Graphene-Based Light Sensing: Fabrication, Characterisation, Physical Properties and Performance
Abstract
:1. Introduction
2. Materials and Fabrication of Graphene-Based Photodetectors
3. Light Detection in Graphene-Based Devices
3.1. Characterisation and Figures of Merit
3.2. Photothermoelectric Effect
3.3. Photovoltaic Effect
3.4. Photogating and Gain Mechanism
4. Functionalised Graphene Photodetectors
4.1. FeCl-Intercalated Graphene Photodetectors
4.2. Graphene Oxide
4.3. Other Functionalised Graphene PDs
5. Hybrid and Heterostructure Photodetectors
5.1. Graphene/Quantum Dots and Perovskites Interfaces
5.2. Graphene/Organics Interfaces
5.3. Graphene/TMDs vdW Heterostructures
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CNP | Charge neutrality point |
EQE | External quantum efficiency |
FET | Field-effect transistor |
FG | Fluorographene |
FLG | Few-layer graphene |
GO | Graphene oxide |
hBN | Hexagonal boron nitride |
IQE | Internal quantum efficiency |
IR | infra-red |
LDR | Linear dynamic range |
LED | Light-emitting diode |
MIR | mid infra-red |
NEP | Noise equivalent power |
NIR | near infra-red |
PD(s) | Photodetector(s) |
PG | Photogating |
PSD | Posision-sensitive (photo)detector |
PTE | Photo-thermoelectric effect |
PV | Photovoltaic |
QD(s) | Quantum dot(s) |
rGO | reduced graphene oxide |
SPCM | Scanning-photocurrent map(ing) |
TMD(s) | Transition-metal dichalcogenide(s) |
UV | ultra-violet |
vdW | van der Waals |
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183. [Google Scholar] [CrossRef] [PubMed]
- Koppens, F.H.L.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nano 2014, 9, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Fei, Z.; Rodin, A.S.; Andreev, G.O.; Bao, W.; McLeod, A.S.; Wagner, M.; Zhang, L.M.; Zhao, Z.; Thiemens, M.; Dominguez, G.; et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012, 487, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T.; Xia, F.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Pospischil, A.; Furchi, M.M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.O.; Kim, S.; Shin, D.H.; Kang, S.S.; Kim, J.M.; Jang, C.W.; Joo, S.S.; Lee, J.S.; Kim, J.H.; Choi, S.H.; et al. High photoresponsivity in an all-graphene p-n vertical junction photodetector. Nat. Commun. 2014, 5, 3249. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, A.I.S.; Bointon, T.H.; Melo, L.V.; Russo, S.; de Schrijver, I.; Craciun, M.F.; Alves, H. Transparent conductive graphene textile fibers. Sci. Rep. 2015, 5, 9866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, A.I.S.; Rodrigues, D.P.; De Sanctis, A.; Torres Alonso, E.; Pereira, M.S.; Amaral, V.S.; Melo, L.V.; Russo, S.; de Schrijver, I.; Alves, H.; et al. Towards conductive textiles: coating polymeric fibres with graphene. Sci. Rep. 2017, 7, 4250. [Google Scholar] [CrossRef] [PubMed]
- Craciun, M.F.; Russo, S.; Yamamoto, M.; Tarucha, S. Tuneable electronic properties in graphene. Nano Today 2011, 6, 42–60. [Google Scholar] [CrossRef]
- Craciun, M.F.; Khrapach, I.; Barnes, M.D.; Russo, S. Properties and applications of chemically functionalized graphene. J. Phys. Condens. Matter 2013, 25, 423201. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, A.; Jones, G.F.; Wehenkel, D.J.; Bezares, F.; Koppens, F.H.L.; Craciun, M.F.; Russo, S. Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors. Sci. Adv. 2017, 3, e1602617. [Google Scholar] [CrossRef] [PubMed]
- Bointon, T.H.; Barnes, M.D.; Russo, S.; Craciun, M.F. High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition. Adv. Mater. 2015, 27, 4200–4206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bointon, T.H.; Khrapach, I.; Yakimova, R.; Shytov, A.V.; Craciun, M.F.; Russo, S. Approaching Magnetic Ordering in Graphene Materials by FeCl3 Intercalation. Nano Lett. 2014, 14, 1751–1755. [Google Scholar] [CrossRef] [PubMed]
- Khrapach, I.; Withers, F.; Bointon, T.H.; Polyushkin, D.K.; Barnes, W.L.; Russo, S.; Craciun, M.F. Novel Highly Conductive and Transparent Graphene-Based Conductors. Adv. Mater. 2012, 24, 2844–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mkhoyan, K.A.; Contryman, A.W.; Silcox, J.; Stewart, D.A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and Electronic Structure of Graphene-Oxide. Nano Lett. 2009, 9, 1058–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.T.; Burgess, J.S.; Junkermeier, C.E.; Badescu, S.C.; Reinecke, T.L.; Perkins, F.K.; Zalalutdniov, M.K.; Baldwin, J.W.; Culbertson, J.C.; Sheehan, P.E.; et al. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. [Google Scholar] [CrossRef] [PubMed]
- Alexeev, A.M.; Barnes, M.D.; Nagareddy, V.K.; Craciun, M.F.; Wright, C.D. A simple process for the fabrication of large-area CVD graphene based devices via selective in situ functionalization and patterning. 2D Mater. 2017, 4, 011010. [Google Scholar] [CrossRef]
- Bointon, T.H.; Jones, G.F.; De Sanctis, A.; Hill-Pearce, R.; Craciun, M.F.; Russo, S. Large-area functionalized CVD graphene for work function matched transparent electrodes. Sci. Rep. 2015, 5, 16464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bointon, T.H.; Russo, S.; Craciun, M.F. Is graphene a good transparent electrode for photovoltaics and display applications? IET Circuits Devices Syst. 2015, 9, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.T.; Zhang, Y.J.; Matsuhashi, Y.; Craciun, M.F.; Russo, S.; Kasahara, Y.; Morpurgo, A.F.; Iwasa, Y. Gate-Induced Superconductivity in Layered-Material-Based Electric Double Layer Transistors. J. Phys. Conf. Ser. 2012, 400, 022139. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.T.; Craciun, M.F.; Koshino, M.; Russo, S.; Kasahara, Y.; Yuan, H.T.; Shimotani, H.; Morpurgo, A.F.; Iwasa, Y. Creating Novel Transport Properties in Electric Double Layer Field Effect Transistors Based on Layered Materials. MRS Proc. 2011, 1288. [Google Scholar] [CrossRef]
- Ye, J.; Craciun, M.F.; Koshino, M.; Russo, S.; Inoue, S.; Yuan, H.; Shimotani, H.; Morpurgo, A.F.; Iwasa, Y. Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. USA 2011, 108, 13002–13006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robin, A.; Lhuillier, E.; Xu, X.Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors. Sci. Rep. 2016, 6, 24909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehew, J.D.; Unal, S.; Torres Alonso, E.; Jones, G.F.; Fadhil Ramadhan, S.; Craciun, M.F.; Russo, S. Fast and Highly Sensitive Ionic-Polymer-Gated WS2 -Graphene Photodetectors. Adv. Mater. 2017, 29, 1700222. [Google Scholar] [CrossRef] [PubMed]
- Mayorov, A.S.; Gorbachev, R.V.; Morozov, S.V.; Britnell, L.; Jalil, R.; Ponomarenko, L.A.; Blake, P.; Novoselov, K.S.; Watanabe, K.; Taniguchi, T.; et al. Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett. 2011, 11, 2396–2399. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Meric, I.; Huang, P.Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L.M.; Muller, D.A.; et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Richards, P.L. Bolometers for infrared and millimeter waves. J. Appl. Phys. 1994, 76, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Dyakonov, M.; Shur, M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices 1996, 43, 380–387. [Google Scholar] [CrossRef]
- Lundeberg, M.B.; Gao, Y.; Woessner, A.; Tan, C.; Alonso-González, P.; Watanabe, K.; Taniguchi, T.; Hone, J.; Hillenbrand, R.; Koppens, F.H.L. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 2016, 16, 204–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polyushkin, D.K.; Milton, J.; Santandrea, S.; Russo, S.; Craciun, M.F.; Green, S.J.; Mahe, L.; Winolve, C.P.; Barnes, W.L. Graphene as a substrate for plasmonic nanoparticles. J. Opt. 2013, 15, 114001. [Google Scholar] [CrossRef]
- Cai, Y.; Zhu, J.; Liu, Q.H. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers. Appl. Phys. Lett. 2015, 106, 043105. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Z.; Xu, K.; Tsang, H.K.; Xu, J.B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891. [Google Scholar] [CrossRef]
- Engel, M.; Steiner, M.; Lombardo, A.; Ferrari, A.C.; Löhneysen, H.V.; Avouris, P.; Krupke, R. Light-matter interaction in a microcavity-controlled graphene transistor. Nat. Commun. 2012, 3, 906. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef] [Green Version]
- De Sanctis, A.; Jones, G.F.; Townsend, N.J.; Craciun, M.F.; Russo, S. An integrated and multi-purpose microscope for the characterization of atomically thin optoelectronic devices. Rev. Sci. Instrum. 2017, 88, 055102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.C. Proposal of the Detectivity D** for Detectors Limited by Radiation Noise. J. Opt. Soc. Am. 1960, 50, 1058–1059. [Google Scholar] [CrossRef]
- Seebeck, T.J. Ueber die magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz. Ann. Phys. 1826, 82, 133–160. [Google Scholar] [CrossRef]
- Cutler, M.; Mott, N.F. Observation of Anderson Localization in an Electron Gas. Phys. Rev. 1969, 181, 1336–1340. [Google Scholar] [CrossRef]
- Hwang, E.H.; Rossi, E.; Das Sarma, S. Theory of thermopower in two-dimensional graphene. Phys. Rev. B 2009, 80, 235415. [Google Scholar] [CrossRef] [Green Version]
- Tielrooij, K.J.; Massicotte, M.; Piatkowski, L.; Woessner, A.; Ma, Q.; Jarillo-Herrero, P.; van Hulst, N.F.; Koppens, F.H.L. Hot-carrier photocurrent effects at graphene–metal interfaces. J. Phys. Condens. Matter 2015, 27, 164207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemme, M.C.; Koppens, F.H.L.; Falk, A.L.; Rudner, M.S.; Park, H.; Levitov, L.S.; Marcus, C.M. Gate-Activated Photoresponse in a Graphene p-n Junction. Nano Lett. 2011, 11, 4134–4137. [Google Scholar] [CrossRef] [PubMed]
- Echtermeyer, T.J.; Nene, P.S.; Trushin, M.; Gorbachev, R.V.; Eiden, A.L.; Milana, S.; Sun, Z.; Schliemann, J.; Lidorikis, E.; Novoselov, K.S.; et al. Photothermoelectric and Photoelectric Contributions to Light Detection in Metal-Graphene-Metal Photodetectors. Nano Lett. 2014, 14, 3733–3742. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Gabor, N.M.; Alden, J.S.; van der Zande, A.M.; McEuen, P.L. Photo-Thermoelectric Effect at a Graphene Interface Junction. Nano Lett. 2010, 10, 562–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabor, N.M.; Song, J.C.W.; Ma, Q.; Nair, N.L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L.S.; Jarillo-Herrero, P. Hot Carrier–Assisted Intrinsic Photoresponse in Graphene. Science 2011, 334, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Choi, S.M.; Yoon, H.A.; Choi, S.K.; Lee, J.U.; Kim, J.; Lee, S.W.; Son, Y.W.; Cheong, H. Photocurrent generation at ABA/ABC lateral junction in tri-layer graphene photodetector. Carbon 2016, 96, 454–458. [Google Scholar] [CrossRef] [Green Version]
- Withers, F.; Bointon, T.H.; Craciun, M.F.; Russo, S. All-Graphene Photodetectors. ACS Nano 2013, 7, 5052–5057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, X.; Wang, Y.; Zhao, Z.; Chen, Z.; Sun, J.L. Terahertz-induced photothermoelectric response in graphene-metal contact structures. J. Phys. D Appl. Phys. 2016, 49, 425101. [Google Scholar] [CrossRef] [Green Version]
- Bistritzer, R.; MacDonald, A.H. Electronic Cooling in Graphene. Phys. Rev. Lett. 2009, 102, 206410. [Google Scholar] [CrossRef] [PubMed]
- Song, J.C.W.; Rudner, M.S.; Marcus, C.M.; Levitov, L.S. Hot Carrier Transport and Photocurrent Response in Graphene. Nano Lett. 2011, 11, 4688–4692. [Google Scholar] [CrossRef] [PubMed]
- Song, J.C.W.; Reizer, M.Y.; Levitov, L.S. Disorder-Assisted Electron-Phonon Scattering and Cooling Pathways in Graphene. Phys. Rev. Lett. 2012, 109, 106602. [Google Scholar] [CrossRef] [PubMed]
- Tielrooij, K.J.; Song, J.C.W.; Jensen, S.A.; Centeno, A.; Pesquera, A.; Zurutuza Elorza, A.; Bonn, M.; Levitov, L.S.; Koppens, F.H.L. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 2013, 9, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zheng, H.; Wang, Q.; Cong, C.; Hu, L.; Tian, P.; Liu, R.; Zhang, S.L.; Qiu, Z.J. Competing Mechanisms for Photocurrent Induced at the Monolayer-Multilayer Graphene Junction. Small 2018, 14, 1800691. [Google Scholar] [CrossRef] [PubMed]
- Freitag, M.; Low, T.; Xia, F.; Avouris, P. Photoconductivity of biased graphene. Nat. Photonics 2012, 7, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.; Hawkes, J.F.B. Optoelectronics: An Introduction, 1st ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1942; Chapter 7. [Google Scholar]
- Sze, S.; Ng, K.K. Physics of Semiconductor Devices; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Banszerus, L.; Schmitz, M.; Engels, S.; Goldsche, M.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ballistic Transport Exceeding 28 μm in CVD Grown Graphene. Nano Lett. 2016, 16, 1387–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dresselhaus, M.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 1981, 30, 139–326. [Google Scholar] [CrossRef] [Green Version]
- Zhan, D.; Sun, L.; Ni, Z.; Liu, L.; Fan, X.; Wang, Y.; Yu, T.; Lam, Y.M.; Huang, W.; Shen, Z. FeCl3-Based Few-Layer Graphene Intercalation Compounds: Single Linear Dispersion Electronic Band Structure and Strong Charge Transfer Doping. Adv. Funct. Mater. 2010, 20, 3504–3509. [Google Scholar] [CrossRef]
- Zou, X.; Zhan, D.; Fan, X.; Lee, D.; Nair, S.K.; Sun, L.; Ni, Z.; Luo, Z.; Liu, L.; Yu, T.; et al. Ultrafast carrier dynamics in pristine and FeCl3-intercalated bilayer graphene. Appl. Phys. Lett. 2010, 97, 141910. [Google Scholar] [CrossRef]
- Torres Alonso, E.; Karkera, G.; Jones, G.F.; Craciun, M.F.; Russo, S. Homogeneously Bright, Flexible, and Foldable Lighting Devices with Functionalized Graphene Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 16541–16545. [Google Scholar] [CrossRef] [PubMed]
- Wehenkel, D.J.; Bointon, T.H.; Booth, T.; Böggild, P.; Craciun, M.F.; Russo, S. Unforeseen high temperature and humidity stability of FeCl3 intercalated few layer graphene. Sci. Rep. 2015, 5, 7609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezares, F.J.; De Sanctis, A.; Saavedra, J.R.M.; Woessner, A.; Alonso-Gonzalez, P.; Amenabar, I.; Chen, J.; Bointon, T.H.; Dai, S.; Fogler, M.M.; et al. Intrinsic Plasmon-Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study. Nano Lett. 2017, 17, 5908–5913. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.K.; Murphy, C.; Jones, G.; Barnes, M.; De Sanctis, A.; Dong-Wook, S.; Russo, S.; Craciun, M.F. Wafer scale FeCl3 intercalated graphene electrodes for photovoltaic applications. In Proceedings of the Photonics for Solar Energy Systems VII, Strasbourg, France, 21 May 2018; Volume 10688. [Google Scholar] [CrossRef]
- Patil, V.; Capone, A.; Strauf, S.; Yang, E.H. Improved photoresponse with enhanced photoelectric contribution in fully suspended graphene photodetectors. Sci. Rep. 2013, 3, 2791. [Google Scholar] [CrossRef] [PubMed]
- Mittendorff, M.; Winnerl, S.; Kamann, J.; Eroms, J.; Weiss, D.; Schneider, H.; Helm, M. Ultrafast graphene-based broadband THz detector. Appl. Phys. Lett. 2013, 103, 021113. [Google Scholar] [CrossRef]
- De Sanctis, A.; Barnes, M.D.; Amit, I.; Craciun, M.F.; Russo, S. Functionalised hexagonal-domain graphene for position-sensitive photodetectors. Nanotechnology 2017, 28, 124004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chitara, B.; Krupanidhi, S.B.; Rao, C.N.R. Solution processed reduced graphene oxide ultraviolet detector. Appl. Phys. Lett. 2011, 99, 2013–2016. [Google Scholar] [CrossRef]
- Chitara, B.; Panchakarla, L.S.; Krupanidhi, S.B.; Rao, C.N. Infrared Photodetectors Based on Reduced Graphene Oxide and Graphene Nanoribbons. Adv. Mater. 2011, 23, 5419–5424. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Cao, Y.; He, J.; Zhang, Y.; Jin, B.; Sun, J.L.; Wang, Y.; Zhao, Z. Highly conductive free-standing reduced graphene oxide thin films for fast photoelectric devices. Carbon 2017, 115, 561–570. [Google Scholar] [CrossRef]
- Ito, Y.; Zhang, W.; Li, J.; Chang, H.; Liu, P.; Fujita, T.; Tan, Y.; Yan, F.; Chen, M. 3D Bicontinuous Nanoporous Reduced Graphene Oxide for Highly Sensitive Photodetectors. Adv. Funct. Mater. 2016, 26, 1271–1277. [Google Scholar] [CrossRef]
- Qi, X.; Zou, X.; Huang, Z.; Ren, L.; Hao, G.; Liu, Y.; Wei, X.; Zhong, J. Ultraviolet, visible, and near infrared photoresponse properties of solution processed graphene oxide. Appl. Surf. Sci. 2013, 266, 332–336. [Google Scholar] [CrossRef]
- Lai, S.K.; Tang, L.; Hui, Y.Y.; Luk, C.M.; Lau, S.P. A deep ultraviolet to near-infrared photoresponse from glucose-derived graphene oxide. J. Mater. Chem. C 2014, 2, 6971–6977. [Google Scholar] [CrossRef]
- Chang-Jian, S.K.; Ho, J.R.; Cheng, J.W.J.; Hsieh, Y.P. Characterizations of photoconductivity of graphene oxide thin films. AIP Adv. 2012, 2, 022104. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Sun, Q.; Xing, J.; Zheng, Z.; Zhang, Z.; Lu, Z.; Zhao, K. Fast and Enhanced Broadband Photoresponse of a ZnO Nanowire Array/Reduced Graphene Oxide Film Hybrid Photodetector from the Visible to the Near-Infrared Range. ACS Appl. Mater. Interfaces 2015, 7, 6645–6651. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cai, W.; Long, M.; Zhou, B.; Wu, Y.; Wu, D.; Feng, Y. Synthesis of Visible-Light Responsive Graphene Oxide/TiO2 Composites with p/n Heterojunction. ACS Nano 2010, 4, 6425–6432. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Lu, W.; Ali, A.; Zhao, P.; Shehzad, K.; Guo, H.; Ma, L.; Liu, X.; Pi, X.; Wang, P.; et al. A Broadband Fluorographene Photodetector. Adv. Mater. 2017, 29, 1700463. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sekine, Y.; Suzuki, S.; Maeda, F.; Hibino, H. Photocurrent generation of a single-gate graphene p-n junction fabricated by interfacial modification. Nanotechnology 2015, 26, 385203. [Google Scholar] [CrossRef] [PubMed]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F.P.G.; Gatti, F.; Koppens, F.H.L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liu, Z.; Li, J.; Tai, G.A.; Lau, S.P.; Yan, F. Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Adv. Mater. 2012, 24, 5878–5883. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Xu, S.; Wu, Z.; Wang, N.; Loy, M.M.T.; Du, S. Oxygen-Assisted Charge Transfer Between ZnO Quantum Dots and Graphene. Small 2013, 9, 3031–3036. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Gao, J.; Chow, P.; Sun, H.; Xin, G.; Sharma, P.; Lian, J.; Koratkar, N.A.; Sawyer, S. Organic–Inorganic Heterointerfaces for Ultrasensitive Detection of Ultraviolet Light. Nano Lett. 2015, 15, 3787–3792. [Google Scholar] [CrossRef] [PubMed]
- Dang, V.Q.; Trung, T.Q.; Kim, D.I.; Duy, L.T.; Hwang, B.U.; Lee, D.W.; Kim, B.Y.; Toan, L.D.; Lee, N.E. Ultrahigh Responsivity in Graphene–ZnO Nanorod Hybrid UV Photodetector. Small 2015, 11, 3054–3065. [Google Scholar] [CrossRef] [PubMed]
- Spirito, D.; Kudera, S.; Miseikis, V.; Giansante, C.; Coletti, C.; Krahne, R. UV Light Detection from CdS Nanocrystal Sensitized Graphene Photodetectors at kHz Frequencies. J. Phys. Chem. C 2015, 119, 23859–23864. [Google Scholar] [CrossRef] [Green Version]
- Nikitskiy, I.; Goossens, S.; Kufer, D.; Lasanta, T.; Navickaite, G.; Koppens, F.H.L.; Konstantatos, G. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat. Commun. 2016, 7, 11954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, Z.; Ma, L.; Du, S.; Xu, Y.; Yuan, M.; Fang, H.; Wang, Z.; Xu, M.; Li, D.; Yang, J.; et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors. ACS Nano 2017, 11, 9854–9862. [Google Scholar] [CrossRef] [PubMed]
- Bessonov, A.A.; Allen, M.; Liu, Y.; Malik, S.; Bottomley, J.; Rushton, A.; Medina-Salazar, I.; Voutilainen, M.; Kallioinen, S.; Colli, A.; et al. Compound Quantum Dot-Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection. ACS Nano 2017, 11, 5547–5557. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kwon, J.; Hwang, E.; Ra, C.H.; Yoo, W.J.; Ahn, J.H.; Park, J.H.; Cho, J.H. High-Performance Perovskite-Graphene Hybrid Photodetector. Adv. Mater. 2015, 27, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Lu, Y.; Xu, W.; Mu, H.; Chen, C.; Qiao, H.; Song, J.; Li, S.; Sun, B.; et al. Hybrid Graphene-Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Adv. Opt. Mater. 2015, 3, 1389–1396. [Google Scholar] [CrossRef]
- Sun, Z.; Aigouy, L.; Chen, Z. Plasmonic-enhanced perovskite-graphene hybrid photodetectors. Nanoscale 2016, 8, 7377–7383. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.H.; Liu, S.Y.; Lan, Y.B.; Tsai, Y.C.; You, X.Q.; Li, C.S.; Huang, K.Y.; Chou, A.S.; Cheng, T.C.; Wang, J.K.; et al. Ultrahigh Responsivity and Detectivity Graphene-Perovskite Hybrid Phototransistors by Sequential Vapor Deposition. Sci. Rep. 2017, 7, 46281. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Lu, Y.Y.; Shih, F.Y.; Ho, P.H.; Chen, Y.F.; Chen, C.W.; Chen, Y.T.; Wang, W.H. Biologically inspired graphene-chlorophyll phototransistors with high gain. Carbon 2013, 63, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lee, E.K.; Oh, J.H. Graphene-ruthenium complex hybrid photodetectors with ultrahigh photoresponsivity. Small 2014, 10, 3700–3706. [Google Scholar] [CrossRef] [PubMed]
- Huisman, E.H.; Shulga, A.G.; Zomer, P.J.; Tombros, N.; Bartesaghi, D.; Bisri, S.Z.; Loi, M.A.; Koster, L.J.A.; Van Wees, B.J. High gain hybrid graphene-organic semiconductor phototransistors. ACS Appl. Mater. Interfaces 2015, 7, 11083–11088. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Luo, X.; Nan, H.; Guo, H.; Wang, P.; Zhang, L.; Zhou, M.; Yang, Z.; Shi, Y.; Hu, W.; et al. Epitaxial Ultrathin Organic Crystals on Graphene for High-Efficiency Phototransistors. Adv. Mater. 2016, 28, 5200–5205. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.F.; Pinto, R.M.; De Sanctis, A.; Nagareddy, V.K.; Wright, C.D.; Alves, H.; Craciun, M.F.; Russo, S. Highly Efficient Rubrene-Graphene Charge-Transfer Interfaces as Phototransistors in the Visible Regime. Adv. Mater. 2017, 29, 1702993. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T.P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Ahmed, T.; Dubey, H.; Sai, T.P.; Kashid, R.; Maliakal, S.; Hsieh, K.; Shamim, S.; Ghosh, A. Number-Resolved Single-Photon Detection with Ultralow Noise van der Waals Hybrid. Adv. Mater. 2017, 30, 1704412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chuu, C.P.; Huang, J.K.; Chen, C.H.; Tsai, M.L.; Chang, Y.H.; Liang, C.T.; Chen, Y.Z.; Chueh, Y.L.; He, J.H.; et al. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Sci. Rep. 2014, 4, 3826. [Google Scholar] [CrossRef] [PubMed]
- De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K.; et al. High Responsivity, Large-Area Graphene/MoS2 Flexible Photodetectors. ACS Nano 2016, 10, 8252–8262. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Liu, J.; Luo, H.; Chikan, V.; Wu, J.Z. Graphene/GaSe-Nanosheet Hybrid: Towards High Gain and Fast Photoresponse. Sci. Rep. 2016, 6, 19161. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Li, S.; Zhang, Y.; Ma, W.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. Near-Infrared Photodetectors Based on MoTe2/Graphene Heterostructure with High Responsivity and Flexibility. Small 2017, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Chang, Y.C.; Norris, T.B.; Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nano 2014, 9, 273–278. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, A.; Russo, S.; Craciun, M.F.; Alexeev, A.; Barnes, M.D.; Nagareddy, V.K.; Wright, C.D. New routes to the functionalization patterning and manufacture of graphene-based materials for biomedical applications. Interface Focus 2018, 8, 20170057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsin, A.; Liu, L.; Liu, P.; Deng, W.; Ivanov, I.N.; Li, G.; Dyck, O.E.; Duscher, G.; Dunlap, J.R.; Xiao, K.; et al. Synthesis of Millimeter-Size Hexagon-Shaped Graphene Single Crystals on Resolidified Copper. ACS Nano 2013, 7, 8924–8931. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Kang, J.; Banerjee, K. Characterization of FeCl3 Intercalation Doped CVD Few-Layer Graphene. IEEE Electron Device Lett. 2016, 37, 1246–1249. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Compton, O.C.; Nguyen, S.T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 2010, 6, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.B.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; An, J.; Jung, I.; Piner, R.D.; An, S.J.; Li, X.; Velamakanni, A.; Ruoff, R.S. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Lett. 2009, 9, 1593–1597. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Li, X.; Ji, R.; Teng, K.S.; Tai, G.; Ye, J.; Wei, C.; Lau, S.P. Bottom-up synthesis of large-scale graphene oxide nanosheets. J. Mater. Chem. 2012, 22, 5676–5683. [Google Scholar] [CrossRef]
- Joung, D.; Chunder, A.; Zhai, L.; Khondaker, S.I. Space charge limited conduction with exponential trap distribution in reduced graphene oxide sheets. Appl. Phys. Lett. 2010, 97, 093105. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.; Liao, M.; Sumiya, M. A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures. Sensors 2013, 13, 10482–10518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Withers, F.; Russo, S.; Dubois, M.; Craciun, M.F. Tuning the electronic transport properties of graphene through functionalisation with fluorine. Nanoscale Res. Lett. 2011, 6, 526. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.H.; Zou, K.; Okino, F.; Gutierrez, H.R.; Gupta, A.; Shen, N.; Eklund, P.C.; Sofo, J.O.; Zhu, J. Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 2010, 81, 205435. [Google Scholar] [CrossRef] [Green Version]
- Withers, F.; Bointon, T.H.; Dubois, M.; Russo, S.; Craciun, M.F. Nanopatterning of Fluorinated Graphene by Electron Beam Irradiation. Nano Lett. 2011, 11, 3912–3916. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.E.; Withers, F.; Dubois, M.; Craciun, M.F.; Russo, S. Tuning the transport gap of functionalized graphene via electron beam irradiation. New J. Phys. 2013, 15, 033024. [Google Scholar] [CrossRef] [Green Version]
- Mehew, J.D.; Barnes, M.D.; Dubois, M.; Craciun, M.F.; Russo, S. Role of defect states in functionalized graphene photodetectors. In Proceedings of the SPIE Optics + Photonics Conference, San Diego, CA, USA, 6–10 August 2017; Volume 10345. [Google Scholar] [CrossRef]
- Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E.H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Klekachev, A.; Cantoro, M.; van der Veen, M.; Stesmans, A.; Heyns, M.; De Gendt, S. Electron accumulation in graphene by interaction with optically excited quantum dots. Phys. E Low-Dimens. Syst. Nanostruct. 2011, 43, 1046–1049. [Google Scholar] [CrossRef]
- Wang, L.; Travis, J.J.; Cavanagh, A.S.; Liu, X.; Koenig, S.P.; Huang, P.Y.; George, S.M.; Bunch, J.S. Ultrathin Oxide Films by Atomic Layer Deposition on Graphene. Nano Lett. 2012, 12, 3706–3710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J.J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T.; et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 2017, 11, 366–371. [Google Scholar] [CrossRef]
- Mak, K.F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226. [Google Scholar] [CrossRef]
- Qiao, H.; Yuan, J.; Xu, Z.; Chen, C.; Lin, S.; Wang, Y.; Song, J.; Liu, Y.; Khan, Q.; Hoh, H.Y.; et al. Broadband Photodetectors Based on Graphene-Bi2Te3 Heterostructure. ACS Nano 2015, 9, 1886–1894. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, R.H. Single-photon detectors for optical quantum information applications. Nat. Photonics 2009, 3, 696–705. [Google Scholar] [CrossRef]
- Song, H.; Liu, J.; Liu, B.; Wu, J.; Cheng, H.M.; Kang, F. Two-Dimensional Materials for Thermal Management Applications. Joule 2018, 2, 442–463. [Google Scholar] [CrossRef]
- Aslan, O.B.; Chenet, D.A.; Van Der Zande, A.M.; Hone, J.C.; Heinz, T.F. Linearly Polarized Excitons in Single- and Few-Layer ReS2 Crystals. ACS Photonics 2016, 3, 96–101. [Google Scholar] [CrossRef]
- De Sanctis, A.; Amit, I.; Hepplestone, S.P.; Craciun, M.F.; Russo, S. Strain-engineered inverse charge- funnelling in layered semiconductors. Nat. Commun. 2018, 9, 1652. [Google Scholar] [CrossRef] [PubMed]
Quantity | Symbol | Definition a | Units |
---|---|---|---|
External Quantum Efficiency | , EQE | % | |
Internal Quantum Efficiency | , IQE | % | |
Operating Bandwidth | — | ||
Gain | G | - | |
Responsivity | A/W (V/W) | ||
Noise Equivalent Power | NEP | W | |
Specific Detectivity | cm/W | ||
Linear Dynamic Range | LDR | dB |
Ref. | Type/Functional. | Response | (A/W) | (Hz) | (Jones) | (nm) a | LDR (dB) |
---|---|---|---|---|---|---|---|
Pristine graphene | |||||||
[4] | Interdigitated | PTE | b | 1500 | |||
[68] | Suspended | PTE/PV | 10 | b | 540 | 24 | |
[45] | Dual-gated | PTE | − | − | 532 | − | |
[69] | Log-antenna | PTE | − | 30 –220 | − | ||
Functionalised graphene | |||||||
[14] | FeCl | PV | (0.015–0.1) | 700 | b | 375–10,000 | 44 |
[70] | FeCl | PV | − | − | 375 | − | |
[71] | GO/rGO | PV | − | 360 | − | ||
[72] | GO/rGO | PV | − | 1550 | − | ||
[73] | GO/rGO | PV | –1.4 | 2–2.5 | − | 375–118.6 | 7–11 |
[74] | 3D np-rGO | PV | – | − | 370–895 | 4 | |
[75] | GO/NaSo | PV | (17.5–95.8) | 2–50 | − | 455–980 | − |
[76] | GO | PV | –1 | 375–1610 | 25 | ||
[77] | GO | PV | – | − | 1064 | − | |
[78] | rGO/ZnO | PV | –3 | − | 532–1064 | 11 | |
[79] | rGO/TiO | PV | − | − | >400 | − | |
[80] | FG | PG | 1000–10 | 3 | –1 | 255–4290 | 4 |
[81] | BTS/ATS SAMs | PTE | 100 | − | 532 | 15 | |
QDs, Organics and heterostructures | |||||||
[82] | PbS QDs | PG | 10 | 600–1750 | b | ||
[83] | PbS QDs | PG | − | 895 | − | ||
[84] | ZnO QDs | PG | − | − | 325 | − | |
[85] | ZnO QDs | PG | 335 | 36 b | |||
[86] | ZnO QDs | PG | − | − | 326 | − | |
[87] | CdS NPs | PG | 1000 | 349 | − | ||
[27] | CdSe/CdS NPs | PG | 10 | 10 | 532–800 | − | |
[88] | PbS QDs/ITO | PG/PD | 635–1600 | 110 | |||
QDs, Organics and heterostructures | |||||||
[89] | Si QDs | PG | 0.1–2 | − | – | 375-3900 | − |
[90] | PbS QDs/MAPbI3 | PG | 100 | 400–1500 | 24 | ||
[91] | MAPbI | PG | 18–180 | 4 | 400–1000 | − | |
[92] | MAPbBrI | PG | − | 405–633 | − | ||
[93] | MAPbI + Au NPs | PG | − | 532 | |||
[94] | MAPbI | PG | b | 450–700 | − | ||
[95] | Chlorophyll | PG | − | 400–700 | − | ||
[96] | Ruthenium | PG | − | 450 | − | ||
[97] | P3HT | PG | − | 500 | − | ||
[98] | C-BTBT | PG | 14 | − | 355 | − | |
[99] | Rubrene | PG | 400–600 | − | |||
[100] | MoS | PG | − | − | 635 | − | |
[101] | MoS | PG | − | 609 | − | ||
[102] | MoS | PG | − | − | 650 | − | |
[103] | MoS | PG | 46 | − | − | 642 | − |
[104] | GaSe | PG | 35 | 532 | − | ||
[105] | MoTe | PG | 970 | 1064 | − | ||
[28] | WS | PG | 1500 | 400–700 | 12 | ||
[106] | Tunnel barrier | PG | – | 35 | − | 532–3200 | − |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Sanctis, A.; Mehew, J.D.; Craciun, M.F.; Russo, S. Graphene-Based Light Sensing: Fabrication, Characterisation, Physical Properties and Performance. Materials 2018, 11, 1762. https://doi.org/10.3390/ma11091762
De Sanctis A, Mehew JD, Craciun MF, Russo S. Graphene-Based Light Sensing: Fabrication, Characterisation, Physical Properties and Performance. Materials. 2018; 11(9):1762. https://doi.org/10.3390/ma11091762
Chicago/Turabian StyleDe Sanctis, Adolfo, Jake D. Mehew, Monica F. Craciun, and Saverio Russo. 2018. "Graphene-Based Light Sensing: Fabrication, Characterisation, Physical Properties and Performance" Materials 11, no. 9: 1762. https://doi.org/10.3390/ma11091762
APA StyleDe Sanctis, A., Mehew, J. D., Craciun, M. F., & Russo, S. (2018). Graphene-Based Light Sensing: Fabrication, Characterisation, Physical Properties and Performance. Materials, 11(9), 1762. https://doi.org/10.3390/ma11091762