Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = photo-excited charge carrier dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3578 KiB  
Article
Prussian Blue Analogue-Derived p-n Junction Heterostructure for Photothermal Reverse Water–Gas Shift: Enhanced Activity and Selectivity via Synergistic Effects
by Shaorui Jia, Xinbo Zhang, Junhong Ma, Chaoyun Ma, Xue Yu and Yuanhao Wang
Nanomaterials 2025, 15(12), 904; https://doi.org/10.3390/nano15120904 - 11 Jun 2025
Viewed by 355
Abstract
Photothermal catalytic CO2 conversion into chemicals that provide added value represents a promising strategy for sustainable energy utilization, yet the development of highly efficient, stable, and selective catalysts remains a significant challenge. Herein, we report a rationally designed p-n junction heterostructure, T-CZ-PBA [...] Read more.
Photothermal catalytic CO2 conversion into chemicals that provide added value represents a promising strategy for sustainable energy utilization, yet the development of highly efficient, stable, and selective catalysts remains a significant challenge. Herein, we report a rationally designed p-n junction heterostructure, T-CZ-PBA (SC), synthesized via controlled pyrolysis of high crystalline Prussian blue analogues (PBA) precursor, which integrates CuCo alloy, ZnO, N-doped carbon (NC), and ZnII-CoIIIPBA into a synergistic architecture. This unique configuration offers dual functional advantages: (1) the abundant heterointerfaces provide highly active sites for enhanced CO2 and H2 adsorption/activation, and (2) the engineered energy band structure optimizes charge separation and transport efficiency. The optimized T-C3Z1-PBA (SC) achieves exceptional photothermal catalytic performance, demonstrating a CO2 conversion rate of 126.0 mmol gcat⁻1 h⁻1 with 98.8% CO selectivity under 350 °C light irradiation, while maintaining robust stability over 50 h of continuous operation. In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) investigations have identified COOH* as a critical reaction intermediate and elucidated that photoexcitation accelerates charge carrier dynamics, thereby substantially promoting the conversion of key intermediates (CO2* and CO*) and overall reaction kinetics. This research provides insights for engineering high-performance heterostructured catalysts by controlling interfacial and electronic structures. Full article
Show Figures

Graphical abstract

25 pages, 8071 KiB  
Article
The Interface Interaction of C3N4/Bi2S3 Promoted the Separation of Excitons and the Extraction of Free Photogenerated Carriers in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Inorganics 2025, 13(4), 122; https://doi.org/10.3390/inorganics13040122 - 12 Apr 2025
Cited by 1 | Viewed by 580
Abstract
Exciton generation and separation play an important role in the photoelectric properties and the luminescence performance of materials. In order to tailor the defects and grain boundaries and improve the exciton separation and light harvesting of the graphitic carbon nitride (g-C3N [...] Read more.
Exciton generation and separation play an important role in the photoelectric properties and the luminescence performance of materials. In order to tailor the defects and grain boundaries and improve the exciton separation and light harvesting of the graphitic carbon nitride (g-C3N4) nanosheets, a C3N4/bismuth sulfide (Bi2S3) nanocomposite was synthesized. The photoelectric properties of the 405, 532, 650, 780, 808, 980 and 1064 nm light sources were studied using Au electrodes and graphite electrodes with 4B and 5B pencil drawings. The results indicate that the C3N4/Bi2S3 nanocomposite exhibited photocurrent switching behavior in the broadband light spectrum range. It is noted that even with zero bias applied, a good photoelectric signal was still measured. The resulting nanocomposite exhibited good photophysical stability. Physical mechanisms are discussed herein. It is suggested that the interfacial interaction of C3N4 and Bi2S3 in the nanocomposite creates a strong built-in electric field, which accelerates the separation of excitons. Therefore, as a dynamic process of photoexcitation, fluorescence, the photoelectric effect, and scattering are three main competing processes; the separation of excitons and the extraction of free photogenerated charge can be used as a reference for the fluorescent materials or other photoelectric materials studies as photophysical properties. This study also serves as an important reference for the design, defect and grain boundary modulation or interdisciplinary application of functional nanocomposites, especially for the bandgap modulation and suppression of photogenerated carrier recombination. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials, 2nd Edition)
Show Figures

Figure 1

40 pages, 16257 KiB  
Review
Synthesis, Characterization, and Roles of Vacancy Defects in Polymer and Graphitized Carbon Nitride Photocatalysts: A Comprehensive Review
by Arul Pundi and Chi-Jung Chang
Polymers 2025, 17(3), 334; https://doi.org/10.3390/polym17030334 - 26 Jan 2025
Cited by 2 | Viewed by 1704
Abstract
Vacancy defect graphitic carbon nitride (g-C3N4) and conjugated polyimide (PI) polymer photocatalysts have become increasingly recognized as metal-free photocatalysts featuring an appropriate bandgap. The narrow absorption spectrum of visible light and the rapid recombination rate of the photoexcited charge [...] Read more.
Vacancy defect graphitic carbon nitride (g-C3N4) and conjugated polyimide (PI) polymer photocatalysts have become increasingly recognized as metal-free photocatalysts featuring an appropriate bandgap. The narrow absorption spectrum of visible light and the rapid recombination rate of the photoexcited charge carriers in PI polymers and g-C3N4 impede its photocatalytic performance. The presence of oxygen vacancies (OVs) in PI polymer photocatalysts, as well as nitrogen vacancies (NVs) and carbon vacancies (CVs) in g-C3N4, can significantly enhance the migration of photogenerated electrons. Adding vacancies to improve the electronic structure and band gap width can greatly enhance the photocatalytic efficiency of PI polymers and g-C3N4. Defect engineering is important for increasing the photocatalytic ability of PI-polymer and g-C3N4. There remains a notable absence of thorough review papers covering the synthesis, characterization, and applications of vacancy-rich PI-polymer and g-C3N4 in photocatalysis. This review paper examines the roles of OVs in PI-polymer, NVs, and CVs in g-C3N4 and thoroughly summarizes the preparation approaches employed before and after, as well as during polymerization. This review scrutinizes spectroscopic characterization techniques, such as EPR, XPS, PAS, XRD, FTIR, and NMR, for vacancy defect analysis. We also reviewed the role of vacancies, which include light absorption, photogenerated charge carrier separation, and transfer dynamics. This review could serve as a comprehensive understanding, a vacancy-engineered design framework, and a practical guide for synthesizing and characterizing. Full article
Show Figures

Figure 1

10 pages, 1606 KiB  
Article
Interfacial Charge Transfer Enhances Transient Surface Photovoltage in Hybrid Heterojunctions
by Cristian Soncini, Roberto Costantini, Martina Dell’Angela, Alberto Morgante and Maddalena Pedio
Nanomaterials 2025, 15(3), 154; https://doi.org/10.3390/nano15030154 - 21 Jan 2025
Viewed by 833
Abstract
The interfacial energy level alignment in the copper phthalocyanine/SiO2/p-Si(100) heterojunction has been studied in dark conditions and under illumination. The element-sensitivity of the time-resolved X-ray photoemission provides a real-time picture of the photoexcited carrier dynamics at the interface and within the [...] Read more.
The interfacial energy level alignment in the copper phthalocyanine/SiO2/p-Si(100) heterojunction has been studied in dark conditions and under illumination. The element-sensitivity of the time-resolved X-ray photoemission provides a real-time picture of the photoexcited carrier dynamics at the interface and within the film, enabling one to distinguish between substrate and molecular contributions. We observe a molecule-to-substrate charge transfer under photoexcitation, which is directly related to the transient modification of the band bending in the substrate due to the surface photovoltage effect. Our results show that charge generation in the heterojunction is driven by the molecular layer in contact with the substrate. The different molecular orientation at the interface creates a new channel for charge injection in the substrate under photoexcitation. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

22 pages, 4284 KiB  
Article
Dynamics of Photoinduced Charge Carrier and Photothermal Effect in Pulse-Illuminated Narrow Gap and Moderate Doped Semiconductors
by Slobodanka Galovic, Katarina Djordjevic, Milica Dragas, Dejan Milicevic and Edin Suljovrujic
Mathematics 2025, 13(2), 258; https://doi.org/10.3390/math13020258 - 14 Jan 2025
Cited by 2 | Viewed by 989
Abstract
When a sample of semiconducting material is illuminated by monochromatic light, in which the photon energy is higher than the energy gap of the semiconductor, part of the absorbed electromagnetic energy is spent on the generation of pairs of quasi-free charge carriers that [...] Read more.
When a sample of semiconducting material is illuminated by monochromatic light, in which the photon energy is higher than the energy gap of the semiconductor, part of the absorbed electromagnetic energy is spent on the generation of pairs of quasi-free charge carriers that are bound by Coulomb attraction. Photo-generated pairs diffuse through the material as a whole according to the density gradients established, carrying part of the excitation energy and charge through the semiconducting sample. This energy is indirectly transformed into heat, where the excess negatively charged electron recombines with a positively charged hole and causes additional local heating of the lattice. The dynamic of the photoexcited charge carrier is described by a non-linear partial differential equation of ambipolar diffusion. In moderate doped semiconductors with a low-level injection of charge carriers, ambipolar transport can be reduced to the linear parabolic partial differential equation for the transport of minority carriers. In this paper, we calculated the spectral function of the photoinduced charge carrier distribution based on an approximation of low-level injection. Using the calculated distribution and inverse Laplace transform, the dynamics of recombination photoinduced heat sources at the surfaces of semiconducting samples were studied for pulse optical excitations of very short and very long durations. It was shown that the photoexcited charge carriers affect semiconductor heating depending on the pulse duration, velocity of surface recombination, lifetime of charge carriers, and their diffusion coefficient. Full article
(This article belongs to the Special Issue Transport Phenomena Equations: Modelling and Applications)
Show Figures

Figure 1

11 pages, 2574 KiB  
Article
Photo-Excited Carrier Dynamics in Ammonothermal Mn-Compensated GaN Semiconductor
by Patrik Ščajev, Paweł Prystawko, Robert Kucharski and Irmantas Kašalynas
Materials 2024, 17(23), 5995; https://doi.org/10.3390/ma17235995 - 7 Dec 2024
Viewed by 1101
Abstract
We investigated the carrier dynamics of ammonothermal Mn-compensated gallium nitride (GaN:Mn) semiconductors by using sub-bandgap and above-bandgap photo-excitation in a photoluminescence analysis and pump–probe measurements. The contactless probing methods elucidated their versatility for the complex analysis of defects in GaN:Mn crystals. The impurities [...] Read more.
We investigated the carrier dynamics of ammonothermal Mn-compensated gallium nitride (GaN:Mn) semiconductors by using sub-bandgap and above-bandgap photo-excitation in a photoluminescence analysis and pump–probe measurements. The contactless probing methods elucidated their versatility for the complex analysis of defects in GaN:Mn crystals. The impurities of Mn were found to show photoconductivity and absorption bands starting at the 700 nm wavelength threshold and a broad peak located at 800 nm. Here, we determined the impact of Mn-induced states and Mg acceptors on the relaxation rates of charge carriers in GaN:Mn based on a photoluminescence analysis and pump–probe measurements. The electrons in the conduction band tails were found to be responsible for both the photoconductivity and yellow luminescence decays. The slower red luminescence and pump–probe decays were dominated by Mg acceptors. After photo-excitation, the electrons and holes were quickly thermalized to the conduction band tails and Mg acceptors, respectively. The yellow photoluminescence decays exhibited a 1 ns decay time at low laser excitations, whereas, at the highest ones, it increased up to 7 ns due to the saturation of the nonradiative defects, resembling the photoconductivity lifetime dependence. The fast photo-carrier decay time observed in ammonothermal GaN:Mn is of critical importance in high-frequency and high-voltage device applications. Full article
(This article belongs to the Special Issue Optical Properties of Crystalline Semiconductors and Nanomaterials)
Show Figures

Figure 1

18 pages, 3870 KiB  
Article
Optical Absorption, Photocarrier Recombination Dynamics and Terahertz Dielectric Properties of Electron-Irradiated GaSe Crystals
by Svetlana A. Bereznaya, Ruslan A. Redkin, Valentin N. Brudnyi, Yury S. Sarkisov, Xinyang Su and Sergey Yu. Sarkisov
Crystals 2023, 13(11), 1562; https://doi.org/10.3390/cryst13111562 - 1 Nov 2023
Cited by 2 | Viewed by 2028
Abstract
Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals were studied. Two absorption bands with the low-photon-energy threshold at 1.35 and 1.73 eV (T = 300 K) appeared in the transparency region of GaSe after the high-energy-electron irradiation. The observed absorption bands [...] Read more.
Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals were studied. Two absorption bands with the low-photon-energy threshold at 1.35 and 1.73 eV (T = 300 K) appeared in the transparency region of GaSe after the high-energy-electron irradiation. The observed absorption bands were attributed to the defect states induced by Ga vacancies in two charge states, having the energy positions at 0.23 and 0.61 eV above the valence band maximum at T = 300 K. The optical pump-terahertz probe technique (OPTP) was employed to study the dark and photoexcited terahertz conductivity and charge carrier recombination dynamics at two-photon excitation of as-grown and 9 MeV electron-irradiated GaSe crystals. The measured values of the differential terahertz transmission at a specified photoexcitation condition were used to extract the terahertz charge carrier mobilities. The determined terahertz charge carrier mobility values were ~46 cm2/V·s and ~14 cm2/V·s for as-grown and heavily electron-irradiated GaSe crystals, respectively. These are quite close to the values determined from the Lorentz–Drude–Smith fitting of the measured dielectric constant spectra. The photo-injection-level-dependent charge carrier lifetimes were determined from the measured OPTP data, bearing in mind the model injection-level dependencies of the recombination rates governed by interband and trap-assisted Auger recombination, bulk and surface Shockley–Read–Hall (SRH) recombination and interband radiative transitions in the limit of a high injection level. It was found that GaSe possesses a long charge carrier lifetime (a~1.9 × 10−6 ps−1, b~2.7 × 10−21 cm3ps−1 and c~1.3 × 10−37 cm6ps−1), i.e., τ~0.53 μs in the limit of a relatively low injection, when the contribution from SRH recombination is dominant. The electron irradiation of as-grown GaSe crystals reduced the charge carrier lifetime at a high injection level due to Auger recombination through radiation-induced defects. It was found that the terahertz spectra of the dielectric constants of as-grown and electron-irradiated GaSe crystals can be fitted with acceptable accuracy using the Lorentz model with the Drude–Smith term accounting for the free-carrier conductivity. Full article
(This article belongs to the Special Issue Advances of Nonlinear Optical Materials)
Show Figures

Figure 1

13 pages, 11962 KiB  
Article
Dispersible Supertetrahedral Chalcogenide T3 Clusters: Photocatalytic Activity and Photogenerated Carrier Dynamics
by Haiyan Yin, Yifan Liu, Abdusalam Ablez, Yanqi Wang, Qianqian Hu and Xiaoying Huang
Catalysts 2023, 13(8), 1160; https://doi.org/10.3390/catal13081160 - 27 Jul 2023
Cited by 1 | Viewed by 1432
Abstract
Herein, we synthesized two isostructural supertetrahedral T3 cluster-based chalcogenide compounds by an ionic liquid-assisted precursor technique, namely [Bmmim]6In10Q16Cl4∙(MIm)4 (Q = S (In-S), Q = Se (In-Se), Bmmim = 1-butyl-2,3-dimethylimidazolium, [...] Read more.
Herein, we synthesized two isostructural supertetrahedral T3 cluster-based chalcogenide compounds by an ionic liquid-assisted precursor technique, namely [Bmmim]6In10Q16Cl4∙(MIm)4 (Q = S (In-S), Q = Se (In-Se), Bmmim = 1-butyl-2,3-dimethylimidazolium, MIm = 1- methylimidazole). The two compounds consist of a pure inorganic discrete supertetrahedral [In10Q16Cl4]6- T3 cluster and six charge-balancing [Bmmim]+ anions. The T3 clusters could be highly dispersed in dimethyl sulfoxide (DMSO), exposing more photocatalytic active sites, which makes the highly-dispersed In-Se cluster exhibit ~5 times higher photocatalytic H2 evolution activity than that of the solid-state under visible light irradiation. Comparatively, the photocatalytic performance of the highly-dispersed In-S cluster is only slightly higher than that of the solid state, as its inferior visible-light absorption capability limits the effective utilization of photons. More importantly, through tracking the photogenerated carriers dynamics of highly-dispersed T3 clusters by ultrafast transient absorption (TA) spectroscopy, we found that the photogenerated electrons in the In-S cluster would suffer a rapid internal deactivation process under illumination, whereas the photoexcited electrons in the In-Se cluster can be captured by its surface active centers that would effectively reduce its photogenerated carrier recombination, contributing to the significantly enhanced photocatalytic activity. This work enriches the species of highly-dispersed metal-chalcogenide nanoclusters and firstly investigates the relationship between the structures and photocatalytic performances of nanoclusters by ultrafast excited-state dynamics, which is expected to promote the development of atomically precise nano-chemistry. Full article
(This article belongs to the Special Issue Heterogeneous Photocatalysts for Solar-Driven Water Splitting)
Show Figures

Figure 1

16 pages, 4492 KiB  
Article
Electrical Relaxation and Transport Properties of ZnGeP2 and 4H-SiC Crystals Measured with Terahertz Spectroscopy
by Vladimir I. Voevodin, Valentin N. Brudnyi, Yury S. Sarkisov, Xinyang Su and Sergey Yu. Sarkisov
Photonics 2023, 10(7), 827; https://doi.org/10.3390/photonics10070827 - 16 Jul 2023
Cited by 4 | Viewed by 2019
Abstract
Terahertz photoconductivity and charge carrier recombination dynamics at two-photon (ZnGeP2) and three-photon (4H-SiC) excitation were studied. Thermally annealed, high-energy electron-irradiated and Sc-doped ZnGeP2 crystals were tested. The terahertz charge carrier mobilities were extracted from both the differential terahertz transmission at [...] Read more.
Terahertz photoconductivity and charge carrier recombination dynamics at two-photon (ZnGeP2) and three-photon (4H-SiC) excitation were studied. Thermally annealed, high-energy electron-irradiated and Sc-doped ZnGeP2 crystals were tested. The terahertz charge carrier mobilities were extracted from both the differential terahertz transmission at a specified photoexcitation condition and the Drude–Smith fitting of the photoconductivity spectra. The determined terahertz charge carrier mobility values are ~453 cm2/V·s for 4H-SiC and ~37 cm2/V·s for ZnGeP2 crystals. The charge carrier lifetimes and the contributions from various recombination mechanisms were determined at different injection levels using the model, which takes into account the influence of bulk and surface Shockley–Read–Hall (SRH) recombination, interband radiative transitions and interband and trap-assisted Auger recombination. It was found that ZnGeP2 possesses short charge carrier lifetimes (a~0.01 ps−1, b~6 × 10−19 cm3·ps−1 and c~7 × 10−40 cm6·ps−1) compared with 4H-SiC (a~0.001 ps−1, b~3 × 10−18 cm3·ps−1 and c~2 × 10−36 cm6·ps−1), i.e., τ~100 ps and τ~1 ns at the limit of relatively low injection, when the contribution from Auger and interband radiative recombination is small. The thermal annealing of as-grown ZnGeP2 crystals and the electron irradiation reduced the charge carrier lifetime, while their doping with 0.01 mass % of Sc increased the charger carrier lifetime and reduced mobility. It was found that the dark terahertz complex conductivity of the measured crystals is not fitted by the Drude–Smith model with reasonable parameters, while their terahertz photoconductivity can be fitted with acceptable accuracy. Full article
(This article belongs to the Special Issue Ultrafast Optics and Applications)
Show Figures

Figure 1

9 pages, 549 KiB  
Communication
Ultrafast Charge Dynamics in Bulk Zinc Oxide under Intense Photoexcitation
by Andrea Rubano and Domenico Paparo
Photonics 2023, 10(7), 761; https://doi.org/10.3390/photonics10070761 - 1 Jul 2023
Cited by 1 | Viewed by 1861
Abstract
The photo-induced charge dynamics of textbook wide-bandgap semiconductor ZnO have been investigated on the picosecond time-scale. We performed optical Pump-THz Probe experiments in order to measure the dielectric constant of the material after high-fluence photo-excitation of charge carriers. The technique allows access to [...] Read more.
The photo-induced charge dynamics of textbook wide-bandgap semiconductor ZnO have been investigated on the picosecond time-scale. We performed optical Pump-THz Probe experiments in order to measure the dielectric constant of the material after high-fluence photo-excitation of charge carriers. The technique allows access to both carrier lifetime and scattering rates, and it provides direct access to the intrinsic dielectric function changes upon excitation. A complex dynamic is unveiled in the high-fluence pumping regime, where the relaxation time is in the hundreds of picoseconds range and increases with increasing Pump fluence, while the onset of photoconductivity takes place in a few picoseconds. The plasma frequency and the relaxation time dependence on the Pump fluence are discussed. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

11 pages, 2051 KiB  
Article
Ultrafast Studies of ZrTe3 by Transient Absorption Spectrometer
by Shakeel Ahmed, Wang Rui, Faizah Altaf, Jahanzeb Khan, Patrizia Bocchetta and Han Zhang
Materials 2022, 15(15), 5420; https://doi.org/10.3390/ma15155420 - 5 Aug 2022
Cited by 6 | Viewed by 2798
Abstract
Two-dimensional (2D) tri-TMDCs carrier dynamics provide a platform for studying excitons through Ultrafast Pump-Probe Transient Absorption Spectroscopy. Here we studied the ZrTe3 nanosheets (NTs) exciton dynamics by transient absorption (TA) spectrometer. We observed different carrier dynamics in the ZrTe3 NTs sample [...] Read more.
Two-dimensional (2D) tri-TMDCs carrier dynamics provide a platform for studying excitons through Ultrafast Pump-Probe Transient Absorption Spectroscopy. Here we studied the ZrTe3 nanosheets (NTs) exciton dynamics by transient absorption (TA) spectrometer. We observed different carrier dynamics in the ZrTe3 NTs sample at different pump powers and with many wavelengths in the transient absorption spectrometer. The shorter life decay constant is associated with electron-phonon relaxation. Similarly, the longer-life decay constant represents the long live process that is associated with charge separation. The interactions between carrier-phonons at nanoscale materials can be changed by phonons quantum confinements. The hot carrier lifetime determined the strength of carrier phonon interactions. The value of fast decay in the conduction band is due to carrier relaxation or the carrier gets trapped due to surface states or localized defects. The value of slow decay is due to the recombination of surface state and localized defects processes. The lifetime declines for long wavelengths as size decreases. Whereas, during short wavelength-independent decay, carrier characteristics have been observed. TA spectroscopy is employed to investigate insight information of the carrier’s dynamical processes such as carrier lifetime, cooling dynamics, carrier diffusion, and carrier excitations. The absorption enhanced along excitons density with the increase of pump power, which caused a greater number of carriers in the excited state than in the ground state. The TA signals consist of trap carriers and (electron-hole) constituents, which can be increased by TA changes that rely on photoexcitation and carrier properties. Full article
Show Figures

Figure 1

10 pages, 3034 KiB  
Article
Electronic Dislocation Dynamics in Metastable Wigner Crystal States
by Andrej Kranjec, Petr Karpov, Yevhenii Vaskivskyi, Jaka Vodeb, Yaroslav Gerasimenko and Dragan Mihailovic
Symmetry 2022, 14(5), 926; https://doi.org/10.3390/sym14050926 - 1 May 2022
Cited by 4 | Viewed by 2668
Abstract
Metastable states appear in many areas of physics as a result of symmetry-breaking phase transitions. An important challenge is to understand the microscopic mechanisms which lead to the formation of the energy barrier separating a metastable state from the ground state. In this [...] Read more.
Metastable states appear in many areas of physics as a result of symmetry-breaking phase transitions. An important challenge is to understand the microscopic mechanisms which lead to the formation of the energy barrier separating a metastable state from the ground state. In this paper, we describe an experimental example of the hidden metastable domain state in 1T-TaS2, created by photoexcitation or carrier injection. The system is an example of a charge density wave superlattice in the Wigner crystal limit displaying discommensurations and domain formation when additional charge is injected either through contacts or by photoexcitation. The domain walls and their crossings in particular display interesting, topologically entangled structures, which have a crucial role in the metastability of the system. We model the properties of experimentally observed thermally activated dynamics of topologically protected defects—dislocations—whose annihilation dynamics can be observed experimentally by scanning tunnelling microscopy as emergent phenomena described by a doped Wigner crystal. The different dynamics of trivial and non-trivial topological defects are quite striking. Trivial defects appear to annihilate quite rapidly at low temperatures on the timescale of the experiments, while non-trivial defects annihilate rarely, if at all. Full article
(This article belongs to the Special Issue Topological Objects in Correlated Electronic Systems)
Show Figures

Figure 1

10 pages, 2523 KiB  
Article
Charge Carrier Trapping during Diffusion Generally Observed for Particulate Photocatalytic Films
by Kenji Katayama, Tatsuya Chugenji and Kei Kawaguchi
Energies 2021, 14(21), 7011; https://doi.org/10.3390/en14217011 - 26 Oct 2021
Cited by 9 | Viewed by 2258
Abstract
Photo-excited charge carriers play a vital role in photocatalysts and photovoltaics, and their dynamic processes must be understood to improve their efficiencies by controlling them. The photo-excited charge carriers in photocatalytic materials are usually trapped to the defect states in the picosecond time [...] Read more.
Photo-excited charge carriers play a vital role in photocatalysts and photovoltaics, and their dynamic processes must be understood to improve their efficiencies by controlling them. The photo-excited charge carriers in photocatalytic materials are usually trapped to the defect states in the picosecond time range and are subject to recombination to the nanosecond to microsecond order. When photo-excited charge carrier dynamics are observed via refractive index changes, especially in particulate photocatalytic materials, another response between the trapping and recombination phases is often observed. This response has always provided the gradual increase of the refractive index changes in the nanosecond order, and we propose that the shallowly trapped charge carriers could still diffuse and be trapped to other states during this process. We examined various photocatalytic materials such as TiO2, SrTiO3, hematite, BiVO4, and methylammonium lead iodide for similar rising responses. Based on our assumption of surface trapping with diffusion, the responses were fit with the theoretical model with sufficient accuracy. We propose that these slow charge trapping processes must be included to fully understand the charge carrier dynamics of particulate photocatalytic materials. Full article
(This article belongs to the Topic Solar Thermal Energy and Photovoltaic Systems)
Show Figures

Graphical abstract

12 pages, 3942 KiB  
Article
Ultrafast Charge Generation Enhancement in Nanoscale Polymer Solar Cells with DIO Additive
by Tongchao Shi, Zeyu Zhang, Xia Guo, Zhengzheng Liu, Chunwei Wang, Sihao Huang, Tingyuan Jia, Chenjing Quan, Qian Xiong, Maojie Zhang, Juan Du and Yuxin Leng
Nanomaterials 2020, 10(11), 2174; https://doi.org/10.3390/nano10112174 - 30 Oct 2020
Cited by 7 | Viewed by 4097
Abstract
We study the ultrafast photoexcitation dynamics in PBDTTT-C-T (P51, poly(4,8-bis(5-(2-ethylhexyl)-thiophene-2-yl)-benzo[1,2-b:4,5-b′]dithiophene-alt-alkylcarbonyl-thieno[3,4-b]thiophene)) film (~100 nm thickness) and PBDTTT-C-T:PC71BM (P51:PC71BM, phenyl-C71-butyric-acid-methyl ester) nanostructured blend (∼100 nm thickness) with/without DIO(1,8-diiodooctane) additives with sub-10 fs transient absorption (TA). [...] Read more.
We study the ultrafast photoexcitation dynamics in PBDTTT-C-T (P51, poly(4,8-bis(5-(2-ethylhexyl)-thiophene-2-yl)-benzo[1,2-b:4,5-b′]dithiophene-alt-alkylcarbonyl-thieno[3,4-b]thiophene)) film (~100 nm thickness) and PBDTTT-C-T:PC71BM (P51:PC71BM, phenyl-C71-butyric-acid-methyl ester) nanostructured blend (∼100 nm thickness) with/without DIO(1,8-diiodooctane) additives with sub-10 fs transient absorption (TA). It is revealed that hot-exciton dissociation and vibrational relaxation could occur in P51 with a lifetime of ~160 fs and was hardly affected by DIO. However, the introduction of DIO in P51 brings a longer lifetime of polaron pairs, which could make a contribution to photocarrier generation. In P51:PC71BM nanostructured blends, DIO could promote the Charge Transfer (CT) excitons and free charges generation with a ~5% increasement in ~100 fs. Moreover, the dissociation of CT excitons is faster with DIO, showing a ~5% growth within 1 ps. The promotion of CT excitons and free charge generation by DIO additive is closely related with active layer nanomorphology, accounting for Jsc enhancement. These results reveal the effect of DIO on carrier generation and separation, providing an effective route to improve the efficiency of nanoscale polymer solar cells. Full article
(This article belongs to the Special Issue Nanostructured Materials for Organic Solar Cells)
Show Figures

Figure 1

29 pages, 11796 KiB  
Review
Graphene-Based Light Sensing: Fabrication, Characterisation, Physical Properties and Performance
by Adolfo De Sanctis, Jake D. Mehew, Monica F. Craciun and Saverio Russo
Materials 2018, 11(9), 1762; https://doi.org/10.3390/ma11091762 - 18 Sep 2018
Cited by 53 | Viewed by 9634
Abstract
Graphene and graphene-based materials exhibit exceptional optical and electrical properties with great promise for novel applications in light detection. However, several challenges prevent the full exploitation of these properties in commercial devices. Such challenges include the limited linear dynamic range (LDR) of graphene-based [...] Read more.
Graphene and graphene-based materials exhibit exceptional optical and electrical properties with great promise for novel applications in light detection. However, several challenges prevent the full exploitation of these properties in commercial devices. Such challenges include the limited linear dynamic range (LDR) of graphene-based photodetectors, the lack of efficient generation and extraction of photoexcited charges, the smearing of photoactive junctions due to hot-carriers effects, large-scale fabrication and ultimately the environmental stability of the constituent materials. In order to overcome the aforementioned limits, different approaches to tune the properties of graphene have been explored. A new class of graphene-based devices has emerged where chemical functionalisation, hybridisation with light-sensitising materials and the formation of heterostructures with other 2D materials have led to improved performance, stability or versatility. For example, intercalation of graphene with FeCl 3 is highly stable in ambient conditions and can be used to define photo-active junctions characterized by an unprecedented LDR while graphene oxide (GO) is a very scalable and versatile material which supports the photodetection from UV to THz frequencies. Nanoparticles and quantum dots have been used to enhance the absorption of pristine graphene and to enable high gain thanks to the photogating effect. In the same way, hybrid detectors made from stacked sequences of graphene and layered transition-metal dichalcogenides enabled a class of devices with high gain and responsivity. In this work, we will review the performance and advances in functionalised graphene and hybrid photodetectors, with particular focus on the physical mechanisms governing the photoresponse, the performance and possible future paths of investigation. Full article
(This article belongs to the Special Issue Carbon Nanomaterials: Graphene, Nanoribbons and Quantum dots)
Show Figures

Figure 1

Back to TopTop