Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (606)

Search Parameters:
Keywords = phase-forming capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4182 KiB  
Article
Structural Design of a Multi-Stage Variable Stiffness Manipulator Based on Low-Melting-Point Alloys
by Moufa Ye, Lin Guo, An Wang, Wei Dong, Yongzhuo Gao and Hui Dong
Technologies 2025, 13(8), 338; https://doi.org/10.3390/technologies13080338 - 5 Aug 2025
Abstract
Soft manipulators have garnered significant research attention in recent years due to their flexibility and adaptability. However, the inherent flexibility of these manipulators imposes limitations on their load-bearing capacity and stability. To address this, this study compares various variable stiffness technologies and proposes [...] Read more.
Soft manipulators have garnered significant research attention in recent years due to their flexibility and adaptability. However, the inherent flexibility of these manipulators imposes limitations on their load-bearing capacity and stability. To address this, this study compares various variable stiffness technologies and proposes a novel design concept: leveraging the phase-change characteristics of low-melting-point alloys (LMPAs) with distinct melting points to fulfill the variable stiffness requirements of soft manipulators. The pneumatic structure of the manipulator is fabricated via 3D-printed molds and silicone casting. The manipulator integrates a pneumatic working chamber, variable stiffness chambers, heating devices, sensors, and a central channel, achieving multi-stage variable stiffness through controlled heating of the LMPAs. A steady-state temperature field distribution model is established based on the integral form of Fourier’s law, complemented by finite element analysis (FEA). Subsequently, the operational temperatures at which the variable stiffness mechanism activates, and the bending performance are experimentally validated. Finally, stiffness characterization and kinematic performance experiments are conducted to evaluate the manipulator’s variable stiffness capabilities and flexibility. This design enables the manipulator to switch among low, medium, and high stiffness levels, balancing flexibility and stability, and provides a new paradigm for the design of soft manipulators. Full article
Show Figures

Figure 1

16 pages, 3003 KiB  
Article
Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications
by Zhiwei Sun, Wei Wen, Jiayu Wu, Jingjing Shao, Wei Cai, Xiaodong Wen, Chaoen Li, Haijin Guo, Yin Tang, Meng Wang, Dongjing Liu and Yang He
Materials 2025, 18(15), 3632; https://doi.org/10.3390/ma18153632 - 1 Aug 2025
Viewed by 163
Abstract
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste [...] Read more.
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste cooking fat and waste reed straw were, respectively, incorporated as the PCM substance and supporting material. The waste fat (lard) consisted of both saturated and unsaturated fatty acid glycerides, exhibiting a melting point about 21.2–41.1 °C and a melting enthalpy value of 40 J/g. Reed straw was carbonized to form a sustainable porous biochar supporting matrix, which was used for the vacuum adsorption of waste fat. The results demonstrate that the as-prepared dual-Bio-SSPCM exhibited excellent thermal performance, characterized by a latent heat capacity of 25.4 J/g. With the addition of 4 wt% of expanded graphite (EG), the thermal conductivity of the composite PCM reached 1.132 W/(m·K), which was 5.4 times higher than that of the primary lard. The thermal properties of the Bio-SSPCM were characterized using an analog T-history method. The results demonstrated that the dual-Bio-SSPCM exhibited exceptional and rapid heat storage and exothermic capabilities. The dual-Bio-SSPCM, prepared from waste cooking fat and reed straw, can be considered as environmentally friendly construction material for energy storage in line with the principles of the circular economy. Full article
(This article belongs to the Special Issue Eco-Friendly Intelligent Infrastructures Materials)
Show Figures

Graphical abstract

20 pages, 2027 KiB  
Article
Metal-Ion-Free Preparation of κ-Carrageenan/Cellulose Hydrogel Beads Using an Ionic Liquid Mixture for Effective Cationic Dye Removal
by Dojin Kim, Dong Han Kim, Jeong Eun Cha, Saerom Park and Sang Hyun Lee
Gels 2025, 11(8), 596; https://doi.org/10.3390/gels11080596 - 1 Aug 2025
Viewed by 125
Abstract
A metal-ion-free method was developed to prepare κ-carrageenan/cellulose hydrogel beads for efficient cationic dye removal. The beads were fabricated using a mixture of 1-ethyl-3-methylimidazolium acetate and N,N-dimethylformamide as the solvent system, followed by aqueous ethanol-induced phase separation. This process eliminated the need for [...] Read more.
A metal-ion-free method was developed to prepare κ-carrageenan/cellulose hydrogel beads for efficient cationic dye removal. The beads were fabricated using a mixture of 1-ethyl-3-methylimidazolium acetate and N,N-dimethylformamide as the solvent system, followed by aqueous ethanol-induced phase separation. This process eliminated the need for metal-ion crosslinkers, which typically neutralize anionic sulfate groups in κ-carrageenan, thereby preserving a high density of accessible binding sites. The resulting beads formed robust interpenetrating polymer networks. The initial swelling ratio reached up to 28.3 g/g, and even after drying, the adsorption capacity remained over 50% of the original. The maximum adsorption capacity for crystal violet was 241 mg/g, increasing proportionally with κ-carrageenan content due to the higher surface concentration of anionic sulfate groups. Kinetic and isotherm analyses revealed pseudo-second-order and Langmuir-type monolayer adsorption, respectively, while thermodynamic parameters indicated that the process was spontaneous and exothermic. The beads retained structural integrity and adsorption performance across pH 3–9 and maintained over 90% of their capacity after five reuse cycles. These findings demonstrate that κ-carrageenan/cellulose hydrogel beads prepared via a metal-ion-free strategy offer a sustainable and effective platform for cationic dye removal from wastewater, with potential for heavy metal ion adsorption. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (3rd Edition))
Show Figures

Figure 1

18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 - 30 Jul 2025
Viewed by 221
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

15 pages, 3175 KiB  
Article
Suppressing the Phase Transformation in Cubic Prussian Blue Analogues via a High-Entropy Strategy for Efficient Zinc-Ion Storage
by Hongwei Huang, Haojun Liu, Yang Wang, Yi Li and Qian Li
Materials 2025, 18(14), 3409; https://doi.org/10.3390/ma18143409 - 21 Jul 2025
Viewed by 277
Abstract
Prussian blue analogs (PBAs) are widely recognized as promising candidates for aqueous zinc-ion batteries (AZIBs) due to their stable three-dimensional framework structure. However, their further development is limited by their low specific capacity and unsatisfactory cycling performance, primarily caused by phase transformation during [...] Read more.
Prussian blue analogs (PBAs) are widely recognized as promising candidates for aqueous zinc-ion batteries (AZIBs) due to their stable three-dimensional framework structure. However, their further development is limited by their low specific capacity and unsatisfactory cycling performance, primarily caused by phase transformation during charge–discharge cycles. Herein, we employed a high-entropy strategy to introduce five different metal elements (Fe, Co, Ni, Mn, and Cu) into the nitrogen–coordinated Ma sites of PBAs, forming a high-entropy Prussian blue analog (HEPBA). By leveraging the cocktail effect of the high-entropy strategy, the phase transformation in the HEPBA was significantly suppressed. Consequently, the HEPBA as an AZIB cathode delivered a high reversible specific capacity of 132.1 mAh g−1 at 0.1 A g−1, and showed exceptional cycling stability with 84.7% capacity retention after 600 cycles at 0.5 A g−1. This work provides innovative insights into the rational design of advanced cathode materials for AZIBs. Full article
(This article belongs to the Special Issue Optimization of Electrode Materials for Zinc Ion Batteries)
Show Figures

Figure 1

17 pages, 3065 KiB  
Article
Matrix Metalloproteinase-2-Responsive Peptide-Modified Cleavable PEGylated Liposomes for Paclitaxel Delivery
by Xingyu Zhao and Yinghuan Li
Pharmaceuticals 2025, 18(7), 1042; https://doi.org/10.3390/ph18071042 - 15 Jul 2025
Viewed by 499
Abstract
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity [...] Read more.
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity to enhance tissue-specific drug delivery. In this study, we engineered MMP-2-responsive GPLGVRG peptide-modified cleavable PEGylated liposomes for targeted paclitaxel (PTX) delivery. Methods: Molecular docking simulations employed the MMP-2 crystal structure (PDB ID: 7XJO) to assess GPLGVRG peptide binding affinity. A cleavable, enzyme-sensitive peptide-PEG conjugate (Chol-PEG2K-GPLGVRG-PEG5K) was synthesized via small-molecule liquid-phase synthesis and characterized by 1H NMR and MALDI-TOF MS. Liposomes incorporating this conjugate (S-Peps-PEG5K) were formulated to evaluate whether MMP-2-mediated peptide degradation triggers detachment of long-chain PEG moieties, thereby enhancing internalization by 4T1 breast cancer cells. Additionally, the effects of tumor microenvironmental pH (~6.5) and MMP-2 concentration on drug release dynamics were investigated. Results: Molecular docking revealed robust GPLGVRG-MMP-2 interactions, yielding a binding energy of −7.1 kcal/mol. The peptide formed hydrogen bonds with MMP-2 residues Tyr A:23 and Arg A:53 (bond lengths: 2.4–2.5 Å) and engaged in hydrophobic contacts, confirming MMP-2 as the primary recognition site. Formulations containing 5 mol% Chol-PEG2K-GPLGVRG-PEG5K combined with 0.15 µg/mL MMP-2 (S-Peps-PEG5K +MMP) exhibited superior internalization efficiency and significantly reduced clonogenic survival compared to controls. Notably, acidic pH (~6.5) induced MMP-2-mediated cleavage of the GPLGVRG peptide, accelerating S-Peps-PEG5K dissociation and facilitating drug release. Conclusions: MMP-2-responsive, cleavable PEGylated liposomes markedly improve PTX accumulation and controlled release at tumor sites by dynamically modulating their stealth properties, offering a promising strategy to enhance chemotherapy efficacy in breast cancer. Full article
Show Figures

Graphical abstract

18 pages, 2162 KiB  
Article
Simultaneous Decontamination for Ammonia Nitrogen and Phosphate Efficiently by Crystal Morphology MgO-Coated Functional Biochar Derived from Sludge and Sunflower Stalk
by Zhiwei Li, Jingxin Huang, Weizhen Zhang, Hao Yu and Yin Wang
Toxics 2025, 13(7), 577; https://doi.org/10.3390/toxics13070577 - 9 Jul 2025
Viewed by 366
Abstract
Eutrophication driven by nitrogen and phosphorus discharge remains a critical global environmental challenge. This study developed a sustainable strategy for synergistic nutrient removal and recovery by fabricating MgO-coated biochar (Mg-MBC600) through co-pyrolysis of municipal sludge and sunflower stalk (300–700 °C). Systematic investigations revealed [...] Read more.
Eutrophication driven by nitrogen and phosphorus discharge remains a critical global environmental challenge. This study developed a sustainable strategy for synergistic nutrient removal and recovery by fabricating MgO-coated biochar (Mg-MBC600) through co-pyrolysis of municipal sludge and sunflower stalk (300–700 °C). Systematic investigations revealed temperature-dependent adsorption performance, with optimal nutrient removal achieved at 600 °C pyrolysis. The Mg-MBC600 composite exhibited enhanced physicochemical properties, including a specific surface area of 156.08 m2/g and pore volume of 0.1829 cm3/g, attributable to magnesium-induced structural modifications. Advanced characterization confirmed the homogeneous dispersion of MgO nanoparticles (~50 nm) across carbon matrices, forming active sites for chemisorption via electron-sharing interactions. The maximum adsorption capacities of Mg-MBC600 for nitrogen and phosphorus reached 84.92 mg/L and 182.27 mg/L, respectively. Adsorption kinetics adhered to the pseudo-second-order model, indicating rate-limiting chemical bonding mechanisms. Equilibrium studies demonstrated hybrid monolayer–multilayer adsorption. Solution pH exerted dual-phase control: acidic conditions (pH 3–5) favored phosphate removal through Mg3(PO4)2 precipitation, while neutral–alkaline conditions (pH 7–8) promoted NH4+ adsorption via MgNH4PO4 crystallization. XPS analysis verified that MgO-mediated chemical precipitation and surface complexation dominated nutrient immobilization. This approach establishes a circular economy framework by converting waste biomass into multifunctional adsorbents, simultaneously addressing sludge management challenges and enabling eco-friendly wastewater remediation. Full article
(This article belongs to the Special Issue Environmental Study of Waste Management: Life Cycle Assessment)
Show Figures

Figure 1

24 pages, 4556 KiB  
Article
Simulation of Rock Failure Cone Development Using a Modified Load-Transferring Anchor Design
by Kamil Jonak, Robert Karpiński, Andrzej Wójcik and Józef Jonak
Appl. Sci. 2025, 15(14), 7653; https://doi.org/10.3390/app15147653 - 8 Jul 2025
Viewed by 377
Abstract
This study investigates a novel anchor-based method for controlled rock fragmentation, designed as an alternative to conventional excavation or explosive techniques. The proposed solution utilizes a specially modified undercut anchor that induces localized failure within the rock mass through radial expansion rather than [...] Read more.
This study investigates a novel anchor-based method for controlled rock fragmentation, designed as an alternative to conventional excavation or explosive techniques. The proposed solution utilizes a specially modified undercut anchor that induces localized failure within the rock mass through radial expansion rather than traditional pull-out forces. Finite Element Method simulations, performed in ABAQUS with an extended fracture mechanics approach, were used to model the initiation and propagation of failure zones in sandstone. The results revealed a two-phase cracking process starting beneath the anchor’s driving element and progressing toward the rock’s free surface, forming a breakout cone. This behavior significantly deviates from conventional prediction models, such as the 45° cone or Concrete Capacity Design methods (cone 35°). The simulations were supported by field tests, confirming both the feasibility and practical advantages of the proposed anchor system, especially in confined or safety-critical environments. The findings offer valuable insights for the development of compact and efficient rock fragmentation technologies suitable for mining, rescue operations, and civil engineering applications. Full article
(This article belongs to the Special Issue Advances and Techniques in Rock Fracture Mechanics)
Show Figures

Figure 1

18 pages, 2433 KiB  
Article
Thermodynamic Assessment of the Pyrometallurgical Recovery of a Pb-Ag Alloy from a Mixture of Ammonium Jarosite–Lead Paste Wastes
by Jose Enrique Sanchez Vite, Alejandro Cruz Ramírez, Manuel Eduardo Flores Favela, Ricardo Gerardo Sánchez Alvarado, José Antonio Romero Serrano, Margarita García Hernández, Teresita del Refugio Jiménez Romero and Juan Cancio Jiménez Lugos
Recycling 2025, 10(4), 136; https://doi.org/10.3390/recycling10040136 - 8 Jul 2025
Viewed by 573
Abstract
A previously pyrometallurgical process, developed to obtain a Pb-Ag alloy and a slag rich in sulfur from the recycling of a mixture of industrial wastes of jarosite and lead paste, was thermodynamically assessed at 1200 °C. The industrial jarosite sourced from a Mexican [...] Read more.
A previously pyrometallurgical process, developed to obtain a Pb-Ag alloy and a slag rich in sulfur from the recycling of a mixture of industrial wastes of jarosite and lead paste, was thermodynamically assessed at 1200 °C. The industrial jarosite sourced from a Mexican zinc hydrometallurgical plant corresponded to an ammonium jarosite with a measurable silver content. The specific heat capacity (Cp) of the ammonium jarosite was obtained from TGA and DSC measurements, as well as the thermodynamic functions of enthalpy, entropy, and Gibbs free energy. The Cp was successfully modeled using polynomial regression, with a second-degree polynomial employed to describe the low-temperature behavior. The thermodynamic data generated were input into the thermodynamic software FactSage 8.2 for modeling of the lead paste–ammonium jarosite-Na2CO3-SiC system and represented by stability phase diagrams. The thermodynamic assessment of the pyrometallurgical process predicted compounds formed at high temperatures, showing that a Pb-Ag alloy and a slag rich in Na, S, and Fe (NaFeS2 and NaFeO2) were obtained. The compounds formed evidence of the effective sulfur retention in the slag, which is crucial for mitigating SO2 emissions during high-temperature treatments. The experimental compounds, after solidification, were determined by X-ray diffraction measurements to be Na2Fe(SO4)2 and Na2(SO4), which reasonably match the thermodynamic assessment. The heat capacity of the ammonium jarosite provides essential thermodynamic insights into the compositional complexities of industrial waste, which are particularly relevant for thermodynamic modeling and process optimization in pyrometallurgical systems aimed at metal recovery and residue valorization. Full article
Show Figures

Figure 1

22 pages, 1664 KiB  
Article
Combination of Acid and Base Activation of Montmorillonite Clay and Its Impact on the Basic Blue-41 Removal Properties: Regeneration and Single Batch Design
by Thamer S. Alraddadi, Rawan Al-Faze, Saheed A. Popoola, Mohd Gulfam Alam, Souad Rakass, Hmoud Al Dmour and Fethi Kooli
Inorganics 2025, 13(7), 228; https://doi.org/10.3390/inorganics13070228 - 7 Jul 2025
Viewed by 524
Abstract
The treatment with an alkali (sodium hydroxide) solution of acid-activated montmorillonite clay minerals resulted in a reduction in specific surface area. However, a significant enhancement in the removal of basic blue-41 dye solution was achieved compared to acid-activated samples only (first step of [...] Read more.
The treatment with an alkali (sodium hydroxide) solution of acid-activated montmorillonite clay minerals resulted in a reduction in specific surface area. However, a significant enhancement in the removal of basic blue-41 dye solution was achieved compared to acid-activated samples only (first step of activation) and to the raw montmorillonite clay. The obtained products were characterized using different techniques. The results indicated that the acid-activated montmorillonites exhibited different physicochemical properties than the starting raw montmorillonite, with a reduction in the cation exchange capacity and improvements in the specific surface area (from 5 m2/g to 274 m2/g) and total pore volume (from 0.031 cm3/g to 0.450 cm3/g) due to the formation of the amorphous silica phase. However, the treatment with NaOH solution was accompanied by significant reductions in the specific surface area (from 274 m2/g to 18 m2/g) and total pore volume (from 0.450 cm3/g to 0.02 cm3/g) due to the dissolution of the formed amorphous silica phase, as confirmed through 29Si MAS NMR and FTIR techniques. In addition, the SiO2/Al2O3 molar ratios were close to those of the starting montmorillonite clay. The removal of the cationic basic blue-41 was optimized under different conditions, such as different initial concentrations, adsorbent doses, and pHs of the dye solution. The maximum removal capacities of acid-activated clays were in the range of 45 mg/g to 80 mg/g and decreased with the extent of the acid activation process. However, the capacities were enhanced after NaOH treatment and reached values in the range of 80 to 120 mg/g. Enhancing the surface area had less of an impact on the materials’ removal ability. The obtained materials performed well in seven adsorption–regeneration cycles, showing a 70% reduction in removal effectiveness. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

25 pages, 4901 KiB  
Article
Evolutionary Patterns and Mechanism Optimization of Public Participation in Community Regeneration Planning: A Case Study of Guangzhou
by Danhong Fu, Tingting Chen and Wei Lang
Land 2025, 14(7), 1394; https://doi.org/10.3390/land14071394 - 2 Jul 2025
Viewed by 476
Abstract
Against the backdrop of China’s urban transformation from incremental expansion to stock regeneration, community regeneration has emerged as a critical mechanism for enhancing urban governance efficacy. As fundamental units of urban systems, the regeneration of communities requires comprehensive approaches to address complex socio-spatial [...] Read more.
Against the backdrop of China’s urban transformation from incremental expansion to stock regeneration, community regeneration has emerged as a critical mechanism for enhancing urban governance efficacy. As fundamental units of urban systems, the regeneration of communities requires comprehensive approaches to address complex socio-spatial challenges, with public participation serving as the core driver for achieving sustainable renewal goals. However, significant regional disparities persist in the effectiveness of public participation across China, necessitating the systematic institutionalization of participatory practices. Guangzhou, as a pioneering city in institutional innovation and the practical exploration of urban regeneration, provides a representative case for examining the evolutionary trajectory of participatory planning. This research employs Arnstein’s Ladder of Participation theory, utilizing literature analysis and comparative case studies to investigate the evolution of participatory mechanisms in Guangzhou’s community regeneration over four decades. The study systematically examined the transformation of public engagement models across multiple dimensions, including organizational frameworks of participation, participatory effectiveness, diversified financing models, and the innovation of policy instruments. Three paradigm shifts were identified: the (1) transition of participants from “passive responders” to “active constructors”, (2) advancement of engagement phases from “fragmented intervention” to “whole-cycle empowerment”, and (3) evolution of participation methods from “unidirectional communication” to “collaborative co-governance”. It identifies four drivers of participatory effectiveness: policy frameworks, financing mechanisms, mediator cultivation, and engagement platforms. To enhance public engagement efficacy, the research proposes the following: (1) a resilient policy adaptation mechanism enabling dynamic responses to multi-stakeholder demands, (2) a diversified financing framework establishing a “government guidance + market operation + resident contribution” cost-sharing model, (3) a professional support system integrating “localization + specialization” capacities, and (4) enhanced digital empowerment and institutional innovation in participatory platform development. These mechanisms collectively form an evolutionary pathway from “symbolic participation” to “substantive co-creation” in urban regeneration governance. Full article
Show Figures

Figure 1

15 pages, 5572 KiB  
Article
Enhancing the Performance of LLO Through Vanadium Doping and Abundant Exposed (010) Planes in Secondary Particles
by Shenghua Yuan, Chengwen Ren, Ziwei Liu, Yu Chen and Wenhui Wang
Nanomaterials 2025, 15(13), 1017; https://doi.org/10.3390/nano15131017 - 1 Jul 2025
Viewed by 312
Abstract
Lithium-rich layered oxide (LLO) has received extensive attention from researchers due to its high initial discharge capacity (≥250 mAh g−1). However, defects such as its high initial irreversible capacity, voltage decay, and poor rate performance have severely limited its commercialization. These [...] Read more.
Lithium-rich layered oxide (LLO) has received extensive attention from researchers due to its high initial discharge capacity (≥250 mAh g−1). However, defects such as its high initial irreversible capacity, voltage decay, and poor rate performance have severely limited its commercialization. These issues arise because the Li2MnO3 component in LLO is activated during the initial cycle, leading to the participation of lattice oxygen anions (O2−) in redox reactions. This results in irreversible oxygen loss (O2) and subsequent structural phase transitions. To address these challenges, this study focuses on Li1.2Ni0.13Co0.13Mn0.54O2 as the host material, utilizing abundant exposed (010) plane secondary particles and employing a vanadium (V) doping strategy to enhance electrochemical performance. The V forms strong V-O bonds with the lattice oxygen, effectively suppressing irreversible oxygen loss and improving structural stability. The results demonstrate that the LLO achieves the best electrochemical performance as the doping amount is 1 mol%, and the capacity retention improves from 74.5% (undoped) to 86% (V-doped) after 140 cycles at 0.5 C. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

17 pages, 2209 KiB  
Article
Polymorphism and Phase-Transition Thermodynamic Properties of Phenazone (Antipyrine)
by Dmitrii N. Bolmatenkov, Ilyas I. Nizamov, Andrey A. Sokolov, Airat A. Notfullin, Boris N. Solomonov and Mikhail I. Yagofarov
Molecules 2025, 30(13), 2814; https://doi.org/10.3390/molecules30132814 - 30 Jun 2025
Viewed by 280
Abstract
In this work, detailed information on the phase-transition thermodynamics of the analgesic and antipyretic drug phenazone, also known as antipyrine, is reported. It was found that the compound forms two polymorphs. Fusion thermodynamics of both forms was studied between 298.15 K and T [...] Read more.
In this work, detailed information on the phase-transition thermodynamics of the analgesic and antipyretic drug phenazone, also known as antipyrine, is reported. It was found that the compound forms two polymorphs. Fusion thermodynamics of both forms was studied between 298.15 K and Tm using the combination of differential scanning calorimetry and solution calorimetry. The vapor pressures above crystalline and liquid phenazone were measured for the first time using thermogravimetry—fast scanning calorimetry technique. These studies were complemented by computation of the ideal gas entropy and heat capacity and by measurements of the condensed phase heat capacities. On the basis of experiments performed, we derived sublimation and vaporization enthalpies and vapor pressure above liquid and both crystalline modifications of phenazone in a wide range of temperatures. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

38 pages, 1394 KiB  
Article
A Ladder of Urban Resilience: An Evolutionary Framework for Transformative Governance of Communities Facing Chronic Crises
by Dario Esposito
Sustainability 2025, 17(13), 6010; https://doi.org/10.3390/su17136010 - 30 Jun 2025
Viewed by 600
Abstract
This paper explores the concept of evolutionary urban resilience by framing cities as complex, open, and adaptive Social-Ecological-Technological Systems (SETS), shaped by multi-scalar dynamics, systemic uncertainty, and interdependent crises. It challenges the reductionist view of resilience as a fixed capacity or linear sequence [...] Read more.
This paper explores the concept of evolutionary urban resilience by framing cities as complex, open, and adaptive Social-Ecological-Technological Systems (SETS), shaped by multi-scalar dynamics, systemic uncertainty, and interdependent crises. It challenges the reductionist view of resilience as a fixed capacity or linear sequence of risk management phases, and instead proposes a process-based paradigm rooted in learning, creativity, and the ability to navigate disequilibrium. The framework defines urban resilience as a continuous and iterative transformation process, supported by: (i) a combination of tangible and intangible qualities activated according to problem typology; (ii) cross-domain processes involving infrastructures, flows, governance, networks, and community dynamics; and (iii) the engagement of diverse agents in shared decision-making and coordinated action. These dimensions unfold across three incremental and interdependent scenarios—baseline, critical, and chronic crisis—forming a ladder of resilience that guides communities through escalating challenges. Special emphasis is placed on the role of Information and Communication Technologies (ICTs) as relational and adaptive tools enabling distributed intelligence and inclusive governance. The framework also outlines concrete operational and policy implications for cities aiming to build anticipatory and transformative resilience capacities. Applied to the case of Taranto, the approach offers insights into how structurally fragile communities facing conflicting adaptive trajectories can unlock transformative potential. Ultimately, the paper calls for a shift from government to governance, from control to co-creation, and from reactive adaptation to chaos generativity, recasting urban resilience as an evolving project of collective agency, systemic reconfiguration, and co-production of emergent urban futures. Full article
Show Figures

Figure 1

16 pages, 6251 KiB  
Article
Removal of HF via CaCl2-Modified EAF Slag: A Waste-Derived Sorbent Approach
by Go-eun Kim, Seong-ho Jang and Young-chae Song
Water 2025, 17(13), 1919; https://doi.org/10.3390/w17131919 - 27 Jun 2025
Viewed by 454
Abstract
This study evaluates CaCl2-modified electric arc furnace (EAF) slag for fluoride removal from synthetic hydrofluoric acid (HF) wastewater. Adsorption performance was assessed under different particle sizes (850 μm–1.7 mm, 250–850 μm, and <250 μm), temperatures (25–45 °C), and initial pH values [...] Read more.
This study evaluates CaCl2-modified electric arc furnace (EAF) slag for fluoride removal from synthetic hydrofluoric acid (HF) wastewater. Adsorption performance was assessed under different particle sizes (850 μm–1.7 mm, 250–850 μm, and <250 μm), temperatures (25–45 °C), and initial pH values (2–11), using oxidized (EOS) and reduced (ERS) slags in raw and modified (C1, C2) forms. Characterization included isotherm modeling (Langmuir and Freundlich), X-ray diffraction (XRD), and inductively coupled plasma mass spectrometry (ICP-MS). The CaCl2-modified slags (particularly EOS-C2 and ERS-C2) demonstrated stable performance under all conditions. ERS-C2 achieved the maximum adsorption capacity of 16.13 mg/g at 600 mg F/L. EOS-C2 maintained capacities above 8.0 mg/g across pH 2–11, whereas unmodified slag showed a decline in performance above pH 5, with residual concentrations exceeding 250 mg F/L and capacities dropping to 1.14–2.14 mg/g. XRD analysis indicated increased amorphization and enhancement of dicalcium silicate and brownmillerite phases after modification. Isotherm fitting showed better agreement with the Freundlich model, suggesting multilayer adsorption. Leaching tests confirmed that Cr, Cu, and As concentrations were within safe limits, while Pb and Cd were not detected. These results demonstrate the strong potential of CaCl2-modified EAF slag as an efficient, pH-stable, and environmentally safe adsorbent for treating HF-containing industrial wastewater. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop