Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (245)

Search Parameters:
Keywords = petroleum refining

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2043 KB  
Article
Kinetic and Thermodynamic Study of Vacuum Residue Cracking over Cerium-Modified Metakaolinite Catalyst
by Osamah Basil Al-Ameri, Mohammed Alzuhairi, Zaidoon Shakor, Esther Bailón-García, Francisco Carrasco-Marín and Juan Amaro-Gahete
Processes 2025, 13(10), 3126; https://doi.org/10.3390/pr13103126 - 29 Sep 2025
Abstract
Catalytic upgrading of vacuum residue (VR) is critical for enhancing fuel yield and reducing waste in petroleum refining. This study explores VR cracking over a novel cerium-loaded acidified metakaolinite catalyst (MKA800–20%Ce) prepared via calcination at 800 °C, acid leaching, and wet impregnation with [...] Read more.
Catalytic upgrading of vacuum residue (VR) is critical for enhancing fuel yield and reducing waste in petroleum refining. This study explores VR cracking over a novel cerium-loaded acidified metakaolinite catalyst (MKA800–20%Ce) prepared via calcination at 800 °C, acid leaching, and wet impregnation with 20 wt.% Ce. The catalyst was characterized using FTIR, BET, XRD, TGA, and GC–MS to assess structural, textural, and thermal properties. Catalytic cracking was carried out in a fixed-bed batch reactor at 350 °C, 400 °C, and 450 °C. The MKA800@Ce20% catalyst showed excellent thermal stability and surface activity, especially at higher temperatures. At 450 °C, the catalyst yielded approximately 11.72 g of total liquid product per 20 g of VR (representing a ~61% yield), with ~3.81 g of coke (~19.1%) and the rest as gaseous products (~19.2%). GC-MS analysis revealed enhanced production of light naphtha (LN), heavy naphtha (HN), and kerosene in the 400–450 °C range, with a clear temperature-dependent shift in product distribution. Structural analysis confirmed that cerium incorporation enhanced surface acidity, redox activity, and thermal stability, promoting deeper cracking and better product selectivity. Kinetics were investigated using an eight-lump first-order model comprising 28 reactions, with kinetic parameters optimized through a genetic algorithm implemented in MATLAB. The model demonstrated strong predictive accuracy taking into account the mean relative error (MRE = 9.64%) and the mean absolute error (MAE = 0.015) [MAE: It is the absolute difference between experimental and predicted values; MAE is dimensionless (reported simply as a number, not %. MRE is relative to the experimental value; it is usually expressed as a percentage (%)] across multiple operating conditions. The above findings highlight the potential of Ce-modified kaolinite-based catalysts for efficient atmospheric pressure VR upgrading and provide validated kinetic parameters for process optimization. Full article
(This article belongs to the Special Issue Biomass Pyrolysis Characterization and Energy Utilization)
31 pages, 1328 KB  
Review
Emerging Pollutants as Chemical Additives in the Petroleum Industry: A Review of Functional Uses, Environmental Challenges and Sustainable Control Strategies
by Limin Wang, Zi Long, Tao Gu, Feng Ju, Huajun Zhen, Hui Luan, Guangli Xiu and Zhihe Tang
Sustainability 2025, 17(19), 8559; https://doi.org/10.3390/su17198559 - 24 Sep 2025
Viewed by 14
Abstract
Emerging pollutants (EPs) associated with the petroleum industry present considerable challenges to environmental management and sustainable development. To support sustainable development and improve the control of EPs in the petroleum industry, this review systematically examines the functional uses of EPs as chemical additives [...] Read more.
Emerging pollutants (EPs) associated with the petroleum industry present considerable challenges to environmental management and sustainable development. To support sustainable development and improve the control of EPs in the petroleum industry, this review systematically examines the functional uses of EPs as chemical additives across the entire petroleum supply chain—from extraction and transportation to refining and product blending. It also summarizes the environmental emissions, health impacts, mitigation strategies, and current regulatory frameworks of EPs. In addition, some challenges have been found, namely unclear data on EPs in chemical additives, insufficient attention to high-risk areas, undefined health risks of mixing EPs, lack of green assessment of alternative technologies, and regional policy disparities, which collectively hinder the effective prevention and management ofEPs. In response, we propose future perspectives including enhanced screening and substitution of high-EP-risk additives, development of source-specific fingerprinting techniques, expanded monitoring of mixed contaminants and understudied regions, accelerated deployment of green technologies, and strengthened global cooperation under sustainability-oriented governance frameworks. This study underscores the necessity of integrated, science-based approaches to align petroleum industry practices with global sustainability goals. This review underscores the critical need for a proactive and integrated approach toward the sustainable development of the petroleum industry through the control of and reduction in EPs. Full article
Show Figures

Figure 1

14 pages, 699 KB  
Article
Determination of Nonylphenol in Crude Oils and Petroleum Products by Liquid Chromatography–Mass Spectrometry: Implications for Sustainable Petroleum Refining
by Limin Wang, Shijie Zhang, Zi Long, Feng Ju, Huajun Zhen, Hui Luan, Guangli Xiu and Zhihe Tang
Sustainability 2025, 17(18), 8485; https://doi.org/10.3390/su17188485 - 22 Sep 2025
Viewed by 126
Abstract
Nonylphenols (NPs), widely used as emulsifiers in petroleum production and refining, are compounds of environmental concern, with endocrine-disrupting effects. They can be released during oil extraction and processing, carried into petroleum products, and subsequently emitted during downstream applications such as combustion. Despite these [...] Read more.
Nonylphenols (NPs), widely used as emulsifiers in petroleum production and refining, are compounds of environmental concern, with endocrine-disrupting effects. They can be released during oil extraction and processing, carried into petroleum products, and subsequently emitted during downstream applications such as combustion. Despite these potential pathways, information on their occurrence in petroleum streams remains limited, partly due to the lack of reliable methods for measuring NPs in complex petroleum matrices. In this study, we developed an analytical method combining normal-phase chromatography (NPC), solid-phase extraction (SPE), and liquid chromatography–Orbitrap high-resolution mass spectrometry (LC–Orbitrap-HRMS) for NP determination in crude oils and petroleum products. NPC was performed using alumina (5% water deactivation) as the stationary phase. The column was eluted sequentially with n-hexane, n-hexane/dichloromethane (4:1 and 1:1, v/v), dichloromethane, and dichloromethane/methanol (2:1, v/v). The first three fractions were discarded, and the remaining two fractions were combined and further purified using a C18 SPE cartridge to analysis. The method showed high recovery (82.8 ± 2.6%) and a low detection limit (1.0 ng/g) in crude oil. Application revealed widespread occurrence of NPs, with concentrations up to 784.4 ng/g in crude oils and up to 439.1 ng/g in refined fuels, indicating that these compounds can persist through refining and may be released during downstream use. These results demonstrate that the method is suitable for the routine monitoring of NPs in petroleum-related samples and provide a practical tool for supporting sustainable refining practices and improved environmental management in the upstream oil and gas sector. Full article
Show Figures

Figure 1

26 pages, 1406 KB  
Article
Opportunities for Emission Reduction in the Transformation of Petroleum Refining
by Emilio Seijo-Bestilleiro, Ignacio Arias-Fernández, Diego Carro-López and Manuel Naveiro
Fuels 2025, 6(3), 66; https://doi.org/10.3390/fuels6030066 - 13 Sep 2025
Viewed by 482
Abstract
Crude oil accounts for approximately 40% of global energy consumption, and the refining sector is a major contributor to greenhouse gas (GHG) emissions, particularly through the production of hard-to-abate fuels such as aviation fuel and fuel oil. This study disaggregates the refinery into [...] Read more.
Crude oil accounts for approximately 40% of global energy consumption, and the refining sector is a major contributor to greenhouse gas (GHG) emissions, particularly through the production of hard-to-abate fuels such as aviation fuel and fuel oil. This study disaggregates the refinery into its key process units to identify decarbonization opportunities along the entire production chain. Units are categorized into combustion-based processes—including crude and vacuum distillation, hydrogen production, coking, and fluid catalytic cracking—and non-combustion processes, which exhibit lower emission intensities. The analysis reveals that GHG emissions can be reduced by up to 60% with currently available technologies, without requiring major structural changes. Electrification, residual heat recovery, renewable hydrogen for desulfurization, and process optimization through digital twins are identified as priority measures, many of which are also economically viable in the short term. However, achieving full decarbonization and alignment with net-zero targets will require the deployment of carbon capture technologies. These results highlight the significant potential for emission reduction in refineries and reinforce their strategic role in enabling the transition toward low-carbon fuels. Full article
Show Figures

Figure 1

19 pages, 1042 KB  
Article
Efficient Separation of Isoamyl Alcohol from Fusel Oil Using Non-Polar Solvent and Hybrid Decanter–Distillation Process
by Mihaela Neagu, Diana-Luciana Cursaru, Alexey Missyurin and Octavian Goian
Appl. Sci. 2025, 15(18), 9954; https://doi.org/10.3390/app15189954 - 11 Sep 2025
Viewed by 324
Abstract
Fusel oil is a fermentation by-product composed of a complex mixture of alcohols (ethanol, isoamyl, propanol, and butanol isomers) and water. The primary challenges lie in water separation and the recovery of the valuable component, isoamyl alcohol. In this work, we demonstrate an [...] Read more.
Fusel oil is a fermentation by-product composed of a complex mixture of alcohols (ethanol, isoamyl, propanol, and butanol isomers) and water. The primary challenges lie in water separation and the recovery of the valuable component, isoamyl alcohol. In this work, we demonstrate an efficient separation process using a non-polar, non-toxic, water-immiscible solvent, namely hexane, to reduce the water content of fusel oil from an initial 14 wt.% to 1.46 wt.% at a solvent to fusel oil ratio of 1:1 and to 0.55 wt.% at a 4:1 ratio. The proposed separation process was designed with a 1:1 ratio to minimize equipment size. In the first step, a decanter vessel enabled phase separation, followed by two distillation columns. The bottom product from the second column achieved a purity of 99.29 wt.% isoamyl alcohol (97.91 wt.% isomers and 1.38 wt.% hexanol) with a recovery rate of 97.33%. The distillate flows were directed to the second decanter vessel, recovering 99.665% of hexane. This study confirms the effectiveness of the proposed process in separation of highly valuable isoamyl alcohol from fusel oil via a hybrid decanter–distillation scheme. The proposed process attains a specific energy consumption in the reboilers of 0.65 kWh per kilogram of product (equivalent to 1.21 kg of steam per kilogram of product). This represents a notable improvement compared to the configuration reported by other authors for the separation of isoamyl alcohol using divided-wall columns (DWC), which requires 2785 kJ per kilogram of product (i.e., 0.774 kWh per kilogram of product). An economic analysis was performed to compare the process of separating isoamyl alcohol from fusel oil using the minimum hexane ratio (1:1) and the maximum ratio (4:1). All cost values increased significantly with higher solvent ratio. Remaining challenges include the purification of waste aqueous streams and future valorization of the hexane–alcoholic mixture. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

35 pages, 1966 KB  
Article
Crude Oil Yield Estimation: Recent Advances and Technological Progress in the Oil Refining Industry
by Wan Nazihah Liyana Wan Jusoh, Madiah Binti Omar, Abdul Sami, Kishore Bingi and Rosdiazli Ibrahim
Sensors 2025, 25(17), 5511; https://doi.org/10.3390/s25175511 - 4 Sep 2025
Viewed by 1383
Abstract
Oil refineries depend greatly on the estimation of crude oil properties in order to understand the oil’s behaviour and the product fractions expected from the refining process. In yield estimation, the crude oil source and variant can cause variability in prediction and lead [...] Read more.
Oil refineries depend greatly on the estimation of crude oil properties in order to understand the oil’s behaviour and the product fractions expected from the refining process. In yield estimation, the crude oil source and variant can cause variability in prediction and lead to the need for repeatable analysis. The necessity for fast, accurate, and high-generalization yield estimation initiates the framework of this review. This paper aims to comprehensively review the available techniques for estimating the yield of petroleum products in the petroleum refining industry. The review provides a brief overview of petroleum refining processes and high-value products, followed by a description of the traditional method, which utilizes laboratory analysis to offer detailed findings, but requires a tedious methodology. The improvement of yield estimation leads to process simulation, modelling, and machine learning, enabling a fast response and better prediction with higher accuracy. Thorough case studies related to simulation software, models, and algorithms are presented to discover the process and model development, applications, advantages, and drawbacks. Enhancing petroleum product yield estimation provides reliable techniques for oil refiners that enable them to achieve optimized production aligned with sustainability and modernization goals. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

26 pages, 7753 KB  
Article
Reducing Carbon Footprint in Petrochemical Plants by Analysis of Entropy Generation for Flow in Sudden Pipe Contraction
by Rached Ben-Mansour
Eng 2025, 6(9), 216; https://doi.org/10.3390/eng6090216 - 2 Sep 2025
Viewed by 377
Abstract
A very important method of reducing carbon emissions is to make sure industrial plants are operated at optimal energy efficiency. The oil and petrochemical industries spend large amounts of energy in the transportation of petroleum and its various products that have high viscosities. [...] Read more.
A very important method of reducing carbon emissions is to make sure industrial plants are operated at optimal energy efficiency. The oil and petrochemical industries spend large amounts of energy in the transportation of petroleum and its various products that have high viscosities. A critical component in these plants is abrupt pipe contraction. Large amounts of energy are lost in pipe contractions. In this paper we investigate the energy losses in pipe contraction using the local entropy generation method after solving the detailed flow field around an abrupt pipe contraction. We have applied the method at various Reynolds numbers covering laminar and turbulent flow regimes. Furthermore, we have used an integral entropy analysis and found excellent agreement between the differential and integral entropy methods when the computational grid is well refined. The differential analysis was able to predict the local entropy generation and find where the large losses are located and therefore be able to minimize these losses effectively. Based on the detailed entropy generation field, it is recommended to use rounded contraction in order to reduce the losses. By introducing rounded contractions in laminar flow, the losses have been reduced by 22%. In the case of the turbulent flow regime, the losses were reduced by 96% by introducing a rounding radius to diameter ratio r/D2 of 10%. The turbulent flow results for the case of pipe entrance, which is a special case of abrupt contraction (D2/D1 goes to zero) agree very well with the present results. This work addresses a large range of D2/D1 for laminar and turbulent flows. It is recommended that companies involved in designing petrochemical plants and installations take these findings into consideration to reduce carbon emissions. These recommendations also extend to the design of equipment and piping systems for the food industry and micro-device flows. Full article
(This article belongs to the Special Issue Advances in Decarbonisation Technologies for Industrial Processes)
Show Figures

Figure 1

30 pages, 1838 KB  
Review
An Overview of Bio-Based Polymers with Potential for Food Packaging Applications
by Raluca Şomoghi, Sonia Mihai and Florin Oancea
Polymers 2025, 17(17), 2335; https://doi.org/10.3390/polym17172335 - 28 Aug 2025
Viewed by 1815
Abstract
Food packaging is an essential part of the food industry. Packaging materials are indispensable in ensuring product safety, enhancing consumer experience, and supporting sustainable practices. This review provides an update on the role of bio-based polymers, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), starch-based [...] Read more.
Food packaging is an essential part of the food industry. Packaging materials are indispensable in ensuring product safety, enhancing consumer experience, and supporting sustainable practices. This review provides an update on the role of bio-based polymers, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), starch-based polymers, and cellulose-based polymers (cellulose acetate (CA), cellulose sulphate (CS), carboxymethyl cellulose (CMC), nanocellulose (NC), and methylcellulose (MC)) for food packaging applications. Properties as mechanical, barrier and antimicrobial, as well as their eco-friendly behavior, are also summarized. The advantages and disadvantages of using bio-based polymers in food packaging are discussed. Present review also addresses the challenges associated with their preparation and highlights the potential future prospects of bio-based polymers for packaging applications. Full article
(This article belongs to the Special Issue Advances in Natural Polymers for Sustainable Food Packaging)
Show Figures

Figure 1

14 pages, 899 KB  
Article
Elemental Composition Analysis of Major Refined Petroleum Fuel Products in Ghana
by Robert Wilson and Calvin Kwesi Gafrey
Fuels 2025, 6(3), 62; https://doi.org/10.3390/fuels6030062 - 19 Aug 2025
Viewed by 517
Abstract
Samples of refined petroleum fuels from the three major oil-marketing companies (GOIL Company Limited, Total Energies Ghana Limited and Shell Vivo Ghana Limited) in Ghana have been analysed for elemental concentrations using an X-ray fluorescence facility at the National Nuclear Research Institute, Ghana [...] Read more.
Samples of refined petroleum fuels from the three major oil-marketing companies (GOIL Company Limited, Total Energies Ghana Limited and Shell Vivo Ghana Limited) in Ghana have been analysed for elemental concentrations using an X-ray fluorescence facility at the National Nuclear Research Institute, Ghana Atomic Energy Commission. The samples were acquired from seven different fuel service stations where customers directly purchase refined petroleum fuels such as diesel, petrol and kerosene. The X-ray fluorescence method was considered for the study because sample preparation does not require the addition of reagents, and the fluorescence measurements involve a direct electron transition effect. The fluorescence study was carried out to estimate the concentrations of sulphur and other contaminants in the major refined petroleum fuel products patronised in Ghana. The average sulphur concentration in the samples of diesel products were 17.543, 25.805 and 26.813 ppm in DFS, DE and DXP samples compared to 22.258, 22.623 and 15.748 ppm in petrol samples of PE, PXP and VP. Also, the sulphur concentration of sample KE, kerosene products, is 33.250 ppm. Among the diesel samples, DE and DXP recorded the highest but most comparable average concentration of elemental contaminants, and DFS the least, while PXP recorded the least among the petrol samples. The study estimated the concentrations of four heavy metal elements that are toxic to biological life (Hg, Pb, Cr and Mn) to be less than 10.0 ppm, except Cr. The study concluded that most of the elemental contaminants of heavy metals in the samples were relatively less than ultra-low levels. Therefore, exhaust emissions may have little impact on the environment. Also, the content of the ash-producing metal elements in each sample of the seven refined fuel products is between 10.0 and 50.0 ppm. Since the concentration of sulphur and a few other elemental contaminants could not meet the internationally accepted standard (<10.0 ppm), the imported refined fuel products used in Ghana may be considered relatively good but not environmentally safe. Full article
Show Figures

Figure 1

21 pages, 2012 KB  
Article
Study on the Possibility of Rapid Elimination of Accidentally Spilled Petroleum Hydrocarbons in Agricultural Soil
by Maria Popa
Agriculture 2025, 15(16), 1734; https://doi.org/10.3390/agriculture15161734 - 12 Aug 2025
Viewed by 447
Abstract
Soil pollution by petroleum hydrocarbons is a problem of concern to researchers in various domains. Many depollution methods exist for these situations, but not in all cases can the pollutant be recovered. Soil, an important environmental factor, has to be kept clean and [...] Read more.
Soil pollution by petroleum hydrocarbons is a problem of concern to researchers in various domains. Many depollution methods exist for these situations, but not in all cases can the pollutant be recovered. Soil, an important environmental factor, has to be kept clean and often has to be returned to agricultural use. A common situation of accidental soil pollution is the transportation of petroleum products through pipelines. In this paper, a study is presented that highlights a fast-acting option for significant pollutant recovery, thus limiting major soil pollution. A study on the use of electrodes to help achieve these objectives is proposed. Three working variants have been established, with different electrodes (stainless steel and copper). The degrees of depollution achieved during one week with a working voltage of 12 V were determined. The highest degree of depollution (52.94%) was obtained for copper electrodes. Although electrokinetic depollution is mainly applied to polluted waters and for the removal of metals, the method proved to be efficient also for an agricultural soil polluted with 7% diesel oil. Nutrients (NPKs) and wash water were analyzed before and after depollution to verify if secondary pollution was present. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

21 pages, 4126 KB  
Article
A Glycerol Acetylation Study on a Tin Ferrite Nanocatalyst
by Rami Doukeh, Andreea-Cătălina Joe, Ion Onuțu, Iuliana Veronica Ghețiu, Marian Băjan, Gabriel Vasilievici, Dorin Bomboș, Abeer Baioun, Cașen Panaitescu, Ionuț Banu and Romuald Győrgy
ChemEngineering 2025, 9(4), 86; https://doi.org/10.3390/chemengineering9040086 - 8 Aug 2025
Viewed by 449
Abstract
In this study, a novel magnetic nanocatalyst based on tin ferrite (SnFe2O4) was synthesized via a chemical co-precipitation method and thoroughly characterized using XRD, SEM, TGA-DTG, BET, FTIR, and FTIR-pyridine techniques. The catalyst exhibited high crystallinity, a mesoporous structure [...] Read more.
In this study, a novel magnetic nanocatalyst based on tin ferrite (SnFe2O4) was synthesized via a chemical co-precipitation method and thoroughly characterized using XRD, SEM, TGA-DTG, BET, FTIR, and FTIR-pyridine techniques. The catalyst exhibited high crystallinity, a mesoporous structure with a specific surface area of 79.7 m2/g, and well-defined Lewis and Brønsted acid sites. Its catalytic performance was assessed in the esterification of glycerol with acetic acid to produce monoacetin (MAG), diacetin (DAG), and triacetin (TAG). A Box–Behnken experimental design was employed to evaluate the influence of temperature, catalyst loading, and the acetic-acid-to-glycerol molar ratio on product distribution and glycerol conversion. Statistical analysis and regression modeling revealed excellent predictive accuracy (R2 > 0.99), confirming the robustness of the model. Optimal reaction conditions (110 °C, 2 wt.% catalyst, and AA/GLY ratio of 3.6) yielded a maximum glycerol conversion of 93.2% and a combined DAG and TAG yield of ~59.1%. These results demonstrate the high efficiency and selectivity of the synthesized SnFe2O4 catalyst, making it a promising candidate for sustainable glycerol valorization. Full article
Show Figures

Figure 1

19 pages, 4518 KB  
Article
The Impact of Curcumin, Gingerol, Piperine, and Proanthocyanidin on the Oxidative Stability of Sunflower and Soybean Oils for Developing Bio-Lubricants
by Diana-Luciana Cursaru and Dănuța Matei
Lubricants 2025, 13(7), 302; https://doi.org/10.3390/lubricants13070302 - 10 Jul 2025
Viewed by 724
Abstract
Vegetable oils can serve as a fundamental raw material for formulating lubricants due to their exceptional lubricating properties, which are indicated by viscosity indexes greater than 100. Vegetable oils, due to their unsaturated fatty acids with one or more double bonds, have two [...] Read more.
Vegetable oils can serve as a fundamental raw material for formulating lubricants due to their exceptional lubricating properties, which are indicated by viscosity indexes greater than 100. Vegetable oils, due to their unsaturated fatty acids with one or more double bonds, have two significant drawbacks: low oxidation stability and poor performance in low temperatures. The oxidative stability of sunflower and soybean oils was evaluated and correlated with the unsaturation degree calculated based on fatty acid profiles. Different percentages of piperine, curcumin, gingerol, and proanthocyanidin (0.5, 1, 2, and 3 wt.%) have been tested as potential bio-additives for sunflower and soybean oils. All four bio-additives have been observed to enhance oxidation resistance, with gingerol being the most effective, followed by curcumin, piperine, and proanthocyanidin. Bio-additives’ effectiveness increases when applied to bio-oils with lower degrees of unsaturation, such as soybean oil. Adding gingerol significantly enhances the induction period, increasing it by about 10 times for soybean oil and 6 times for sunflower oil. This suggests that gingerol can effectively prolong the induction period of both oils. Full article
Show Figures

Figure 1

19 pages, 2134 KB  
Article
Valorization of Rice-Bran and Corn-Flour Hydrolysates for Optimized Polyhydroxybutyrate Biosynthesis: Statistical Process Design and Structural Verification
by Gaurav Shrimali, Hardik Shah, Kashyap Thummar, Esha Rami, Rajeshkumar Chaudhari, Jens Ejbye Schmidt and Ajit Gangawane
Polymers 2025, 17(14), 1904; https://doi.org/10.3390/polym17141904 - 10 Jul 2025
Viewed by 711
Abstract
The extensive environmental pollution caused by petroleum-based plastics highlights the urgent need for sustainable, economically viable alternatives. The practical challenge of enhancing polyhydroxybutyrate (PHB) production with cost-effective agro-industrial residues—rice-bran and corn-flour hydrolysates—has been demonstrated. Bacillus bingmayongensis GS2 was isolated from soil samples collected [...] Read more.
The extensive environmental pollution caused by petroleum-based plastics highlights the urgent need for sustainable, economically viable alternatives. The practical challenge of enhancing polyhydroxybutyrate (PHB) production with cost-effective agro-industrial residues—rice-bran and corn-flour hydrolysates—has been demonstrated. Bacillus bingmayongensis GS2 was isolated from soil samples collected at the Pirana municipal landfill in Ahmedabad, India, and identified through VITEK-2 biochemical profiling and 16S rDNA sequencing (GenBank accession OQ749793). Initial screening for PHB accumulation was performed using Sudan Black B staining. Optimization via a sequential one-variable-at-a-time (OVAT) approach identified optimal cultivation conditions (36 h inoculum age, 37 °C, pH 7.0, 100 rpm agitation), resulting in a PHB yield of 2.77 g L−1 (66% DCW). Further refinement using a central composite response surface methodology (RSM)—varying rice-bran hydrolysate, corn-flour hydrolysate, peptone concentration, and initial pH—significantly improved the PHB yield to 3.18 g L−1(74% DCW), representing more than a threefold enhancement over unoptimized conditions. Structural validation using Fourier Transform Infrared spectroscopy (FTIR) and Proton Nuclear Magnetic Resonance spectroscopy (1H-NMR) confirmed the molecular integrity of the produced PHB. That Bacillus bingmayongensis GS2 effectively converts low-cost agro-industrial residues into high-value bioplastics has been demonstrated, indicating substantial industrial potential. Future work will focus on bioreactor scale-up, targeted metabolic-engineering strategies, and comprehensive sustainability evaluations, including life-cycle assessment. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

48 pages, 1341 KB  
Review
Evaluation of Feedstock Characteristics Determined by Different Methods and Their Relationships to the Crackability of Petroleum, Vegetable, Biomass, and Waste-Derived Oils Used as Feedstocks for Fluid Catalytic Cracking: A Systematic Review
by Dicho Stratiev
Processes 2025, 13(7), 2169; https://doi.org/10.3390/pr13072169 - 7 Jul 2025
Cited by 2 | Viewed by 1015
Abstract
It has been proven that the performance of fluid catalytic cracking (FCC), as the most important oil refining process for converting low-value heavy oils into high-value transportation fuels, light olefins, and feedstocks for petrochemicals, depends strongly on the quality of the feedstock. For [...] Read more.
It has been proven that the performance of fluid catalytic cracking (FCC), as the most important oil refining process for converting low-value heavy oils into high-value transportation fuels, light olefins, and feedstocks for petrochemicals, depends strongly on the quality of the feedstock. For this reason, characterization of feedstocks and their relationships to FCC performance are issues deserving special attention. This study systematically reviews various publications dealing with the influence of feedstock characteristics on FCC performance, with the aim of identifying the best characteristic descriptors allowing prediction of FCC feedstock cracking capability. These characteristics were obtained by mass spectrometry, SARA analysis, elemental analysis, and various empirical methods. This study also reviews published research dedicated to the catalytic cracking of biomass and waste oils, as well as blends of petroleum-derived feedstocks with sustainable oils, with the aim of searching for quantitative relationships allowing prediction of FCC performance during co-processing. Correlation analysis of the various FCC feed characteristics was carried out, and regression techniques were used to develop correlations predicting the conversion at maximum gasoline yield and that obtained under constant operating conditions. Artificial neural network (ANN) analysis and nonlinear regression techniques were applied to predict FCC conversion from feed characteristics at maximum gasoline yield, with the aim of distinguishing which technique provided the more accurate model. It was found that the correlation developed in this work based on the empirically determined aromatic carbon content according to the n-d-M method and the hydrogen content calculated via the Dhulesia correlation demonstrated highly accurate calculation of conversion at maximum gasoline yield (standard error of 1.3%) compared with that based on the gasoline precursor content determined by mass spectrometry (standard error of 1.5%). Using other data from 88 FCC feedstocks characterized by hydrogen content, saturates, aromatics, and polars contents to develop the ANN model and the nonlinear regression model, it was found that the ANN model demonstrated more accurate prediction of conversion at maximum gasoline yield, with a standard error of 1.4% versus 2.3% for the nonlinear regression model. During the co-processing of petroleum-derived feedstocks with sustainable oils, it was observed that FCC conversion and yields may obey the linear mixing rule or synergism, leading to higher yields of desirable products than those calculated according to the linear mixing rule. The exact reason for this observation has not yet been thoroughly investigated. Full article
Show Figures

Figure 1

15 pages, 2034 KB  
Article
Heterogeneous Interactions During Bubble–Oil Droplet Contact in Water
by Tao Yang, Hao Xiao, Chunyu Jiang, Ming Ma, Guangwen Zhang, Chun Wang, Yi Zheng and Xiangdi Zhao
Separations 2025, 12(7), 174; https://doi.org/10.3390/separations12070174 - 29 Jun 2025
Viewed by 590
Abstract
Oily wastewater is extensively generated during the petroleum extraction and refining processes, as crude oil production water and from the effluent systems in petrochemical enterprises. The discharge standards for such wastewater are stringent, with the Oslo–Paris Convention stipulating that the oil content must [...] Read more.
Oily wastewater is extensively generated during the petroleum extraction and refining processes, as crude oil production water and from the effluent systems in petrochemical enterprises. The discharge standards for such wastewater are stringent, with the Oslo–Paris Convention stipulating that the oil content must be below 30 mg/L for permissible discharge. Flotation, a conventional oil–water separation method, relies on the collision and adhesion of rising bubbles with oil droplets in water to form low-density aggregates that float to the surface for separation. The collision and adhesion mechanisms between bubbles and oil droplets are fundamental to this process. However, systematic studies on their interactions remain scarce. This study employs the extended Derjaguin–Landau–Verwey–Overbeek theory to analyze the three mechanical interactions during the collision–adhesion process theoretically and investigates the heterogeneous interaction dynamics experimentally. Furthermore, given the diverse liquid-phase environments of oily wastewater, the effects of salinity, pH, and surfactant concentration are decoupled and individually explored to clarify their underlying mechanisms. Finally, a solution is proposed to enhance the flotation efficiency fundamentally. This work systematically elucidates the influence of liquid-phase environments on the adhesion behavior for the first time through the unification of theoretical and experimental approaches. The findings provide critical insights for advancing flotation theory and guiding the development of novel coagulants. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Graphical abstract

Back to TopTop