear-sky irradiance estimates. The resulting imbalances are analyzed using regulatory tolerance thresholds. Simulation results show that, by adopting a control strategy aimed at maintaining the battery’s state of charge around 50%, imbalance penalties can be completely eliminated using a storage system sized for just over 2 equivalent hours of storage capacity. The methodology provides a practical tool for market participants to quantify the benefits of storage integration and can be generalized to other electricity markets where tolerance bands for imbalances are applied. Full article
(This article belongs to the Special Issue Advanced Forecasting Methods for Sustainable Power Grid: 2nd Edition)
Show Figures

Figure 1

35 pages, 6795 KiB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Graphical abstract

31 pages, 5644 KiB  
Article
Mitigation Technique Using a Hybrid Energy Storage and Time-of-Use (TOU) Approach in Photovoltaic Grid Connection
by Mohammad Reza Maghami, Jagadeesh Pasupuleti, Arthur G. O. Mutambara and Janaka Ekanayake
Technologies 2025, 13(8), 339; https://doi.org/10.3390/technologies13080339 - 5 Aug 2025
Abstract
This study investigates the impact of Time-of-Use (TOU) scheduling and battery energy storage systems (BESS) on voltage stability in a typical Malaysian medium-voltage distribution network with high photovoltaic (PV) system penetration. The analyzed network comprises 110 nodes connected via eight feeders to a [...] Read more.
This study investigates the impact of Time-of-Use (TOU) scheduling and battery energy storage systems (BESS) on voltage stability in a typical Malaysian medium-voltage distribution network with high photovoltaic (PV) system penetration. The analyzed network comprises 110 nodes connected via eight feeders to a pair of 132/11 kV, 15 MVA transformers, supplying a total load of 20.006 MVA. Each node is integrated with a 100 kW PV system, enabling up to 100% PV penetration scenarios. A hybrid mitigation strategy combining TOU-based load shifting and BESS was implemented to address voltage violations occurring, particularly during low-load night hours. Dynamic simulations using DIgSILENT PowerFactory were conducted under worst-case (no load and peak load) conditions. The novelty of this research is the use of real rural network data to validate a hybrid BESS–TOU strategy, supported by detailed sensitivity analysis across PV penetration levels. This provides practical voltage stabilization insights not shown in earlier studies. Results show that at 100% PV penetration, TOU or BESS alone are insufficient to fully mitigate voltage drops. However, a hybrid application of 0.4 MWh BESS with 20% TOU load shifting eliminates voltage violations across all nodes, raising the minimum voltage from 0.924 p.u. to 0.951 p.u. while reducing active power losses and grid dependency. A sensitivity analysis further reveals that a 60% PV penetration can be supported reliably using only 0.4 MWh of BESS and 10% TOU. Beyond this, hybrid mitigation becomes essential to maintain stability. The proposed solution demonstrates a scalable approach to enable large-scale PV integration in dense rural grids and addresses the specific operational characteristics of Malaysian networks, which differ from commonly studied IEEE test systems. This work fills a critical research gap by using real local data to propose and validate practical voltage mitigation strategies. Full article
Show Figures

Figure 1

31 pages, 6551 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Viewed by 311
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

28 pages, 2340 KiB  
Article
Determining the Operating Performance of an Isolated, High-Power, Photovoltaic Pumping System Through Sensor Measurements
by Florin Dragan, Dorin Bordeasu and Ioan Filip
Appl. Sci. 2025, 15(15), 8639; https://doi.org/10.3390/app15158639 (registering DOI) - 4 Aug 2025
Viewed by 178
Abstract
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically [...] Read more.
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically aligns with peak irrigation periods. Despite this potential, photovoltaic pumping systems (PVPSs) often face reliability issues due to fluctuations in solar irradiance, resulting in frequent start/stop cycles and premature equipment wear. The IEC 62253 standard establishes procedures for evaluating PVPS performance but primarily addresses steady-state conditions, neglecting transient regimes. As the main contribution, the current paper proposes a non-intrusive, high-resolution monitoring system and a methodology to assess the performance of an isolated, high-power PVPS, considering also transient regimes. The system records critical electrical, hydraulic and environmental parameters every second, enabling in-depth analysis under various weather conditions. Two performance indicators, pumped volume efficiency and equivalent operating time, were used to evaluate the system’s performance. The results indicate that near-optimal performance is only achievable under clear sky conditions. Under the appearance of clouds, control strategies designed to protect the system reduce overall efficiency. The proposed methodology enables detailed performance diagnostics and supports the development of more robust PVPSs. Full article
(This article belongs to the Special Issue New Trends in Renewable Energy and Power Systems)
Show Figures

Figure 1

26 pages, 4116 KiB  
Article
Robust Optimal Operation of Smart Microgrid Considering Source–Load Uncertainty
by Zejian Qiu, Zhuowen Zhu, Lili Yu, Zhanyuan Han, Weitao Shao, Kuan Zhang and Yinfeng Ma
Processes 2025, 13(8), 2458; https://doi.org/10.3390/pr13082458 - 4 Aug 2025
Viewed by 151
Abstract
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) [...] Read more.
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) power flow modeling, and integration with optimization frameworks. This paper proposes a closed-loop technical framework combining high-confidence interval prediction, second-order cone convex relaxation, and robust optimization to facilitate renewable energy integration in distribution networks via smart microgrid technology. First, a hybrid prediction model integrating Variational Mode Decomposition (VMD), Long Short-Term Memory (LSTM), and Quantile Regression (QR) is designed to extract multi-frequency characteristics of time-series data, generating adaptive prediction intervals that accommodate individualized decision-making preferences. Second, a second-order cone relaxation method transforms the AC power flow optimization problem into a mixed-integer second-order cone programming (MISOCP) model. Finally, a robust optimization method considering source–load uncertainties is developed. Case studies demonstrate that the proposed approach reduces prediction errors by 21.15%, decreases node voltage fluctuations by 16.71%, and reduces voltage deviation at maximum offset nodes by 17.36%. This framework significantly mitigates voltage violation risks in distribution networks with large-scale grid-connected photovoltaic systems. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

37 pages, 10560 KiB  
Article
Optimizing Building Performance with Dynamic Photovoltaic Shading Systems: A Comparative Analysis of Six Adaptive Designs
by Roshanak Roshan Kharrat, Giuseppe Perfetto, Roberta Ingaramo and Guglielmina Mutani
Smart Cities 2025, 8(4), 127; https://doi.org/10.3390/smartcities8040127 - 3 Aug 2025
Viewed by 240
Abstract
Dynamic and Adaptive solar systems demonstrate a greater potential to enhance the satisfaction of occupants, in terms of indoor environment quality and the energy efficiency of the buildings, than conventional shading solutions. This study has evaluated Dynamic and Adaptive Photovoltaic Shading Systems (DAPVSSs) [...] Read more.
Dynamic and Adaptive solar systems demonstrate a greater potential to enhance the satisfaction of occupants, in terms of indoor environment quality and the energy efficiency of the buildings, than conventional shading solutions. This study has evaluated Dynamic and Adaptive Photovoltaic Shading Systems (DAPVSSs) through a comprehensive analysis of six shading designs in which their energy production and the comfort of occupants were considered. Energy generation, thermal comfort, daylight, and glare control have been assessed in this study, considering multiple orientations throughout the seasons, and a variety of tools, such as Rhino 6.0, Grasshopper, ClimateStudio 2.1, and Ladybug, have been exploited for these purposes. The results showed that the prototypes that were geometrically more complex, designs 5 and 6 in particular, had approximately 485 kWh higher energy production and energy savings for cooling and 48% better glare control than the other simplified configurations while maintaining the minimum daylight as the threshold (min DF: 2%) due to adaptive and control methodologies. Design 6 demonstrated optimal balanced performance for all the aforementioned criteria, achieving 587 kWh/year energy production while maintaining the daylight factor within the 2.1–2.9% optimal range and ensuring visual comfort compliance during 94% of occupied hours. This research has established a framework that can be used to make well-informed design decisions that could balance energy production, occupants’ wellbeing, and architectural integration, while advancing sustainable building envelope technologies. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

19 pages, 1400 KiB  
Article
A Comparative Study of Statistical and Machine Learning Methods for Solar Irradiance Forecasting Using the Folsom PLC Dataset
by Oscar Trull, Juan Carlos García-Díaz and Angel Peiró-Signes
Energies 2025, 18(15), 4122; https://doi.org/10.3390/en18154122 - 3 Aug 2025
Viewed by 303
Abstract
The increasing penetration of photovoltaic solar energy has intensified the need for accurate production forecasting to ensure efficient grid operation. This study presents a critical comparison of traditional statistical methods and machine learning approaches for forecasting solar irradiance using the benchmark Folsom PLC [...] Read more.
The increasing penetration of photovoltaic solar energy has intensified the need for accurate production forecasting to ensure efficient grid operation. This study presents a critical comparison of traditional statistical methods and machine learning approaches for forecasting solar irradiance using the benchmark Folsom PLC dataset. Two primary research questions are addressed: whether machine learning models outperform traditional techniques, and whether time series modelling improves prediction accuracy. The analysis includes an evaluation of a range of models, including statistical regressions (OLS, LASSO, ridge), regression trees, neural networks, LSTM, and random forests, which are applied to physical modelling and time series approaches. The results reveal that although machine learning methods can outperform statistical models, particularly with the inclusion of exogenous weather features, they are not universally superior across all forecasting horizons. Furthermore, pure time series approach models yield lower performance. However, a hybrid approach in which physical models are integrated with machine learning demonstrates significantly improved accuracy. These findings highlight the value of hybrid models for photovoltaic forecasting and suggest strategic directions for operational implementation. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

23 pages, 1146 KiB  
Review
A Review of Optimization Scheduling for Active Distribution Networks with High-Penetration Distributed Generation Access
by Kewei Wang, Yonghong Huang, Yanbo Liu, Tao Huang and Shijia Zang
Energies 2025, 18(15), 4119; https://doi.org/10.3390/en18154119 - 3 Aug 2025
Viewed by 301
Abstract
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations [...] Read more.
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations and localized voltage violations, posing safety challenges. Consequently, research on optimal dispatch for ADNs with a high penetration of renewable energy has become a current focal point. This paper provides a comprehensive review of research in this domain over the past decade. Initially, it analyzes the voltage impact patterns and control principles in distribution networks under varying levels of renewable energy penetration. Subsequently, it introduces optimization dispatch models for ADNs that focus on three key objectives: safety, economy, and low carbon emissions. Furthermore, addressing the challenge of solving non-convex and nonlinear models, the paper highlights model reformulation strategies such as semidefinite relaxation, second-order cone relaxation, and convex inner approximation methods, along with summarizing relevant intelligent solution algorithms. Additionally, in response to the high uncertainty of renewable energy output, it reviews stochastic optimization dispatch strategies for ADNs, encompassing single-stage, two-stage, and multi-stage approaches. Meanwhile, given the promising prospects of large-scale deep reinforcement learning models in the power sector, their applications in ADN optimization dispatch are also reviewed. Finally, the paper outlines potential future research directions for ADN optimization dispatch. Full article
Show Figures

Figure 1

17 pages, 2085 KiB  
Article
Identification Method of Weak Nodes in Distributed Photovoltaic Distribution Networks for Electric Vehicle Charging Station Planning
by Xiaoxing Lu, Xiaolong Xiao, Jian Liu, Ning Guo, Lu Liang and Jiacheng Li
World Electr. Veh. J. 2025, 16(8), 433; https://doi.org/10.3390/wevj16080433 - 2 Aug 2025
Viewed by 252
Abstract
With the large-scale integration of high-penetration distributed photovoltaic (DPV) into distribution networks, its output volatility and reverse power flow characteristics are prone to causing voltage violations, necessitating the accurate identification of weak nodes to enhance operational reliability. This paper investigates the definition, quantification [...] Read more.
With the large-scale integration of high-penetration distributed photovoltaic (DPV) into distribution networks, its output volatility and reverse power flow characteristics are prone to causing voltage violations, necessitating the accurate identification of weak nodes to enhance operational reliability. This paper investigates the definition, quantification criteria, and multi-indicator comprehensive determination methods for weak nodes in distribution networks. A multi-criteria assessment method integrating voltage deviation rate, sensitivity analysis, and power margin has been proposed. This method quantifies the node disturbance resistance and comprehensively evaluates the vulnerability of voltage stability. Simulation validation based on the IEEE 33-node system demonstrates that the proposed method can effectively identify the distribution patterns of weak nodes under different penetration levels (20~80%) and varying numbers of DPV access points (single-point to multi-point distributed access scenarios). The study reveals the impact of increased penetration and dispersed access locations on the migration characteristics of weak nodes. The research findings provide a theoretical basis for the planning of distribution networks with high-penetration DPV, offering valuable insights for optimizing the siting of volatile loads such as electric vehicle (EV) charging stations while considering both grid safety and the demand for distributed energy accommodation. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

Back to TopTop