The Link Between Left Atrial Longitudinal Reservoir Strain and Mitral Annulus Geometry in Patients with Dilated Cardiomyopathy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Echocardiography
2.2.1. Two-Dimensional Echocardiography
2.2.2. Four-Dimensional Transthoracic Echocardiography
3. Results
3.1. Basic Characteristics Are Summarized in Table 1
3.2. 2D TTE Results
3.3. 4D TTE Results
3.4. Reproducibility of the Measurements
4. Discussions
4.1. Left Atrial Reservoir Strain
4.2. LA Strain in Cardiovascular Diseases
4.3. LA Strain in DCM Patients
5. Conclusions
Study Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faggiano, A.; Avallone, C.; Gentile, D.; Provenzale, G.; Toriello, F.; Merlo, M.; Sinagra, G.; Carugo, S. Echocardiographic Advances in Dilated Cardiomyopathy. J. Clin. Med. 2021, 10, 5518. [Google Scholar] [CrossRef] [PubMed]
- Japp, A.G.; Gulati, A.; Cook, S.A.; Cowie, M.R.; Prasad, S.K. The Diagnosis and Evaluation of Dilated Cardiomyopathy. JACC 2016, 67, 2996–3010. [Google Scholar] [CrossRef] [PubMed]
- Jeferies, J.L.; Towbin, J.A. Dilated cardiomyopathy. Lancet 2010, 375, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Asgar, A.W.; Mark, M.J.; Stone, G.W. Secondary Mitral Regurgitation in Heart Failure: Pathophysiology, Prognosis and Therapeutic Considerations. J. Am. Coll. Cardiol. 2015, 65, 1231–1248. [Google Scholar] [CrossRef] [PubMed]
- Donal, E.; Delgado, V.; Bucciarelli-Ducci, C.; Galli, E.; Haugaa, K.; Charron, P.; Voigt, J.-U.; Cardim, N.; Masci, P.G.; Galderisi, M.; et al. Multimodality imaging in the diagnosis, risk stratification, and management of patients with dilated cardiomyopathies: An expert consensus document from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1075–1093. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, R.G.; Semsarian, C.; Macdonald, P. Dilated cardiomyopathy. Lancet 2017, 390, 400–414. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An American Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Kovalova, S.; Necas, J. RT-3D TEE: Characteristics of mitral annulus using mitral valve quantification (MVQ) program. Echocardiography 2011, 8, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Okafor, I.U.; Santhanakrishnan, A.; Raghav, V.S.; Yoganathan, A.P. Role of Mitral Annulus Diastolic Geometry on Intraventricular Filling Dynamics. J. Biomech. Eng. 2015, 137, 121007. [Google Scholar] [CrossRef] [PubMed]
- Badano, L.P.; Miglioranza, M.H.; Mihăilă, S.; Peluso, D.; Xhaxho, J.; Marra, M.P.; Cucchini, U.; Soriani, N.; Iliceto, S.; Muraru, D. Left Atrial Volumes and Function by Three-Dimensional Echocardiography Reference Values, Accuracy, Reproducibility, and Comparison with Two-Dimensional Echocardiographic Measurements. Circ. Cardiovasc. Imaging 2016, 9, e004229. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.P.-W.; Fang, F.; Jin, C.-N.; Kam, K.K.-H.; Tsui, G.K.W.; Wong, K.K.Y.; Looi, J.-L.; Wong, R.H.L.; Wan, S.; Sun, J.P.; et al. Quantification of Mitral Valve Morphology with Three-Dimensional Echocardiography—Can Measurement Lead to Better Management? Circ. J. 2014, 78, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Du Bois, D. Clinical calorimetry: Tenth paper a formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 1916, 17, 863–871. [Google Scholar] [CrossRef]
- Lancellotti, P.; Tribouilloy, C.; Hagendorff, A.; Popescu, B.A.; Edvardsen, T.; Pierard, L.A.; Badano, L.; Zamorano, J.L. Recommendations for the echocardiographic assessment of native valvular regurgitation: An executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 611–644. [Google Scholar] [CrossRef] [PubMed]
- Tripepi, G.; Benedetto, F.A.; Mallamaci, F.; Tripepi, R.; Malatino, L.; Zoccali, C. Left atrial volume monitoring and cardiovascular risk in patients with end-stage renal disease. J. Am. Soc. Nephrol. 2007, 18, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Muraru, D.; Niero, A.; Rodriguez-Zanella, H.; Cherata, D.; Badano, L. Three-dimensional speckle-tracking echocardiography: Benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc. Diagn. Ther. 2018, 8, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Negishi, K.; Negishi, T.; Agler, D.A.; Plana, J.C.; Marwick, T.H. Role of temporal resolution in selection of the appropriate strain technique for evaluation of subclinical myocardial dysfunction. Echocardiography 2012, 29, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Yodwut, C.; Weinert, L.; Klas, B.; Lang, R.M.; Mor-Avi, V. Effects of frame rate on three- dimensional speckle-tracking-based measurements of myocardial deformation. J. Am. Soc. Echocardiogr. 2012, 25, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Pastore, M.; Mandoli, G.; Santoro, C.; Cavigli, L.; Focardi, M.; D’Ascenzi, F.; Cameli, M. Left atrial strain in cardiovascular diseases: An overview of clinical applications. Cardiol. Hung. 2021, 51, 11–17. [Google Scholar] [CrossRef]
- Kupczyńska, K.; Giulia Elena Mandoli, E.G.; Cameli, M.; Kasprzak, J.D. Left atrial strain—A current clinical perspective. Kardiol. Pol. 2021, 79, 955–964. [Google Scholar]
- Bouwmeester, S.; van der Stam, J.A.; van Loon, S.L.M.; van Riel, N.A.W.; Boer, A.-K.; Dekker, L.R.; Scharnhorst, V.; Houthuizen, P. Left atrial reservoir strain as a predictor of cardiac outcome in patients with heart failure: The HaFaC cohort study. BMC Cardiovasc. Disord. 2022, 22, 104. [Google Scholar] [CrossRef] [PubMed]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: A consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Tsang, W.; Adams, D.H.; Agricola, E.; Buck, T.; Faletra, F.F.; Fanke, A.; Hung, J.; Isla, L.P.; et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 2012, 25, 3–46. [Google Scholar] [CrossRef] [PubMed]
- Badano, L.P.; Muraru, D.; Rigo, F.; Del Mestre, L.; Ermacora, D.; Gianfagna, P.; Proclemer, A.P. High volume-rate three-dimensional stress echocardiography to assess inducible myocardial ischemia: A feasibility study. J. Am. Soc. Echocardiogr. 2010, 23, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Pouch, A.; Wang, H.; Takabe, M.; Jackson, B.; Gorman, J., III; Gorman, R.; Yushkevich, P.A.; Sehgal, C.M. Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med. Image Anal. 2014, 18, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Sprouse, C.; Mukherjee, R.; Burlina, P. Mitral valve closure prediction with 3d personalized anatomical models and anisotropic hyperelastic tissue assumptions. IEEE Trans. Biomed. Eng. 2013, 60, 3238–3247. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; Burke, W.; Marx, G.; Nido, P.; Howe, R. Modeling mitral valve leaflets from three-dimensional ultrasound. In Functional Imaging and Modeling of the Heart; Metaxas, D., Axel, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 215–222. [Google Scholar]
- Grewal, J.; Suri, R.; Mankad, S.; Tanaka, A.; Mahoney, D.W.; Schaff, H.V.; Miller, F.A.; Enriquez-Sarano, M. Mitral annular dynamics in myxomatous valve disease: New insights with real-time 3-dimensional echocardiography. Circulation 2010, 121, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, K.P.; Ring, L.; Rana, B.S. Anatomy of the mitral valve: Understanding the mitral valve complex in mitral regurgitation. Eur. J. Echocardiogr. 2010, 1, i3–i9. [Google Scholar] [CrossRef] [PubMed]
- Muresian, H. The clinical anatomy of the mitral valve. Clin. Anat. 2009, 22, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.A.; Triulzi, M.O.; Harrigan, P.; Weyman, A.E. The relationship of mitral annular shape to the diagnosis of mitral valve prolapse. Circulation 1987, 75, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Salgo, I.S.; Gorman, J.H., III; Gorman, R.C.; Jackson, B.M.; Bowen, F.W.; Plappert, T.; St John Sutton, M.G.; Edmunds, L.H., Jr. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 2002, 106, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.Y. Anatomy of the mitral valve. Heart 2002, 88 (Suppl. S4), iv5–iv10. [Google Scholar] [CrossRef] [PubMed]
- Leo, L.A.; Paiocchi, V.L.; Schlossbauer, S.A.; Gherbesi, E.; Faletra, F.F. Anatomy of Mitral Valve Complex as Revealed by Non-Invasive Imaging: Pathological, Surgical and Interventional Implications. J. Cardiovasc. Dev. Dis. 2020, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Deferm, S.; Bertrand, P.B.; Verbrugge, F.H.; Verhaert, D.; Rega, F.; Thomas, J.D.; Vandervoort, P.M. Atrial Functional Mitral Regurgitation: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 73, 2465–2476. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.P.; Hsiung, M.C.; Salgo, I.S.; Fang, F.; Xie, J.M.; Zhang, Y.C.; Lin, Q.-S.; Looi, J.-L.; Wan, S.; Wong, R.H.L.; et al. Quantitative analysis of mitral valve morphology in mitral valve prolapse with real-time 3-dimensional echocardiography: Importance of annular saddle shape in the pathogenesis of mitral regurgitation. Circulation 2013, 127, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Faletra, F.F.; Ramamurthi, A.; Dequarti, M.C. Artefacts in three-dimensional transesophageal echocardiography. J. Am. Soc. Echocardiogr. 2014, 27, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Nolan, M.T.; Thavendiranathan, P. STATE-OF-THE-ART REVIEW Automated Quantification in Echocardiography. J. Am. Coll. Cardiol. Img. 2019, 12, 1073–1092. [Google Scholar] [CrossRef] [PubMed]
- Biaggi, P.; Jedrzkiewicz, S.; Gruner, C.; Meineri, M.; Karski, J.; Vegas, A.; Tanner, F.C.; Ivanov, J.; David, T.E.; Woo, A. Quantification of mitral valve anatomy by three-dimensional transesophageal echocardiography in mitral valve prolapse predicts surgical anatomy and the complexity of mitral valve repair. J. Am. Soc. Echocardiogr. 2012, 25, 758–765. [Google Scholar] [CrossRef] [PubMed]
- El Sabbagh, A.; Reddy, Y.N.V.; Nishimura, R.A. Mitral valve regurgitation in the contemporary era: Insights into diagnosis, management, and future directions. JACC Cardiovasc. Imaging 2018, 11, 628–643. [Google Scholar] [CrossRef] [PubMed]
- Mihaila, S.; Muraru, D.; Piasentini, E.; Miglioranza, M.H.; Peluso, D.; Cucchini, U.; Iliceto, S.; Vinereanu, D.; Badano, L.P. Quantitative analysis of mitral annular geometry and function in healthy volunteers using transthoracic three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 2014, 27, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Noacka, T.; Janietza, M.; Lurzb, P.; Kiefera, P.; Siega, F.; Marin-Cuartasa, M.; Spampinatoa, M.; Beslerb, C.; Rommelb, K.-P.; Holzheya, D.; et al. Dynamic mitral valve geometry in patients with primary and secondary mitral regurgitation: Implications for mitral valve repair. Eur. J. Cardio-Thorac. Surg. 2019, 56, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Ogasawara, Y.; Yamaura, Y.; Wada, N.; Kawamoto, T.; Toyota, E. Mitral annulus flattens in is chemic mitral regurgitation: Geometric differences between inferior and anterior myocardial infarction: A real-time 3-dimensional echocardiographic study. Circulation 2005, 112, 1458–1462. [Google Scholar] [CrossRef] [PubMed]
- Daimon, M.; Saracino, G.; Fukuda, S.; Koyama, Y.; Kwan, J.; Song, J.-M.; Agler, D.A.; Gillinov, A.M.; Thomas, J.D.; Takahiro Shiota, T. Dynamic change of anterior annular geometry and motion in ischemic mitral regurgitation assessed by a computerized 3D echo method. Echocardiography 2010, 27, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Silbiger, J.J. Mechanistic insights into ischemic mitral regurgitation: Echocardiographic and surgical implications. J. Am. Soc. Echocardiogr. 2011, 24, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Levack, M.M.; Jassar, A.S.; Shang, E.K.; Vergnat, M.; Woo, Y.J.; Acker, M.A.; Jackson, B.M.; Gorman, J.H., III; Gorman, R.C. Three-dimensional echocardiographic analysis of mitral annular dynamics: Implication for annuloplasty selection. Circulation 2012, 126 (Suppl. S1), S183–S188. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, F.; Corsi, C.; Sugeng, L.; Caiani, E.G.; Weinert, L.; Mor-Avi, V.; Cerutti, S.; Lamberti, C.; Lang, R.M. Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real time3-dimensional echocardiography. Jam. Soc. Echocardiogr. 2008, 21, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Khabbaz, K.R.; Mahmood, F.; Shakil, O.; Warraich, H.J.; Gorman, J.H., III; Gorman, R.C.; Matyal, R.; Panzica, P.; Hess, P.E. Dynamic3-dimensional echocardiographic assessment of mitral annular geometry in patients with functional mitral regurgitation. Ann. Thorac. Surg. 2013, 95, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.S.; Fang, F.; Yu, C.M.; Zhang, Y.C.; Hsiung, M.C.; Salgo, I.S.; Looi, J.-L.; Song Wand, S.; Wongd, R.H.L.; Underwoodd, M.J.; et al. Dynamic assessment of the changing geometry of the mitral apparatus in 3D could stratify abnormalities in functional mitral regurgitation and potentially guide therapy. Int. J. Cardiol. 2014, 176, 878–884. [Google Scholar] [CrossRef] [PubMed]
- vanWijngaarden, S.E.; Kamperidis, V.; Regeer, M.V.; Palmen, M.; Schalij, M.J.; Klautz, R.J.; Bax, J.J.; Marsan, N.A.; Delgado, V. Three-dimensional assessment of mitral valve annulus dynamics and impact on quantification of mitral regurgitation. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Ogasawara, Y.; Yamaura, Y.; Kawamoto, T.; Toyota, E.; Yoshida, K.; Akasaka, T. Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J. Am. Coll. Cardiol. 2005, 45, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.A.; Schwammenthal, E. Ischemic mitral regurgitation on the threshold of a solution: From paradoxes to unifying concepts. Circulation 2005, 112, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.J.; Zhang, Q.; Fang, F.; Lee, A.P.; Liu, M.; Yan, B.P.-Y.; Lam, Y.-Y.; Chan, G.C.-P.; Yu, C.-M. Incremental value of global systolic dyssynchrony in determining the occurrence of functional mitral regurgitation in patients with left ventricular systolic dysfunction. Eur. Heart J. 2013, 34, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Gorman, J.H., III; Jackson, B.M.; Enomoto, Y.; Gorman, R.C. The effect of regional ischemia on mitral valve annular saddle shape. Ann. Thorac. Surg. 2004, 77, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Tibayan, F.A.; Rodriguez, F.; Langer, F.; Zasio, M.K.; Bailey, L.; Liang, D.; Daughters, G.T.; Ingels, N.B., Jr.; Miller, D.C. Annular remodeling in chronic ischemic mitral regurgitation: Ring selection implications. Ann. Thorac. Surg. 2003, 76, 1549–1554. [Google Scholar] [CrossRef] [PubMed]
- Aquila, I.; Fernández-Golfín, C.; Rincon, L.M.; González, A.; Martín, A.G.; Hinojar, R.; Nacher, J.J.J.; Indolfi, C.; Zamorano, J.L. Fully automated software for mitral annulus evaluation in chronic mitral regurgitation by 3-dimensional transesophageal echocardiography. Medicine 2016, 95, e5387. [Google Scholar] [CrossRef] [PubMed]
- Little, S.H.; Zekry, S.B.; Lawrie, G.M.; Zoghbi, W.A. Dynamic annular geometry and function in patients with mitral regurgitation: Insight from three-dimensional annular tracking. J. Am. Soc. Echocardiogr. 2010, 23, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Tsang, W.; Weinert, L.; Sugeng, L.; Chandra, S.; Ahmad, H.; Spencer, K.; Mor-Avi, V.; Lang, R.M. The value of three-dimensional echocardiography derived mitral valve parametric maps and the role of experience in the diagnosis of pathology. J. Am. Soc. Echocardiogr. 2011, 24, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Moraru, L.; Mirea, O.; Toader, D.; Berceanu, M.; Soldea, S.; Munteanu, A.; Donoiu, I.; Raicea, V. Lower Limit of Normality of Segmental Multilayer Longitudinal Strain in Healthy Adult Subjects. J. Cardiovasc. Dev. Dis. 2024, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Toader, D.M.; Paraschiv, A.; Târtea, G.; Tiucu, G.; Chitu, M.; Stănisor, R.; Mirea, O. Layer-Specific Strain Analysis in Patients with Dilated Cardiomyopathy. Biomedicines 2025, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Khan, F.H.; Remme, E.W.; Ohte, N.; García-Izquierdo, E.; Chetrit, M.; Mo~nivas-Palomero, V.; Mingo-Santos, S.; Andersen, O.S.; Gude, E.; et al. Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.; Nielsen, A.B.; Skaarup, K.G.; Lassen, M.C.H.; Duus, L.S.; Johansen, N.D.; Sengeløv, M.; Marott, J.L.; Jensen, G.; Schnohr, P.; et al. Left atrial strain predicts incident atrial fibrillation in the general population: The Copenhagen City Heart Study. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Carluccio, E.; Biagioli, P.; Mengoni, A.; Cerasa, M.F.; Lauciello, R.; Zuchi, C.; Bardelli, G.; Alunni, G.; Coiro, S.; Gronda, E.G.; et al. Left atrial reservoir function and outcome in heart failure with reduced ejection fraction. Circ. Cardiovasc. Imaging 2018, 11, e007696. [Google Scholar] [CrossRef] [PubMed]
- Jordan, K.; Yaghi, S.; Poppas, A.; Chang, A.D.; Grory, B.M.; Cutting, S.; Burton, T.; Jayaraman, M.; Tsivgoulis, G.; Sabeh, M.K.; et al. Left atrial volume index is associated with cardioembolic stroke and atrial fibrillation detection after embolic stroke of undetermined source. Stroke 2019, 50, 1997–2001. [Google Scholar] [CrossRef] [PubMed]
- Providência, R.; Trigo, J.; Paiva, L.; Barra, S. The role of echocardiography in thromboembolic risk assessment of patients with nonvalvular atrial fibrillation. J. Am. Soc. Echocardiogr. 2013, 26, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, C.; Yin, L. Evaluation of the relationship between left atrial strain and exercise tolerance in patients with hypertrophic cardiomyopathy by treadmill stress echocardiography. Front. Cardiovasc. Med. 2023, 10, 1168514. [Google Scholar] [CrossRef] [PubMed]
- Kuppahally, S.S.; Akoum, N.; Burgon, N.S.; Badger, T.J.; Kholmovski, E.G.; Vijayakumar, S.; Rao, S.N.; Blauer, J.; Fish, E.N.; Dibella, E.V.; et al. Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: Relationship to left atrial structural remodeling detected by delayed-enhancement MRI. Circ. Cardiovasc. Imaging 2010, 3, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Her, A.Y.; Choi, E.Y.; Shim, C.Y.; Song, B.W.; Lee, S.; Ha, J.W.; Rim, S.-J.; Hwang, K.C.; Chang, B.C.; Chung, N. Prediction of left atrial fibrosis with speckle tracking echocardiography in mitral valve disease: A comparative study with histopathology. Korean Circ. J. 2012, 42, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Lisi, M.; Mandoli, G.E.; Cameli, M.; Pastore, M.C.; Righini, F.M.; Benfari, G.; Rubboli, A.; D’Ascenzi, F.; Focardi, M.; Tsioulpas, C.; et al. Left atrial strain by speckle tracking predicts atrial fibrosis in patients undergoing heart transplantation. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Kadappu, K.K.; Abhayaratna, K.; Boyd, A.; French, J.K.; Xuan, W.; Abhayaratna, W.; Thomas, L. Independent Echocardiographic Markers of Cardiovascular Involvement in Chronic Kidney Disease: The Value of Left Atrial Function and Volume. J. Am. Soc. Echocardiogr. 2016, 29, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.V.; Obokata, M.; Egbe, A.; Yang, J.H.; Pislaru, S.; Lin, G.; Carter, R.; Borlaug, B.A. Left atrial strain and compliance in the diagnostic evaluation of heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2019, 21, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Malagoli, A.; Rossi, L.; Bursi, F.; Zanni, A.; Sticozzi, C.; Piepoli, M.F.; Villani, G.Q. Left atrial function predicts cardiovascular events in patients with chronic heart failure with reduced ejection fraction. J. Am. Soc. Echocardiogr. 2019, 32, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Al Saikhan, L.; Hughes, A.D.; Chung, W.S.; Alsharqi, M.; Nihoyannopoulos, P. Left atrial function in heart failure with mid-range ejection fraction differs from that of heart failure with preserved ejection fraction: A 2D speckle-tracking echocardiographic study. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.J.; Teixeira, R.; Gonçalves, L.; Gersh, B.J. Left atrial mechanics: Echocardiographic assessment and clinical implications. J. Am. Soc. Echocardiogr. 2014, 27, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Mandoli, G.E.; Loiacono, F.; Sparla, S.; Iardino, E.; Mondillo, S. Left atrial strain: A useful index in atrial fibrillation. Int. J. Cardiol. 2016, 220, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Yafasov, M.; Olsen, F.J.; Skaarup, K.G.; Lassen, M.C.H.; Johansen, N.D.; Lindgren, F.L.; Møgelvang, R.; Jensen, G.B.; Schnohr, P.; Peter Søgaard, P.; et al. Normal values for left atrial strain, volume, and function derived from 3D echocardiography: The Copenhagen City Heart Study. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, A.; Yuda, S.; Fujito, T.; Kawamukai, M.; Muranaka, A.; Nagahara, D.; Shimoshige, S.; Hashimoto, A.; Miura, T. Left atrial strain assessed by three-dimensional speckle tracking echocardiography predicts atrial fibrillation recurrence after catheter ablation in patients with paroxysmal atrial fibrillation. J. Echocardiogr. 2017, 15, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Figliozzi, S.; Georgiopoulos, G.; Pateras, K.; Sianis, A.; Previtero, M.; Tondi, L.; Petropoulos, I.; Bragato, R.M.; Papachristidis, A.; Condorelli, G.; et al. Normal ranges of left atrial volumes and ejection fraction by 3D echocardiography in adults: A systematic review and meta-analysis. Int. J. Cardiovasc. Imaging 2022, 38, 1329–1340. [Google Scholar] [CrossRef] [PubMed]
- Donal, E.; Lip, G.Y.; Galderisi, M.; Goette, A.; Shah, D.; Marwan, M.; Lederlin, M.; Mondillo, S.; Edvardsen, T.; Sitges, M.; et al. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the evaluation of patients with atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 355–383. [Google Scholar] [CrossRef] [PubMed]
- Yafasova, M.; Olsena, F.J.; Hausera, R.; Skaarupa, K.G.; Lassena, M.C.H.; Johansena, N.D.; Lindgrenb, F.L.; Søgaardb, P.; Jensenb, G.B.; Schnohrb, P.; et al. Left atrial strain measured by three-dimensional echocardiography predicts atrial fibrillation in the general population. Int. J. Cardiol. 2024, 417, 132544. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, C.; Wang, J.; Guo, L.; Wang, X.; Liu, F.; Li, X.; Zhao, Y. Left atrial strain measured by 4D Auto LAQ echocardiography is significantly correlated with high risk of thromboembolism in patients with non-valvular atrial fibrillation. Quant. Imaging Med. Surg. 2021, 11, 3920–3931. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.A.; Belyavskiy, E.; Aravind-Kumar, R.; Kropf, M.; Frydas, A.; Braunauer, K.; Marquez, E.; Lindhorst, R.; Osmanoglou, E.; Boldt, L.-H.; et al. Potential Usefulness and Clinical Relevance of Adding Left Atrial Strain to Left Atrial Volume Index in the Detection of Left Ventricular Diastolic Dysfunction. JACC Cardiovasc. Imaging 2018, 11, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Rusinaru, D.; Bohbot, Y.; Kowalski, C.; Ringle, A.; Maréchaux, S.; Tribouilloy, C. Left Atrial Volume and Mortality in Patients with Aortic Stenosis. J. Am. Heart Assoc. 2017, 6, e006615. [Google Scholar] [CrossRef] [PubMed]
- Galli, E.; Fournet, M.; Chabanne, C.; Lelong, B.; Leguerrier, A.; Flecher, E.; Mabo, P.; Donal, E. Prognostic value of left atrial reservoir function in patients with severe aortic stenosis: A 2D speckle-tracking echocardiographic study. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Medvedofsky, D.; Mediratta, A.; Balaney, B.; Kruse, E.; Ciszek, B.; Shah, A.P.; Blair, J.E.; Maffessanti, F.; Addetia, K.; et al. Peak left atrial strain as a single measure for the non-invasive assessment of left ventricular filling pressures. Int. J. Cardiovasc. Imaging 2019, 35, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Muraru, D.; Popescu, B.A.; Sitges, M.; Rosca, M.; Pedrizzetti, G.; Henein, M.Y.; Donal, E.; Badano, L.P. Evaluation of Left Atrial Size and Function: Relevance for Clinical Practice. J. Am. Soc. Echocardiogr. 2020, 33, 934–952. [Google Scholar] [CrossRef] [PubMed]
- Gan, G.C.H.; Kadappu, K.K.; Bhat, A.; Fernandez, F.; Gu, K.H.; Cai, L.; Byth, K.; Eshoo, S.; Thomas, L. Left Atrial Strain Is the Best Predictor of Adverse Cardiovascular Outcomes in Patients with Chronic Kidney Disease. J. Am. Soc. Echocardiogr. 2021, 34, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Keles, N.; Kahraman, E.; Parsova, K.E.; Bastopcu, M.; Karatas, M.; Yelgec, N.S. Could premature ventricular contractions lead to atrial remodeling? Echocardiography 2022, 39, 1548–1554. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.Y.; Hwang, I.C. Left atrial strain measurement: A new normal for diastolic assessment? JACC Cardiovasc. Imaging 2020, 13, 2327–2329. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Hwang, I.C.; Park, J.J.; Park, J.B.; Cho, G.Y. Prognostic power of left atrial strain in patients with acute heart failure. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Tsujiuchi, M.; Ebato, M.; Maezawa, H.; Ikeda, N.; Mizukami, T.; Nagumo, S.; Iso, Y.; Yamauchi, T.; Suzuki, H. The prognostic value of left atrial reservoir functional indices measured by three-dimensional speckle-tracking echocardiography for major cardiovascular events. Circ. J. 2021, 85, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; You, C.; Zhang, L.; Yang, J.; Wang, Y.; Zhang, P. Prognostic values of left atrial strain analyzed by four-dimensional speckle tracking echocardiography in uremia with preserved ejection fraction. Sci. Rep. 2024, 14, 18971. [Google Scholar]
- Wu, V.C.-C.; Takeuchi, M.; Kuwaki, H.; Iwataki, M.; Nagata, Y.; Otani, K.; Haruki, N.; Yoshitani, H.; Tamura, M.; Abe, H.; et al. Prognostic value of LA volumes assessed by transthoracic 3D echocardiography. JACC Cardiovasc. Imaging 2013, 6, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.E.; Oh, I.-Y.; Kim, S.-A.; Park, K.-H.; Kim, S.H.; Park, J.-H.; Kim, J.-E.; Lee, S.-P.; Kim, H.-K.; Kim, Y.-J.; et al. Echocardiographic predictors of progression to persistent or permanent atrial fibrillation in patients with paroxysmal atrial fibrillation (E6P study). J. Am. Soc. Echocardiogr. 2015, 28, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Mannina, C.; Ito, K.; Jin, Z.; Yoshida, Y.; Russo, C.; Nakanishi, K.; Elkind, M.S.V.; Rudek, T.; Homma, S.; Tulio, M.R. Left atrial strain and incident atrial fibrillation in older adults. Am. J. Cardiol. 2023, 206, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Gan, G.C.H.; Bhat, A.; Chen, H.H.L.C.; Gu, K.H.; Fernandez, F.; Kadappu, K.K.; Byth, K.; Eshoo, S.; Thomas, L. Left atrial reservoir strain by speckle tracking echocardiography: Association with exercise capacity in chronic kidney disease. J. Am. Heart Assoc. 2021, 10, e017840. [Google Scholar] [CrossRef] [PubMed]
- Jhaveri, S.; Komarlu, R.; Worley, S.; Shahbah, D.; Gurumoorthi, M.; Zahka, K. Left atrial strain and function in pediatric hypertrophic cardiomyopathy. J. Am. Soc. Echocardiogr. 2021, 34, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Huntjens, P.R.; Zhang, K.W.; Soyama, Y.; Karmpalioti, M.; Lenihan, D.J.; Gorcsan, J., III. Prognostic utility of echocardiographic atrial and ventricular strain imaging in patients with cardiac amyloidosis. JACC Cardiovasc. Imaging. 2021, 14, 1508–1519. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Xing, Y.; Guo, Y.; Cao, X.; Nie, Y.; Shu, X. Left atrial reservoir strain is an outstanding predictor of adverse cardiovascular outcomes in patients undergoing maintenance hemodialysis: Assessment via three-dimensional speckle tracking echocardiography. Clin. Cardiol. 2022, 45, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Kallergis, E.M.; Manios, E.G.; Kanoupakis, E.M.; Mavrakis, H.E.; Arfanakis, D.A.; Maliaraki, N.E.; Lathourakis, C.E.; Chlouverakis, G.I.; Vardas, P.E. Extracellular matrix alterations in patients with paroxysmal and persistent atrial fibrillation: Biochemical assessment of collagen type-I turnover. J. Am. Coll. Cardiol. 2008, 52, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Bailey, G.W.; Braniff, B.A.; Hancock, E.W.; Cohn, K.E. Relation of left atrial pathology to atrial fibrillation in mitral valvular disease. Ann. Intern. Med. 1968, 69, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Henry, W.L.; Morganroth, J.; Pearlman, A.S.; Clark, C.E.; Redwood, D.R.; Itscoitz, S.B.; Epstein, S.E. Relation between echocardiographically determined left atrial size and atrial fibrillation. Circulation 1976, 53, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Stefani, L.D.; Trivedi, S.J.; Ferkh, A.; Emerson, P.; Marschner, S.; Gan, G.; Altman, M.; Thomas, L. Left atrial mechanics evaluated by two-dimensional strain analysis: Alterations in essential hypertension. J. Hypertens. 2024, 42, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Lin, Y.; Zhang, Y.; Wang, G.; Qian, M.; Gao, L.; Ji, M.; Xie, M.; Li, Y.; Zhang, L. Prognostic relevance of left atrial function and stiffness in heart failure with preserved ejection fraction patients with and without diabetes mellitus. Front. Cardiovasc. Med. 2022, 9, 947639. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xiao, C.; Sun, L.; Zhang, F. Assessment of left atrial function in patients with metabolic syndrome by four-dimensional automatic left atrial quantification. Diabetes Res. Clin. Practice 2024, 207, 111080. [Google Scholar] [CrossRef] [PubMed]
Parameters | IDCM (38) (46%) | NIDCM (44) (54%) | p |
---|---|---|---|
Age (years) | 63 (±8) | 57 (±12) | 0.016 |
Males (%) | 23 (60) | 28 (64) | 0.47 |
BSA (m2) | 1.76 (0.15) | 1.82 (0.18) | 0.1 |
Hypertension (%) | 30 (79) | 23 (52) | 0.01 |
DM (%) | 23 (61) | 16 (36) | 0.03 |
Dyslipidemia (%) | 24 (63) | 21 (48) | 0.004 |
Obesity (%) | 15 (39) | 10 (23) | 0.1 |
CKD (%) | 18 (47) | 12 (27) | 0.06 |
AF (%) | 13 (34) | 12 (27) | 0.5 |
Deaths | 10 (31%) | 15 (34%) | 0.94 |
Rehospitalization | 17 (45%) | 22 (50%) | 0.63 |
Parameters | IDCM (38) (46%) | NIDCM (44) (54%) | p |
---|---|---|---|
LVEDV (mL) | 203.86 (82.76) | 200.97 (71.13) | 0.86 |
LVESV (mL) | 149.55 (69.54) | 149.61 (63.65) | 0.99 |
LVEF (%) | 27.45 (7.7) | 26.52 (7.82) | 0.59 |
LAVi (mL/m2) | 54.23 (12.6) | 54.03 (14.84) | 0.95 |
MR ≥ mild (%) | 16 (42.1) | 17 (38.63) | 0.75 |
TR > mild (%) | 10 (26.31) | 17 (38.63) | 0.24 |
Parameters | IDCM (38) (46%) | NIDCM (44) (54%) | p |
---|---|---|---|
LASr | 8.44 (3.68) | 8.5 (4.42) | 0.94 |
AA | 20.81 (3.91) | 19.79 (2.71) | 0.17 |
AP | 16.44 (2.05) | 16.35 (2.09) | 0.84 |
A-P diameter | 4.61 (0.47) | 4.56 (0.65) | 0.65 |
PM-AL diameter | 5.27(0.72) | 5.1 (0.58) | 0.24 |
CD | 4.96 (0.64) | 4.94 (0.52) | 0.81 |
Itd | 3.73 (0.78) | 3.67 (0.63) | 0.63 |
AH | 6.86 (2.21) | 6.5 (2.06) | 0.44 |
NPA | 156 (15.7) | 155.77 (13.91) | 0.83 |
TH | 1.51 (0.31) | 1.48 (0.34) | 0.68 |
TA | 4.65 (1.25) | 4.59 (1.53) | 0.84 |
TV | 13.31 (5.32) | 11.92 (5.6) | 0.27 |
Parameter | r | 95% CI Interval | p |
---|---|---|---|
AA | −0.61 | −0.73 to −0.45 | <0.0001 |
AP | −0.58 | −0.71 to −0.42 | <0.0001 |
A-P diameter | −0.58 | −0.71 to −0.42 | <0.0001 |
CD | −0.59 | −0.72 to −0.43 | <0.0001 |
Itd | −0.49 | −0.64 to −0.31 | <0.0001 |
AH | −0.08 | −0.29 to 0.14 | 0.47 |
NPA | −0.17 | −0.38 to 0.04 | 0.11 |
PM-AL diameter | −0.62 | −0.73 to −0.46 | <0.0001 |
TH | −0.67 | −0.77 to −0.53 | <0.0001 |
TA | −0.66 | −0.77 to −0.52 | <0.0001 |
TV | −0.78 | −0.85 to −0.67 | <0.0001 |
Parameters | Unstandardized Coefficients | Standardized Coefficients | t | p | |
---|---|---|---|---|---|
B | SE | Beta | |||
AA | −0.820 | 0.119 | −0.611 | −6.896 | 0.0001 |
AP | −1.214 | 0.190 | −0.580 | 9.032 | 0.0001 |
A-P diameter | −4.121 | 0.647 | −0.580 | −6.372 | 0.0001 |
CD | −4.188 | 0.639 | −0.591 | −6.552 | 0.0001 |
Itd | −3.080 | 0.603 | −0.496 | −5.110 | 0.0001 |
PM-AL diameter | −3.815 | 0.546 | −0.616 | −6.988 | 0.0001 |
AH | −0.153 | 0.213 | −0.080 | −0.720 | 0.473 |
NPA | −0.051 | 0.032 | −0.178 | −1.620 | 0.109 |
TH | −8.228 | 1.029 | −0.666 | −7.995 | 0.0001 |
TA | −1.919 | 0.243 | −0.663 | −7.912 | 0.0001 |
TV | −0.577 | 0.052 | −0.777 | −11.024 | 0.0001 |
Coefficients a | |||||||||
---|---|---|---|---|---|---|---|---|---|
Model | Unstandardized Coefficients | Standardized Coefficients | t | p | |||||
B | SE | Beta | |||||||
1 | (Constant) | 15.723 | 0.717 | 21.940 | 0.000 | ||||
TV | −0.577 | 0.052 | −0.777 | −11.024 | 0.000 | ||||
2 | (Constant) | 22.205 | 2.322 | 9.563 | 0.000 | ||||
TV | −0.470 | 0.062 | −0.634 | −7.611 | 0.000 | ||||
PM-AL diameter | −1.507 | 0.516 | −0.243 | −2.921 | 0.005 | ||||
3 | (Constant) | 24.895 | 2.623 | 9.490 | 0.000 | ||||
TV | −0.348 | 0.085 | −0.469 | −4.104 | 0.000 | ||||
PM-AL diameter | −1.583 | 0.507 | −0.256 | −3.124 | 0.003 | ||||
TH | −2.573 | 1.248 | −0.208 | −2.061 | 0.043 | ||||
Model Summary a | |||||||||
Model | R | R Square | Adjusted R Square | SE of the Estimate | |||||
1 | 0.777 b | 0.603 | 0.598 | 2.583 | |||||
2 | 0.801 c | 0.642 | 0.633 | 2.469 | |||||
3 | 0.813 d | 0.660 | 0.647 | 2.420 |
Parameter | Intraclass Coeficient (Average Measures) | 95% CI | Value | p | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
AA | 0.961 | 0.896 | 0.985 | 24.539 | 0.0001 |
AP | 0.985 | 0.959 | 0.994 | 62.145 | 0.0001 |
AP diameter | 0.941 | 0.843 | 0.978 | 16.422 | 0.0001 |
PM-AL diameter | 0.966 | 0.910 | 0.987 | 28.379 | 0.0001 |
CD | 0.961 | 0.902 | 0.986 | 26.381 | 0.0001 |
Itd | 0.925 | 0.802 | 0.972 | 12.962 | 0.0001 |
AH | 0.986 | 0.964 | 0.995 | 72.096 | 0.0001 |
NPA | 0.907 | 0.756 | 0.965 | 10.621 | 0.0001 |
TH | 0.900 | 0.529 | 0.969 | 15.559 | 0.0001 |
TA | 0.985 | 0.953 | 0.995 | 84.308 | 0.0001 |
TV | 0.989 | 0.970 | 0.996 | 82.251 | 0.0001 |
Correlations | ||||
---|---|---|---|---|
Approximately 80% of the Cases (SAMPLE) | Predicted | LASr | ||
0 | predicted | Pearson Correlation | 1 | 0.800 * |
Sig. (2-tailed) | 0.031 | |||
N | 7 | 7 | ||
LASr | Pearson Correlation | 0.800 * | 1 | |
Sig. (2-tailed) | 0.031 | |||
N | 7 | 7 | ||
1 | predicted | Pearson Correlation | 1 | 0.819 ** |
Sig. (2-tailed) | 0.000 | |||
N | 75 | 75 | ||
LASr | Pearson Correlation | 0.819 ** | 1 | |
Sig. (2-tailed) | 0.000 | |||
N | 75 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toader, D.-M.; Paraschiv, A.; Hădăreanu, D.R.; Iovănescu, M.; Mirea, O.; Vasile, A.; Mirescu, A.-C. The Link Between Left Atrial Longitudinal Reservoir Strain and Mitral Annulus Geometry in Patients with Dilated Cardiomyopathy. Biomedicines 2025, 13, 1753. https://doi.org/10.3390/biomedicines13071753
Toader D-M, Paraschiv A, Hădăreanu DR, Iovănescu M, Mirea O, Vasile A, Mirescu A-C. The Link Between Left Atrial Longitudinal Reservoir Strain and Mitral Annulus Geometry in Patients with Dilated Cardiomyopathy. Biomedicines. 2025; 13(7):1753. https://doi.org/10.3390/biomedicines13071753
Chicago/Turabian StyleToader, Despina-Manuela, Alina Paraschiv, Diana Ruxandra Hădăreanu, Maria Iovănescu, Oana Mirea, Andreea Vasile, and Alina-Craciun Mirescu. 2025. "The Link Between Left Atrial Longitudinal Reservoir Strain and Mitral Annulus Geometry in Patients with Dilated Cardiomyopathy" Biomedicines 13, no. 7: 1753. https://doi.org/10.3390/biomedicines13071753
APA StyleToader, D.-M., Paraschiv, A., Hădăreanu, D. R., Iovănescu, M., Mirea, O., Vasile, A., & Mirescu, A.-C. (2025). The Link Between Left Atrial Longitudinal Reservoir Strain and Mitral Annulus Geometry in Patients with Dilated Cardiomyopathy. Biomedicines, 13(7), 1753. https://doi.org/10.3390/biomedicines13071753