Metal-Ion-Free Preparation of κ-Carrageenan/Cellulose Hydrogel Beads Using an Ionic Liquid Mixture for Effective Cationic Dye Removal
Abstract
1. Introduction
2. Results and Discussion
2.1. Characteristics of κ-Carrageenan/Cellulose Hydrogel Beads
2.2. Swelling Property of κ-Carrageenan/Cellulose Hydrogel Beads
2.3. Adsorption Property of κ-Carrageenan/Cellulose Hydrogel Beads for CV
2.3.1. Kinetic Study of CV Adsorption on κ-Carrageenan/Cellulose Hydrogel Beads
2.3.2. Isotherm Study of CV Adsorption on κ-Carrageenan/Cellulose Hydrogel Beads
2.3.3. Thermodynamic Study of CV Adsorption on κ-Carrageenan/Cellulose Hydrogel Beads
2.3.4. Effect of pH on CV Adsorption by κ-Carrageenan/Cellulose Hydrogel Beads
2.4. Reusability of κ-Carrageenan/Cellulose Hydrogel Beads
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of κ-Carrageenan/Cellulose Hydrogel Beads
4.3. Characterization of κ-Carrageenan/Cellulose Hydrogel Beads
4.4. Swelling Ratio of κ-Carrageenan/Cellulose Hydrogel Beads
4.5. Dye Adsorption on κ-Carrageenan/Cellulose Hydrogel Beads
4.6. Dye Desorption and Bead Reusability
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | three-dimensional |
[Emim][Ac] | 1-ethyl-3-methylimidazolium acetate |
CV | crystal violet |
DMF | N,N-dimethylforamide |
DMSO | dimethyl sulfoxide |
SEM | scanning electron microscopy |
EtOH | ethanol |
KCl | potassium chloride |
qe | adsorption capacity at equilibrium |
qt | adsorption capacity at time t |
C0 | concentration of dye at initial |
Ce | concentration of dye at equilibrium |
Ct | concentration of dye at time t |
RL | dimensionless separation factor |
T | temperature |
R | gas constant |
V | volume of solution |
m | mass of adsorbent |
XCN | carrageenan mass fraction in the bead |
CN0C7 | κ-carrageenan/cellulose (0:7) hydrogel bead |
CN1C6 | κ-carrageenan/cellulose (1:6) hydrogel bead |
CN2C5 | κ-carrageenan/cellulose (2:5) hydrogel bead |
CN3C4 | κ-carrageenan/cellulose (3:4) hydrogel bead |
CN4C3 | κ-carrageenan/cellulose (4:3) hydrogel bead |
References
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Priya, A.S.; Premanand, R.; Ragupathi, I.; Bhaviripudi, V.R.; Aepuru, R.; Kannan, K.; Shanmugaraj, K. Comprehensive review of hydrogel synthesis, characterization, and emerging applications. J. Compos. Sci. 2024, 8, 457. [Google Scholar] [CrossRef]
- El Sayed, M.M. Production of polymer hydrogel composites and their applications. J. Polym. Environ. 2023, 31, 2855–2879. [Google Scholar] [CrossRef]
- Asadi, K.; Samiraninezhad, N.; Akbarizadeh, A.R.; Amini, A.; Gholami, A. Stimuli-responsive hydrogel based on natural polymers for breast cancer. Front. Chem. 2024, 12, 1325204. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.Z.; Fan, Y.Z.; Cheng, S.J.; Wei, F.J.; Gao, J.; Wang, C.X.; Song, B.S.; Tan, S.L.; Gao, S.L.; Kang, J.J.; et al. A bibliometric analysis of hydrogel research in various fields: The trends and evolution of hydrogel application. J. Nanobiotechnol. 2025, 23, 70. [Google Scholar] [CrossRef] [PubMed]
- Vlierberghe, S.V.; Dubruel, P.; Schacht, E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules 2011, 12, 1387–1408. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, W.; Du, Y.; Xiao, Y.; Wang, X.; Zhang, S.; Wang, J.; Mao, C. Green gas-mediated cross-linking generates biomolecular hydrogels with enhanced strength and excellent hemostasis for wound healing. ACS Appl. Mater. Interfaces 2020, 12, 13622–13633. [Google Scholar] [CrossRef]
- Dragan, E.S. Design and applications of interpenetrating polymer network hydrogels: A review. Chem. Eng. J. 2014, 243, 572–590. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Aghaie, H.; Sheykhloie, H.; Vardini, M.T.; Etemadi, H. Synthesis of Car/Alg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr. Polym. 2013, 98, 358–365. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Rahmani, Z.; Mosallanezhad, A.; Karami, S.; Shahriari, M. Effect of magnetic laponite RD on swelling and dye adsorption behaviors of κ-carrageenan-based nanocomposite hydrogels. Desalination Water Treat. 2016, 57, 20582–20596. [Google Scholar] [CrossRef]
- Nakayama, A.; Kakugo, A.; Gong, J.P.; Osada, Y.; Takai, M.; Erata, T.; Kawano, S. High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater. 2004, 14, 1124–1128. [Google Scholar] [CrossRef]
- Campo, V.L.; Kawano, D.F.; Silva, D.B.; Carvalho, I. Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Kumar, S.; Bhatt, A.; Purohit, P. Carrageenan modifications: Improving biomedical applications. J. Polym. Environ. 2025, 33, 1667–1688. [Google Scholar] [CrossRef]
- Necas, J.; Bartosikova, L. Carrageenan: A review. Vet. Med. 2013, 58, 187–205. [Google Scholar] [CrossRef]
- Li, L.; Ni, R.; Shao, Y.; Mao, S. Carrageenan and its applications in drug delivery. Carbohydr. Polym. 2014, 103, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ruiter, G.A.D.; Rudolph, B. Carrageenan biotechnology. Trends Food Sci. Technol. 1997, 8, 389–395. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Iravani, S.; Zoroufi, S.; Hosseinzadeh, H. Magnetic and K⁺-cross-linked kappa-carrageenan nanocomposite beads and adsorption of crystal violet. Iran. Polym. J. 2014, 23, 335–344. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Alvi, T.; Biswas, A.; Shityakov, S.; Gusinskaia, T.; Lavrentev, F.; Dutta, K.; Khan, M.K.I.; Stephen, J.; Radhakrishnan, M. Food gels: Principles, interaction mechanisms and its microstructure. Crit. Rev. Food Sci. Nutr. 2023, 63, 12530–12551. [Google Scholar] [CrossRef]
- Ghasempour, A.; Allaf, M.R.N.; Charoghdoozi, K.; Dehghan, H.; Mahmoodabadi, S.; Bazrgaran, A.; Savoji, H.; Sedighi, M. Stimuli-responsive carrageenan-based biomaterials for biomedical applications. Int. J. Biol. Macromol. 2024, 291, 138920. [Google Scholar] [CrossRef]
- Arami, M.; Limaee, N.Y.; Mahmoodi, N.M.; Tabrizi, N.S. Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies. J. Colloid Interface Sci. 2005, 288, 371–376. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Asgari, A. Synthesis of kappa-carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym. Bull. 2013, 70, 2451–2470. [Google Scholar] [CrossRef]
- Bretanha, M.S.; Rochefort, M.C.; Dotto, G.L.; Lima, E.C.; Dias, S.L.P.; Pavan, F.A. Punica granatum husk (PGH), a powdered biowaste material for the adsorption of methylene blue dye from aqueous solution. Desalination Water Treat. 2016, 57, 3194–3204. [Google Scholar] [CrossRef]
- Thakura, S.; Pandeya, S.; Arotibaa, O.A. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr. Polym. 2016, 153, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Aragaw, T.A.; Bogale, F.M. Biomass-based adsorbents for removal of dyes from wastewater: A review. Front. Environ. Sci. 2021, 9, 764958. [Google Scholar] [CrossRef]
- Ramin, B.B.; Rufato, K.B.; Sabino, R.M.; Popat, K.C.; Kipper, M.J.; Martins, A.F.; Muniz, E.C. Chitosan/iota-carrageenan/curcumin-based materials performed by precipitating miscible solutions prepared in ionic liquid. J. Mol. Liq. 2019, 290, 111199. [Google Scholar] [CrossRef]
- Serra, J.P.; Fernandes, L.C.; Correia, D.M.; Tubio, C.R.; Vilas-Vilela, J.L.; Tariq, M.; Esperança, J.M.S.S.; Costa, C.M.; Lanceros-Mendez, S. Environmentally friendly carrageenan-based ionic-liquid driven soft actuators. Mater. Adv. 2022, 3, 937–945. [Google Scholar] [CrossRef]
- Kim, M.H.; An, S.; Won, K.; Kim, H.J.; Lee, S.H. Entrapment of enzymes into cellulose–biopolymer composite hydrogel beads using biocompatible ionic liquid. J. Mol. Catal. B Enzym. 2012, 75, 68–72. [Google Scholar] [CrossRef]
- Sharma, G.; Khosla, A.; Kumar, A.; Kaushal, N.; Sharma, S.; Naushad, M.; Vo, D.V.N.; Iqbal, J.; Stadler, F.J. A comprehensive review on the removal of noxious pollutants using carrageenan-based advanced adsorbents. Chemosphere 2022, 289, 133100. [Google Scholar] [CrossRef]
- Jo, S.; Oh, Y.; Park, S.; Kan, E.; Lee, S.H. Cellulose/carrageenan/TiO2 nanocomposite for adsorption and photodegradation of cationic dye. Biotechnol. Bioprocess Eng. 2017, 22, 734–738. [Google Scholar] [CrossRef]
- Ahn, Y.; Hu, D.; Hong, J.H.; Lee, S.H.; Kim, H.J.; Kim, H. Effect of co-solvent on the spinnability and properties of electrospun cellulose nanofiber. Carbohydr. Polym. 2012, 89, 340–345. [Google Scholar] [CrossRef]
- Kang, J.; Yun, S.I. Double network hydrogel films based on cellulose derivatives and κ-carrageenan with enhanced mechanical strength and superabsorbent properties. Gels 2023, 9, 20. [Google Scholar] [CrossRef]
- Gholami, M.; Vardini, M.T.; Mahdavinia, G.R. Investigation of the effect of magnetic particles on the crystal violet adsorption onto a novel nanocomposite based on κ-carrageenan-g-poly(methacrylic acid). Carbohydr. Polym. 2016, 136, 772–781. [Google Scholar] [CrossRef]
- Lee, J.W.; Han, J.; Choi, Y.K.; Park, S.; Lee, S.H. Reswellable alginate/activated carbon/carboxymethyl cellulose hydrogel beads for ibuprofen adsorption from aqueous solutions. Int. J. Biol. Macromol. 2023, 249, 126053. [Google Scholar] [CrossRef]
- Şen, M.; Erboz, E.N. Determination of critical gelation conditions of κ-carrageenan by viscosimetric and FT-IR analyses. Food Res. Int. 2010, 43, 1361–1364. [Google Scholar] [CrossRef]
- Liew, J.W.Y.; Loh, K.S.; Ahmad, A.; Lim, K.L.; Wan Daud, W.R. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane. PLoS ONE 2017, 12, e0185313. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, E.A.; Algethami, F.K.; AlSalem, H.S.; Binkadem, M.S.; Saad, F.A.; El-Sayyad, G.S.; Raza, N.; Rehman, K.U. Facile synthesis and characterization of novel nanostructures for the efficient disposal of crystal violet dye from aqueous media. Inorganics 2023, 11, 339. [Google Scholar] [CrossRef]
- Hilmawan, F.P.; Amalia, K.R.; Iqbal, M.; Chairurrizky, S.; Triadhi, U. Kinetic Study of Pb (II) Adsorption on food-grade κ-carrageenan beads. J. Serambi Eng. 2024, 9, 10193–10200. [Google Scholar]
- Mahdavinia, G.R.; Bazmizeynabad, F.; Seyyedi, B. κ-Carrageenan beads as new adsorbent to remove crystal violet dye from water: Adsorption kinetics and isotherm. Desalination Water Treat. 2015, 53, 2529–2539. [Google Scholar] [CrossRef]
- Abramian, L.; El-Rassy, H. Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem. Eng. J. 2009, 150, 403–410. [Google Scholar] [CrossRef]
- Duman, O.; Tunç, S.; Bozoğlan, B.K.; Polat, T.G. Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite. J. Alloys Compd. 2016, 687, 370–383. [Google Scholar] [CrossRef]
- Tang, H.; Zhou, W.; Zhang, L. Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J. Hazard. Mater. 2012, 209–210, 218–225. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Massoudi, A.; Baghban, A.; Massoumi, B. Novel carrageenan-based hydrogel nanocomposites containing laponite RD and their application to remove cationic dye. Iran. Polym. J. 2012, 21, 609–619. [Google Scholar] [CrossRef]
- Al-Degs, Y.; Khraisheh, M.A.M.; Allen, S.J.; Ahmad, M.N. Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res. 2000, 34, 927–935. [Google Scholar] [CrossRef]
- Hosseinzadeh, H. Microwave-assisted synthesis of kappa-carrageenan beads containing silver nanoparticles with dye adsorption and antibacterial properties. J. Nanostruct. 2016, 6, 132–139. [Google Scholar]
- Mahdavinia, G.R.; Massoumi, B.; Jalili, K.; Kiani, G. Effect of sodium montmorillonite nanoclay on the water absorbency and cationic dye removal of carrageenan-based nanocomposite superabsorbents. J. Polym. Res. 2012, 19, 9947–9959. [Google Scholar] [CrossRef]
- Croitoru, C.; Pop, M.A.; Bedo, T.; Cosnita, M.; Roata, I.C.; Hulka, I. Physically crosslinked poly(vinyl alcohol)/κ-carrageenan hydrogels: Structure and applications. Polymers 2020, 12, 560. [Google Scholar] [CrossRef] [PubMed]
- Özcan, A.; Öncü, E.M.; Özcan, A.S. Adsorption of Acid Blue 193 from aqueous solutions onto DEDMA-sepiolite. J. Hazard. Mater. B 2006, 129, 244–252. [Google Scholar] [CrossRef]
- Yu, Y.; Zhuang, Y.; Wang, Z. Adsorption of water-soluble dye onto functionalized resin. J. Colloid Interface Sci. 2001, 242, 288–293. [Google Scholar] [CrossRef]
- Qiao, H.; Zhou, Y.; Yu, F.; Wang, E.; Min, Y.; Huang, Q.; Pang, L.; Ma, T. Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 2015, 141, 297–303. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, M.; Wang, X.; Huang, Q.; Min, Y.; Ma, T.; Niu, J. Removal of crystal violet by a novel cellulose-based adsorbent: Comparison with native cellulose. Ind. Eng. Chem. Res. 2014, 53, 5498–5506. [Google Scholar] [CrossRef]
Sample Abbreviation | Carrageenan/Cellulose * (%/%) | Average Wet Bead Size (mm) | Average Dried Weight of Bead (mg/bead) |
---|---|---|---|
CN0C7 | 0/7 | 2.20 ± 0.02 | 0.57 ± 0.01 |
CN1C6 | 1/6 | 2.30 ± 0.04 | 0.48 ± 0.02 |
CN2C5 | 2/5 | 2.40 ± 0.04 | 0.40 ± 0.02 |
CN3C4 | 3/4 | 2.45 ± 0.02 | 0.35 ± 0.00 |
CN4C3 | 4/3 | 2.53 ± 0.03 | 0.25 ± 0.01 |
Sample | Pseudo-Second-Order Model | qe, exp (mg/g) | ||
---|---|---|---|---|
k2 (×10−3 g/mg/h) | qe, cal (mg/g) | r2 | ||
CN1C6 | 5.3 | 99.0 | 0.997 | 90.3 |
CN2C5 | 4.8 | 150.8 | 0.999 | 141.7 |
CN3C4 | 4.8 | 181.5 | 1.000 | 175.3 |
CN4C3 | 4.0 | 219.5 | 1.000 | 212.2 |
Sample | Langmuir Model | qm, exp (mg/g) | ||
---|---|---|---|---|
b (×10−3 L/mg) | qm (mg/g) | r2 | ||
CN2C5 | 143.5 | 171.6 | 0.997 | 175.7 |
CN4C3 | 122.3 | 240.5 | 1.000 | 238.1 |
Adsorbent | qm (mg/g) | Ref. |
---|---|---|
Magnetic carrageenan-g-poly(methacrylic acid) nanocomposite | 28 | [32] |
Carrageenan wet beads | 52 | [38] |
Carrageenan-poly(acrylamide)/sodium montmorillonite nanocomposite | 43 | [45] |
Carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels | 47 | [21] |
Oxidized multiwalled carbon nanotube/carrageenan/Fe3O4 composite | 47 | [40] |
Carrageenan/laponite RD | 80 | [42] |
Magnetic carrageenan beads | 85 | [17] |
Carrageenan/alginate/sodium montmorillonite nanocomposite hydrogels | 89 | [9] |
Carrageenan/poly(vinyl alcohol) hydrogels | 121 | [46] |
Magnetic carrageenan/laponite RD | 164 | [10] |
Carrageenan/silver nanoparticles beads | 243 | [44] |
Carrageenan/cellulose hydrogel beads | 241 | This work |
Sample | T (K) | ΔG° (kJ/mol) | ΔS° (J/K/mol) | ΔH° (kJ/mol) | r2 |
---|---|---|---|---|---|
CN2C5 | 298.15 | −3.0 | −39.4 | −14.7 | 0.911 |
308.15 | −2.3 | ||||
318.15 | −2.1 | ||||
CN4C3 | 298.15 | −4.0 | −54.7 | −20.2 | 0.870 |
308.15 | −3.0 | ||||
318.15 | −2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Kim, D.H.; Cha, J.E.; Park, S.; Lee, S.H. Metal-Ion-Free Preparation of κ-Carrageenan/Cellulose Hydrogel Beads Using an Ionic Liquid Mixture for Effective Cationic Dye Removal. Gels 2025, 11, 596. https://doi.org/10.3390/gels11080596
Kim D, Kim DH, Cha JE, Park S, Lee SH. Metal-Ion-Free Preparation of κ-Carrageenan/Cellulose Hydrogel Beads Using an Ionic Liquid Mixture for Effective Cationic Dye Removal. Gels. 2025; 11(8):596. https://doi.org/10.3390/gels11080596
Chicago/Turabian StyleKim, Dojin, Dong Han Kim, Jeong Eun Cha, Saerom Park, and Sang Hyun Lee. 2025. "Metal-Ion-Free Preparation of κ-Carrageenan/Cellulose Hydrogel Beads Using an Ionic Liquid Mixture for Effective Cationic Dye Removal" Gels 11, no. 8: 596. https://doi.org/10.3390/gels11080596
APA StyleKim, D., Kim, D. H., Cha, J. E., Park, S., & Lee, S. H. (2025). Metal-Ion-Free Preparation of κ-Carrageenan/Cellulose Hydrogel Beads Using an Ionic Liquid Mixture for Effective Cationic Dye Removal. Gels, 11(8), 596. https://doi.org/10.3390/gels11080596