Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (237)

Search Parameters:
Keywords = phase-lead compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5151 KiB  
Article
An Adaptive Bandpass Full-Order Observer with a Compensated PLL for Sensorless IPMSMs
by Qiya Wu, Jia Zhang, Dongyi Meng, Ye Liu and Lijun Diao
Actuators 2025, 14(8), 387; https://doi.org/10.3390/act14080387 - 4 Aug 2025
Abstract
Model-based sensorless control of interior permanent-magnet synchronous motors (IPMSMs) typically employs an estimation observer with embedded position information, followed by a position extraction process. Although a type-2 phase-locked loop (PLL) is widely adopted for position and speed extraction, it suffers from steady-state tracking [...] Read more.
Model-based sensorless control of interior permanent-magnet synchronous motors (IPMSMs) typically employs an estimation observer with embedded position information, followed by a position extraction process. Although a type-2 phase-locked loop (PLL) is widely adopted for position and speed extraction, it suffers from steady-state tracking errors under variable-speed operation, leading to torque bias in IPMSM torque control. To mitigate this issue, this paper first proposes an adaptive bandpass full-order observer in the stationary reference frame. Subsequently, a Kalman filter (KF)-based compensation strategy is introduced for the PLL to eliminate tracking errors while maintaining system stability. Experimental validation on a 300 kW platform confirms the effectiveness of the proposed sensorless torque control algorithm, demonstrating significant reductions in position error and torque fluctuations during acceleration and deceleration. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

24 pages, 5071 KiB  
Systematic Review
Kinematic Biomarkers of Limb Shortening and Compensations in Hemiparetic Gait: A Systematic Review
by Emmeline Montané, Lucille Lopez, Marino Scandella, David Gasq and Camille Cormier
Sensors 2025, 25(15), 4598; https://doi.org/10.3390/s25154598 - 25 Jul 2025
Viewed by 235
Abstract
Background: Hemiparetic gait is characterized by reduced limb shortening during swing, increasing the risk of tripping and leading to compensatory strategies. Despite 3D gait analysis being the gold standard for gait assessment, there is no consensus on relevant kinematic biomarkers for limb shortening [...] Read more.
Background: Hemiparetic gait is characterized by reduced limb shortening during swing, increasing the risk of tripping and leading to compensatory strategies. Despite 3D gait analysis being the gold standard for gait assessment, there is no consensus on relevant kinematic biomarkers for limb shortening and compensatory movements. Methods: Systematic review querying five databases (PubMed, Cochrane, Scopus, PEDro, and Web of Science). We included articles that described at least one kinematic biomarker of the lower limb in the sagittal plane and at least one biomarker of the lower limb or pelvis in the transversal or frontal plane, or pelvis in the sagittal plane. Then, we collected kinematic biomarkers from these studies and identified those that seemed relevant to describe limb shortening and compensatory movements during the swing phase. Results: We included 40 studies and collected 385 biomarkers. Among them, 15 described limb shortening, 22 compensations, and 3 toe clearance. Analysis of 12 interventional studies showed that some biomarkers of shortening and compensation were more sensitive to change than others. Conclusions: This review highlights the lack of standardized description for limb shortening and compensatory movements in hemiparetic gait. A set of 13 relevant biomarkers is proposed to improve the interpretation of gait analysis and support consistent evaluation of therapeutic interventions. Full article
(This article belongs to the Special Issue Sensors for Human Movement Recognition and Analysis)
Show Figures

Figure 1

24 pages, 6608 KiB  
Article
The Link Between Left Atrial Longitudinal Reservoir Strain and Mitral Annulus Geometry in Patients with Dilated Cardiomyopathy
by Despina-Manuela Toader, Alina Paraschiv, Diana Ruxandra Hădăreanu, Maria Iovănescu, Oana Mirea, Andreea Vasile and Alina-Craciun Mirescu
Biomedicines 2025, 13(7), 1753; https://doi.org/10.3390/biomedicines13071753 - 17 Jul 2025
Viewed by 238
Abstract
Background/Objectives: Anatomical and functional damage of the mitral valve (MV) apparatus in patients with dilated cardiomyopathy (DCM) is secondary to left ventricular (LV) injury, leading to functional mitral regurgitation (FMR). Real-time four-dimensional echocardiography (RT 4DE) is a useful imaging technique in different [...] Read more.
Background/Objectives: Anatomical and functional damage of the mitral valve (MV) apparatus in patients with dilated cardiomyopathy (DCM) is secondary to left ventricular (LV) injury, leading to functional mitral regurgitation (FMR). Real-time four-dimensional echocardiography (RT 4DE) is a useful imaging technique in different pathologies, including DCM. Left atrial (LA) strain, as measured by left atrium quantification software, is an accurate technique for evaluating increased filling pressure. The MV has a complex three-dimensional morphology and motion. Four-dimensional echocardiography (4DE) has revolutionized clinical imaging of the mitral valve apparatus. This study aims (1) to characterize the mitral annulus (MA) parameters in patients with DCM and advanced-stage heart failure (HF) according to etiology and (2) to find correlations between left atrial function and MA remodeling in this group of patients, using 4DE quantification software. Methods: A total of 82 patients with DCM and an LV ejection fraction ≤ 40% were recruited. Conventional 2DE and RT 4DE were conducted in DCM patients with a compensated phase of HF before discharge. The measured parameters were left atrial reservoir strain (LASr), annular area (AA), annular perimeter (AP), anteroposterior diameter (A-Pd), posteromedial to anterolateral diameter (PM-ALd), commissural distance (CD), interregional distance (ITD), annular height (AH), nonplanar angle (NPA), tenting height (TH), tenting area (TA), and tenting volume (TV). Results: Measured parameters revealed more advanced damage of LA and MA parameters in ischemic compared to nonischemic etiology. Univariate analysis identified AA, AP, A-Pd, PM-ALd, CD, ITD, TH, TA, and TV (p < 0.0001) as determinants of LASr. Including these parameters in a stepwise multivariate logistic regression, PM-ALd (p = 0.03), TH (p = 0.043), and TV (p = 0.0001) were the best predictors of LAsr in these patients. Conclusions: The results of this study revealed the correlation between LA function depression and MA remodeling in patients with DCM. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

24 pages, 3638 KiB  
Article
Digital Control of an Inverted Pendulum Using a Velocity-Controlled Robot
by Marco Costanzo, Raffaele Mazza and Ciro Natale
Machines 2025, 13(6), 528; https://doi.org/10.3390/machines13060528 - 17 Jun 2025
Viewed by 402
Abstract
This research article tackles the control problem of an inverted pendulum, also known as the Furuta pendulum, mounted on a velocity-controlled robot manipulator in two configurations: the rotary pendulum and the translational pendulum. Differently from most of the existing control architectures where the [...] Read more.
This research article tackles the control problem of an inverted pendulum, also known as the Furuta pendulum, mounted on a velocity-controlled robot manipulator in two configurations: the rotary pendulum and the translational pendulum. Differently from most of the existing control architectures where the motor actuating the pendulum motion is torque-controlled, the proposed control architecture exploits the inner velocity loop usually available on industrial robots, thus easing the implementation of an inverted pendulum. Another aspect investigated in this paper and mostly overlooked in the literature is the digital implementation of the control and, specifically, the latency introduced by the digital controller. The proposed control solution explicitly models such effects in the control design phase, improving the closed-loop performance. The additional novelty introduced by this paper is the friction compensation that is essential in the swing-up phase of the inverted pendulum, whereas classical control strategies for the nonlinear swing-up usually neglect this effect, and their solutions lead to control failures in practical systems. This paper presents detailed modeling and experimental identification phases followed by the control design of both the nonlinear swing-up algorithm and the linear stabilization controller, both experimentally validated on a Meca500 robotic arm controlled via an EtherCAT communication protocol by a mini PC featuring a Xenomai real-time operating system. The overall system showcases the potential of high-performance digital control systems in industrial robotic applications. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

20 pages, 2790 KiB  
Article
Model Tests of the Influence of Excavation Unloading and Servo Loading on Subway Foundation Pits
by Gang Wei, Weihao Feng, Xuehua Wu, Pengfei Wu, Kuan Chang, Hang Li, Shuaihua Ye and Zhe Wang
Buildings 2025, 15(12), 2054; https://doi.org/10.3390/buildings15122054 - 15 Jun 2025
Cited by 1 | Viewed by 313
Abstract
In deep foundation pit engineering, the rational arrangement of internal struts plays a crucial role in controlling diaphragm wall displacement and minimizing environmental impacts. This study investigates the effects of servo steel struts through model tests, analyzing diaphragm wall displacement, bending moment, surface [...] Read more.
In deep foundation pit engineering, the rational arrangement of internal struts plays a crucial role in controlling diaphragm wall displacement and minimizing environmental impacts. This study investigates the effects of servo steel struts through model tests, analyzing diaphragm wall displacement, bending moment, surface settlement, and surrounding soil pressure during both excavation and active servo control phases. The results show that installing servo struts near the pit bottom significantly improves deformation control, whereas strut placement in shallow zones more effectively mitigates surface settlement. The servo system dynamically adjusts strut displacements, thereby inducing internal force redistribution in the diaphragm wall and modifying the stress field in surrounding soils. This mechanism leads to an increase in positive bending moments on the wall’s backside, which may necessitate the localized reinforcement of the diaphragm wall at servo strut connections to ensure structural integrity. The lateral wall and surrounding soil pressure exhibit further increase, effectively compensating for the pressure loss induced by excavation unloading. Notably, the influence on soil pressure demonstrates a dissipating trend with an increasing distance from the excavation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 5570 KiB  
Article
Influence of Mineral Powder Content and Gradation on the Aging and High-Temperature Rheological Properties of Styrene-Butadiene-Styrene (SBS) Modified Asphalt
by Chengwei Xing, Zhibin Chang, Bohan Zhu, Tian Jin, Qing Ma and Jie Wang
Materials 2025, 18(12), 2785; https://doi.org/10.3390/ma18122785 - 13 Jun 2025
Viewed by 380
Abstract
This paper aims to explore the influences of the content and gradation of mineral powder on the rheological properties of styrene-butadiene-styrene (SBS) modified asphalt mastic at different aging stages and temperatures. In the experiment, SBS modified asphalt mastic samples with different powder-to-binder ratios [...] Read more.
This paper aims to explore the influences of the content and gradation of mineral powder on the rheological properties of styrene-butadiene-styrene (SBS) modified asphalt mastic at different aging stages and temperatures. In the experiment, SBS modified asphalt mastic samples with different powder-to-binder ratios (0.6, 0.8, and 1.0) and different mineral powder gradations (500 mesh passing rates of 76.89% and 100%) were prepared. Following aging periods of 5, 25, and 45 h in the pressure aging vessel (PAV), the asphalt underwent comprehensive rheological characterization using a dynamic shear rheometer (DSR). The research shows that mineral powder can boost mastic’s deformation resistance and elastic effect. When aged by PAV for 45 h, the powder-to-binder ratio increased from 0.6 to 1.0, and its complex modulus increased by nearly 2.5 times at 58 °C. For SBS modified asphalt mastic of PAV 0 h, the powder-to-binder ratio increased from 0.6 to 1.0 and its phase angle was reduced from 59.6 to 53.2, which indicated that the elasticity of mastic was improved. However, this accelerated the degradation rate of SBS, making the aging process more complex. Fine-grained mineral powder is more effective in enhancing mastic’s deformation resistance than coarse-grained mineral powder. The fine-graded mastic had better rutting resistance after 45 h of aging than after 25 h of aging because the mineral powder compensated for the SBS loss-induced elasticity reduction. Smaller mineral powder particles lead to better a mastic anti-aging effect. After 45 h of aging, fine-grained mineral powder offered a better elastic effect. But the ways in which mineral powder and SBS boost mastic elasticity differ greatly. The results of this study provide a reference for optimizing the design of asphalt mixtures. Full article
Show Figures

Figure 1

11 pages, 1885 KiB  
Article
Anomalous Nonlinear Optical Effects by Intensity-Dependent Phase-Variation Compensation in Photonic Crystals Containing Hyperbolic Metamaterials
by Xiangting Yu, Haoyuan Qin, Junyang Li, Hong Chen, Xudong Li, Fen Liu, Tongbiao Wang, Guang Lu and Guiqiang Du
Nanomaterials 2025, 15(12), 903; https://doi.org/10.3390/nano15120903 - 11 Jun 2025
Viewed by 483
Abstract
We theoretically investigated two types of nonlinear optical effects of photonic band edges (PBEs) in photonic crystals containing hyperbolic metamaterial (HMM) based on the intensity-dependent phase-variation compensation, where the HMM is composed of alternating the noble metal Ag with large-nonlinear-coefficient and dielectric material. [...] Read more.
We theoretically investigated two types of nonlinear optical effects of photonic band edges (PBEs) in photonic crystals containing hyperbolic metamaterial (HMM) based on the intensity-dependent phase-variation compensation, where the HMM is composed of alternating the noble metal Ag with large-nonlinear-coefficient and dielectric material. Considering nonlinear conditions, the local field strength variation in nonlinear materials with the increase in the incident angle will lead to the movement of the PBE, resulting in two anomalous optical nonlinear effects. When the PBE is angle-independent under the linear condition, the PCs have angle-sensitive optical bistability and the critical threshold intensity always increases. However, if the PBE is designed to have angle dependence under linear conditions, the optical bistability in the PC can be angle-independent, and the critical threshold intensity is angle-independent over a wide range. This research provides important reference values for manufacturing direction-selectable devices that utilize different kinds of nonlinear optical effects. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

21 pages, 951 KiB  
Article
Bit Synchronization-Assisted Frequency Correction in Low-SNR Wireless Systems
by Junfeng Gao, Peiji Yang, Shaoxiang Chen, Zhenghua Luo, Yilin Zhang and Tao Liu
Electronics 2025, 14(12), 2319; https://doi.org/10.3390/electronics14122319 - 6 Jun 2025
Viewed by 354
Abstract
In wireless communication systems, traditional frequency synchronization methods struggle to effectively track carrier frequency in low signal-to-noise ratio (SNR) environments, leading to degraded demodulation performance and severely impacting the stability and reliability of communication systems. To address this challenge, an innovative frequency synchronization [...] Read more.
In wireless communication systems, traditional frequency synchronization methods struggle to effectively track carrier frequency in low signal-to-noise ratio (SNR) environments, leading to degraded demodulation performance and severely impacting the stability and reliability of communication systems. To address this challenge, an innovative frequency synchronization framework is introduced, enhancing frequency synchronization accuracy and robustness in low-SNR environments through bit synchronization techniques. Specifically, the approach constructs a “bit synchronization-frequency synchronization” joint correction mechanism, where clock offset information extracted during the bit synchronization process is utilized to estimate frequency offset. This method enables an indirect measurement and compensation of carrier frequency offset, forming a hierarchical error compensation system. Furthermore, to overcome the limited convergence speed of the classical Gardner algorithm under significant phase offset conditions, an improved error feedback structure is proposed, accelerating bit synchronization convergence and reducing timing synchronization errors, thereby enhancing overall system performance. The effectiveness of the proposed method is validated through theoretical analysis and simulation experiments. Simulation results demonstrate that, compared to conventional frequency synchronization schemes, the proposed method achieves higher frequency correction accuracy in low-SNR scenarios, thereby improving the robustness and anti-interference capability of wireless communication systems in complex environments. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

35 pages, 3914 KiB  
Article
Analyzing the Effective Contributions of Local Governments in Promoting Regional Sustainable Development: Evidence from Hainan, China
by Xiaolin Xu and Hezhen Yang
Sustainability 2025, 17(11), 5173; https://doi.org/10.3390/su17115173 - 4 Jun 2025
Viewed by 648
Abstract
Based on the framework of the United Nations 2030 Agenda for Sustainable Development, this study takes Hainan Province of China as a typical case. It evaluates a comprehensive sustainable development assessment system covering six dimensions: economic development, social welfare, resources and environment, consumption [...] Read more.
Based on the framework of the United Nations 2030 Agenda for Sustainable Development, this study takes Hainan Province of China as a typical case. It evaluates a comprehensive sustainable development assessment system covering six dimensions: economic development, social welfare, resources and environment, consumption and emission, governance and protection, and agricultural development through the entropy method. It quantifies the sustainable development levels of the entire province from 2015 to 2023 and of 18 cities and counties in 2023 using cluster analysis. It also analyzes the mechanism of the local government’s role through policy text analysis. The study shows that, firstly, the comprehensive sustainable development level of Hainan Province has been steadily rising. Economic development, social welfare, resources and environment, and consumption and emission have generally improved, but the governance and protection and agricultural development indicators have shown significant phased fluctuations. Secondly, in 2023, the sustainable development levels of cities and counties in Hainan Province presented a “stepwise distribution” spatial differentiation feature. Central cities such as Haikou and Sanya have developed ahead, while the development in the central and western regions has been relatively moderate. Thirdly, local governments have achieved multi-dimensional goal coordination through policies such as industrial structure optimization and ecological compensation mechanisms. The study suggests that while strengthening the leading role of local governments, it is necessary to build a multi-party collaborative mechanism involving enterprises, social organizations, and the public to address the regional imbalance in the implementation of SDGs. Full article
Show Figures

Figure 1

23 pages, 7419 KiB  
Article
Improved Discrete-Time Active Disturbance Rejection Control for Enhancing Dynamics of Current Loop in LC-Filtered SPMSM Drive System
by Zibo Li, Haitao Yang, Jin Wang, Yali Wang and Libing Zhou
Energies 2025, 18(11), 2894; https://doi.org/10.3390/en18112894 - 30 May 2025
Viewed by 492
Abstract
Active disturbance rejection control is implemented in a LC-filtered surface-mounted permanent magnet synchronous motor (SPMSM) drive system to enhance current control dynamics. However, the combined effects of computation one-beat delay and the pulse-width modulation zero-order hold (ZOH) effect significantly degrade system stability and [...] Read more.
Active disturbance rejection control is implemented in a LC-filtered surface-mounted permanent magnet synchronous motor (SPMSM) drive system to enhance current control dynamics. However, the combined effects of computation one-beat delay and the pulse-width modulation zero-order hold (ZOH) effect significantly degrade system stability and dynamic performance. To address these limitations, an improved predictive extended state observer (ESO) with an accurate ZOH discretization method is proposed to ensure fast and robust dynamic performance. The predictive ESO predicts one beat to compensate for the delay effect, while the ZOH discretization yields a more precise discrete dynamic model of the system. These combined improvements substantially enhance the system’s phase and gain margins, leading to superior dynamic performance. Furthermore, a discrete-domain transfer function of the control system is analytically derived, with the control parameters systematically designed using frequency-domain analysis to guarantee robust performance. Experimental validation on a LC-filtered SPMSM drive system demonstrates remarkable enhancement in current control dynamics while maintaining sufficient robustness. Full article
Show Figures

Figure 1

17 pages, 3817 KiB  
Article
Study of Adaptive Frequency Compensated Droop Control for Microgrid Inverters
by Li Fang, Hanzhong Liu and Zhou Fang
Processes 2025, 13(6), 1626; https://doi.org/10.3390/pr13061626 - 22 May 2025
Viewed by 598
Abstract
In distributed microgrid systems, inverters serve as the core components when distributed generation (DG) modules are integrated into the grid. Traditional inverters typically employ droop control; however, they lack damping and inertia mechanisms. Consequently, fluctuations in the grid frequency and voltage occur when [...] Read more.
In distributed microgrid systems, inverters serve as the core components when distributed generation (DG) modules are integrated into the grid. Traditional inverters typically employ droop control; however, they lack damping and inertia mechanisms. Consequently, fluctuations in the grid frequency and voltage occur when system loads change, leading to a suboptimal power distribution. To address these limitations, this paper introduces an adaptive strategy into conventional droop control. Based on an adaptive algorithm, the real and reactive power are dynamically computed. Through coordinate transformation, decoupled control, and adaptive frequency compensation, the inverter’s output frequency and voltage are effectively regulated. By adjusting the reference current in a dual-loop control scheme, the active and reactive power distribution is optimized. Additionally, an improved adaptive algorithm is developed to compute the inverter’s AC frequency compensation, enabling the self-adaptive adjustment of the PI controller’s output. This facilitates frequency compensation in droop control, ensuring that the inverter’s output current and voltage remain synchronized with the grid phase, thereby enhancing grid stability during connection. Finally, the feasibility of the proposed algorithm is validated through Simulink simulations. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

26 pages, 4351 KiB  
Article
Practical Aspects of the Analysis of Thermal Dissociation and Pyrolysis Processes in Terms of Transition State Theory
by Andrzej Mianowski and Mateusz Szul
Energies 2025, 18(10), 2619; https://doi.org/10.3390/en18102619 - 19 May 2025
Viewed by 357
Abstract
The practical implementation of transition state theory (TST) commonly assumes equivalence between theoretical and experimentally determined rate constants, represented by Arrhenius parameters—the activation energy and pre-exponential factor. Here, we employed the General Rate Equation (GRE) to analyse solid–gas-phase thermolysis in two paradigms: mass [...] Read more.
The practical implementation of transition state theory (TST) commonly assumes equivalence between theoretical and experimentally determined rate constants, represented by Arrhenius parameters—the activation energy and pre-exponential factor. Here, we employed the General Rate Equation (GRE) to analyse solid–gas-phase thermolysis in two paradigms: mass loss (e.g., calcite decomposition) and mass gain (e.g., methane pyrolysis leading to solid carbon formation). By partitioning the Gibbs free energy of activation into forwards and reverse contributions, plus an additional term accounting for concurrent physical phenomena (notably nucleation and diffusion-viscosity effects), we derived an empirical universal expression relating both Arrhenius parameters and G+ across 500–1500 K. We further demonstrate the utility of the isokinetic temperature for interpreting cases where only Kinetic Compensation or Enthalpy–Entropy Compensation effects are observed. This framework unifies kinetic and thermodynamic descriptions of complex thermolysis processes. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

18 pages, 5335 KiB  
Article
Surface Reflection Suppression Method for Air-Coupled SFCW GPR Systems
by Primož Smogavec and Dušan Gleich
Remote Sens. 2025, 17(10), 1668; https://doi.org/10.3390/rs17101668 - 9 May 2025
Viewed by 632
Abstract
Air-coupled ground penetrating radar (GPR) systems are widely used for subsurface imaging in demining, geological surveys, and infrastructure assessment applications. However, strong surface reflections can introduce interference, leading to receiver saturation and reducing the clarity of subsurface features. This paper presents a novel [...] Read more.
Air-coupled ground penetrating radar (GPR) systems are widely used for subsurface imaging in demining, geological surveys, and infrastructure assessment applications. However, strong surface reflections can introduce interference, leading to receiver saturation and reducing the clarity of subsurface features. This paper presents a novel surface reflection suppression algorithm for stepped-frequency continuous wave (SFCW) GPR systems. The proposed method estimates the surface reflection component and applies phase-compensated subtraction at the receiver site, effectively suppressing background reflections. A modular SFCW radar system was developed and tested in a laboratory setup simulating a low-altitude airborne deployment to validate the proposed approach. B-scan and time-domain analyses demonstrate significant suppression of surface reflections, improving the visibility of subsurface targets. Unlike previous static echo cancellation methods, the proposed method performs on-board pre-downconversion removal of surface clutter that compensates for varying ground distance, which is a unique contribution of this work. Full article
Show Figures

Figure 1

35 pages, 12343 KiB  
Article
Low Signal-to-Noise Ratio Optoelectronic Signal Reconstruction Based on Zero-Phase Multi-Stage Collaborative Filtering
by Xuzhao Yang, Hui Tian, Fan Wang, Jinping Ni and Rui Chen
Sensors 2025, 25(9), 2758; https://doi.org/10.3390/s25092758 - 27 Apr 2025
Viewed by 620
Abstract
The Laser Light Screen System faces critical technical challenges in high-speed, long-range target detection: when a target passes through the light screen, weak light flux variations lead to significantly degraded signal-to-noise ratios (SNRs). Traditional signal processing algorithms fail to effectively suppress phase distortion [...] Read more.
The Laser Light Screen System faces critical technical challenges in high-speed, long-range target detection: when a target passes through the light screen, weak light flux variations lead to significantly degraded signal-to-noise ratios (SNRs). Traditional signal processing algorithms fail to effectively suppress phase distortion and boundary effects under extremely low SNR conditions, creating a technical bottleneck that severely constrains system detection performance. To address this problem, this paper proposes a Multi-stage Collaborative Filtering Chain (MCFC) signal processing framework incorporating three key innovations: (1) the design of zero-phase FIR bandpass filtering with forward–backward processing and dynamic phase compensation mechanisms to effectively suppress phase distortion; (2) the implementation of a four-stage cascaded collaborative filtering strategy, combining adaptive sampling and anti-aliasing techniques to significantly enhance signal quality; and (3) the development of a multi-scale adaptive transform algorithm based on fourth-order Daubechies wavelets to achieve high-precision signal reconstruction. The experimental results demonstrate that under −20 dB conditions, the method achieves a 25 dB SNR improvement and boundary artifact suppression while reducing the processing time from 0.42 to 0.04 s. These results validate the proposed method’s effectiveness in high-speed target detection under low SNR conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

28 pages, 5163 KiB  
Article
Design of High-Pass and Low-Pass Active Inverse Filters to Compensate for Distortions in RC-Filtered Electrocardiograms
by Dobromir Dobrev, Tatyana Neycheva, Vessela Krasteva and Irena Jekova
Technologies 2025, 13(4), 159; https://doi.org/10.3390/technologies13040159 - 15 Apr 2025
Viewed by 2123
Abstract
Distortions of electrocardiograms (ECGs) caused by mandatory high-pass and low-pass analog RC filters in ECG devices are always present. The fidelity of the ECG waveform requires limiting the RC cutoff frequencies of the diagnostic (0.05–150 Hz) and monitoring systems (0.5–40 Hz). However, the [...] Read more.
Distortions of electrocardiograms (ECGs) caused by mandatory high-pass and low-pass analog RC filters in ECG devices are always present. The fidelity of the ECG waveform requires limiting the RC cutoff frequencies of the diagnostic (0.05–150 Hz) and monitoring systems (0.5–40 Hz). However, the use of fixed frequency bands is a compromise between enhanced noise immunity and ECG distortions. This study aims to propose active inverse high-pass and low-pass filters which are able to compensate for distortions in digital recordings of RC-filtered ECGs, thereby overcoming the limitations imposed by analog filtering. A new straightforward design of an inverse high-pass filter (IHPF) uses an integrator as the forward-path gain block, with a feedback loop containing an active digital filter equivalent to the analog RC high-pass filter. In contrast, the inverse low-pass filter (ILPF) employs a constant-gain block in the forward path to ensure stability and prevent phase delay, while its feedback path features an active digital counterpart of the RC low-pass filter. Second-order inverse filters are created by cascading two first-order stages. The proposed filters were validated according to essential performance requirements for electrocardiographs. The low-frequency (impulse) responses of IHPFs with cutoff frequencies of 0.05–5 Hz exhibit no overshoot and undershoot by magnitudes of 0.1–25 µV, well within the ±100 µV compliance limit defined for a test rectangular pulse (3 mV, 100 ms). The high-frequency responses of ILPFs with cutoff frequencies of 10–150 Hz present a relative amplitude drop of only 0.2–2.5%, far below the 10% limit for peak amplitude reduction of a triangular pulse (1.5 mV) with 20 ms vs. 200 ms widths. For any of the eight ECG leads (I, II, and V1–V6) available in the standard signal (ANE20000), the IHPF (0.05–5 Hz) presents ST-segment deviations <5 μV (within the ±25 μV limit) and R- and S-peak deviations <±3.5% (within the ±5% limit). The ILPF (10–150 Hz) preserves R- and S-peak amplitudes with deviations less than −1%. Diagnostic-level recovery of ECG waveforms distorted by first- and second-order analog RC filters in ECG devices is possible with the innovative and comprehensive inverse filter design presented in this study. This approach offers a significant advancement in ECG signal processing, effectively restoring essential waveform components even after aggressive, noise-robust analog filtering in ECG acquisition circuits. Although validated for ECG signals, the proposed inverse filters are also applicable to other biosignal front-end circuits employing RC coupling. Full article
(This article belongs to the Special Issue Digital Data Processing Technologies: Trends and Innovations)
Show Figures

Figure 1

Back to TopTop