Efficient Separation of Isoamyl Alcohol from Fusel Oil Using Non-Polar Solvent and Hybrid Decanter–Distillation Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. Methodology of Simulation and Process Description
2.3. Methodology of Cost Estimation
3. Results and Discussion
3.1. Experimental Results and Discussion
3.2. The Simulation Results and Discussion
3.3. The Cost Estimation Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FO | Fusel oil |
2M1B | 2-Methyl-1-butanol |
3M1B | 3-Methyl-1-butanol |
LMTDs | Log-mean temperature difference |
U | Overall heat transfer coefficient |
NRTL | Non-random two liquid |
UNIFAC | Universal quasi-chemical |
Symbols | |
C1 | Distillation column 1 |
C2 | Distillation column 2 |
Dc1 | Decanter vessel 1 |
Dc2 | Decanter vessel 2 |
D1 | Distillate product 1 |
D2 | Distillate product 2 |
B1 | Bottom product 1 |
B2 | Bottom product 2 |
AP1 | Aqueous phase from decanter 1 |
AP2 | Aqueous phase from decanter 2 |
OP1 | Organic phase from decanter 1 |
OP2 | Organic phase from decanter 2 |
References
- Marinho, L.H.N.; Aragão, F.; de Genaro Chiroli, D.; Zola, F.C.; Tebcherani, S.M. A systematic review of fusel oil as a renewable biofuel: Challenges, opportunities, and circular economy integration. Fuel 2025, 402, 135924. [Google Scholar] [CrossRef]
- Hoang, T.-D.; Nghiem, N. Recent Developments and Current Status of Commercial Production of Fuel Ethanol. Fermentation 2021, 7, 314. [Google Scholar] [CrossRef]
- Missyurin, A.; Cursaru, D.-C.; Neagu, M.; Nicolae, M. Hybrid Process Flow Diagram for Separation of Fusel Oil into Valuable Components. Processes 2024, 12, 2888. [Google Scholar] [CrossRef]
- Massa, T.; Raspe, D.; Feiten, M.; Cardozo-Filho, L.; da Silva, C. Fusel Oil: Chemical Composition and an Overview of Its Potential Application. J. Braz. Chem. Soc. 2023, 34, 153–166. [Google Scholar] [CrossRef]
- Shenbagamuthuraman, V.; Patel, A.; Khanna, S.; Banerjee, E.; Parekh, S.; Karthick, C.; Ashok, B.; Velvizhi, G.; Nanthagopal, K.; Ong, H.C. State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: Current changes and perspective. Chemosphere 2022, 286, 131587. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Pedroza, J.d.J.; Sánchez-Ramírez, E.; Segovia-Hernández, J.G.; Hernández, S.; Orjuela, A. Recovery of alcohol industry wastes: Revaluation of fusel oil through intensified processes. Chem. Eng. Process.—Process Intensif. 2021, 163, 108329. [Google Scholar] [CrossRef]
- Dias, A.L.B.; Hatami, T.; Martínez, J.; Ciftci, O. Biocatalytic production of isoamyl acetate from fusel oil in supercritical CO2. J. Supercrit. Fluids 2020, 164, 104917. [Google Scholar] [CrossRef]
- Tran, T.T.V.; Kongparakul, S.; Karnjanakom, S.; Reubroycharoen, P.; Guan, G.; Chanlek, N.; Samart, C. Selective production of green solvent (isoamyl acetate) from fusel oil using a sulfonic acid-functionalized KIT-6 catalyst. Mol. Catal. 2020, 484, 110724. [Google Scholar] [CrossRef]
- Monroe, E.; Shinde, S.; Carlson, J.S.; Eckles, T.P.; Liu, F.; Varman, A.M.; George, A.; Davis, R.W. Superior performance biodiesel from biomass-derived fusel alcohols and low grade oils: Fatty acid fusel esters (FAFE). Fuel 2020, 268, 117408. [Google Scholar] [CrossRef]
- Da Silva, A.P.; Bredda, E.; de Castro, H.; Da Rós, P. Enzymatic catalysis: An environmentally friendly method to enhance the transesterification of microalgal oil with fusel oil for production of fatty acid esters with potential application as biolubricants. Fuel 2020, 273, 117786. [Google Scholar] [CrossRef]
- Cerón, A.A.; Boas, V.; Biaggio, F.C.; De Castro, H.F. Synthesis of biolubricant by transesterification of palm kernel oil with simulated fusel oil: Batch and continuous processes. Biomass Bioenergy 2018, 119, 166–172. [Google Scholar] [CrossRef]
- Neagu, M. The Potential Environmental Benefits of Utilising Oxy-Compounds as Additives In Gasoline, a Laboratory Based Study. In Environmental Health—Emerging Issues and Practice; Oosthuizen, J., Ed.; InTech: Rijeka, Croatia, 2012; pp. 147–176. [Google Scholar]
- Ardebili, S.M.S.; Solmaz, H.; Duygu İpci, D.; Calam, A.; Mostafaei, M. A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: Applications, challenges, and global potential. Fuel 2020, 279, 118516. [Google Scholar] [CrossRef]
- Simsek, S.; Ozdalyan, B. Improvements to the Composition of Fusel Oil and Analysis of the Effects of Fusel Oil–Gasoline Blends on a Spark-Ignited (SI) Engine’s Performance and Emissions. Energies 2018, 11, 625. [Google Scholar]
- Ghazali, M.F.; Rosdi, S.M.; Erdiwansyah, E.; Mamat, R.B. Effect of the ethanol-fusel oil mixture on combustion stability, efficiency, and engine performance. Results Eng. 2025, 25, 104273. [Google Scholar] [CrossRef]
- Awad, O.I.; Mamat, R.; Ibrahim, T.K.; Kettner, M.; Kadirgama, K.; Leman, A.M.; Saiful, A.I.M. Effects of fusel oil water content reduction on fuel properties, performance and emissions of SI engine fueled with gasoline -fusel oil blends. Renew. Energy 2018, 118, 858–869. [Google Scholar] [CrossRef]
- Yılmaz, E. Investigation of the effects of diesel-fusel oil fuel blends on combustion, engine performance and exhaust emissions in a single cylinder compression ignition engine. Fuel 2020, 273, 117786. [Google Scholar] [CrossRef]
- Liu, J.; Dong, J.; Li, X.; Xu, T.; Li, Z.; Ampah, J.D.; Ikram, M.; Zhang, S.; Jin, C.; Geng, Z.; et al. Technical analysis of blending fusel to reduce carbon emission and pollution emission of diesel engine. Fuel Process. Technol. 2023, 241, 107560. [Google Scholar] [CrossRef]
- Luyben, W.L.; Chien, I.-L. Design and Control of Distillation Systems for Separating Azeotropes; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- De Guido, G.; Monticelli, C.; Spatolisano, E.; Pellegrini, L.A. Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer. Energies 2021, 14, 5471. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Zhu, K.; Li, S.; Li, M.; Fan, X.; Gao, J. An efficient heat-pump extractive distillation process for recovering lower alcohols from bioethanol fusel oil. Chem. Eng. Process.—Process Intensif. 2025, 213, 110291. [Google Scholar] [CrossRef]
- Fu, C.; Li, Z.; Sun, Z.; Xie, S. A review of salting-out effect and sugaring-out effect: Driving forces for novel liquid-liquid extraction of biofuels and biochemicals. Front. Chem. Sci. Eng. 2021, 15, 854–871. [Google Scholar] [CrossRef]
- Zheng, P.Y.; Zhang, W.H.; Chen, K.F.; Wang, N.X.; An, Q.F. Pervaporation dehydration of fusel oil with sulfated polyelectrolyte complex hollow fiber membrane. J. Taiwan Inst. Chem. E 2019, 95, 627–634. [Google Scholar] [CrossRef]
- Okajima, I.; Ly, L.T.T.; Yi, K.C.; Sako, T. Phosphorus-free oil extraction from rice bran using CO2-expanded hexane. Chem. Eng. Process.—Process Intensif. 2021, 166, 108502. [Google Scholar] [CrossRef]
- Gasparetto, H.; de Castilhos, F.; Gonçalves Salau, N.P. Recent advances in green soybean oil extraction: A review. J. Mol. Liq. 2022, 361, 119684. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Li, Y. Exploring alternative solvents to n-hexane for green extraction of lipid from camellia oil cakes. Food Chem. X. 2025, 27, 102443. [Google Scholar] [CrossRef] [PubMed]
- van Thriel, C.; Boyes, K.W. Chapter Five—Neurotoxicity of organic solvents: An update on mechanisms and effects. Adv. Neurotox. 2022, 7, 133–202. [Google Scholar]
- Tala, W.; Janta, R.; Kraisitnitikul, P.; Chantara, S. Patterns and impact of volatile organic compounds on ozone and secondary organic aerosol formation: Implications for air pollution in Upper Southeast Asia. J. Hazard. Mater. Adv. 2025, 18, 100762. [Google Scholar] [CrossRef]
- Kumar, P.; Pandey, K.S. Chapter 31—Exploring Hexane’s impact: Toxicological insights, challenges, and forward-looking perspectives. In Hazardous Chemicals: Overview, Toxicological Profile, Challenges, and Future Perspectives; Elsevier: Amsterdam, The Netherlands, 2025; pp. 453–465. [Google Scholar]
- Hernandez, C.; Kaucz, A.P.; Condoret, J.S.; Remigy, J.C.; Pantel, C.A.; Camy, S. Life cycle assessment of refined sunflower oil production for food industry: Exploring hexane-free alternative using supercritical CO2 for processing pressed cake. J. Supercrit. 2026, 227, 106735. [Google Scholar] [CrossRef]
- Oliveira, É.R.; Silva, R.F.; Santos, P.R.; Queiroz, F. Potential of alternative solvents to extract biologically active compounds from green coffee beans and its residue from the oil industry. Food Bioprod. Process. 2019, 11, 47–58. [Google Scholar] [CrossRef]
- Gomis, V.; Pedraza, R.; Saquete, D.M.; Font, A.; García-Cano, J. Ethanol dehydration via azeotropic distillation with gasoline fractions as entrainers: A pilot-scale study of the manufacture of an ethanol–hydrocarbon fuel blend. Fuel 2015, 139, 568–574. [Google Scholar] [CrossRef]
- Stratula, C.; Oprea, F.; Mihaescu, D. The obtaining of anhydrous ethanol by azeotropic distillation using a new entrainer. Rev. Chim. 2005, 56, 544–548. [Google Scholar]
- Renon, H.; Prausnitz, J.M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968, 14, 135–144. [Google Scholar] [CrossRef]
- Nicolae, M.; Oprea, F.; Fendu, E.M. Dipropylene glycol as a solvent for the extraction of aromatic hydrocarbons. Analysis and evaluation of the solvency properties and simulation of the extraction processes. Chem. Eng. Res. Des. 2015, 104, 287–295. [Google Scholar] [CrossRef]
- Towler, G.; Sinnott, R. Chemical Engineering Design: Principle, Practice and Economics of Plant and Process Design; Butterworth-Heinemann Elsevier Ltd.: Oxford, UK, 2008. [Google Scholar]
- Section 7: Separation Equipment. In GPSA Engineering Data Book, 14th ed.; Gas Processors Suppliers Association: Tulsa, OK, USA, 2017.
- Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment. Available online: https://eur-lex.europa.eu/eli/dir/1991/271/oj/eng (accessed on 6 September 2025).
- Gomis, A.; García-Cano, J.; Font, A.; Gomis, V. Operational Limits in Processes with Water, Salt, and Short-Chain Alcohol Mixtures as Aqueous Two-Phase Systems and Problems in Its Simulation. Ind. Eng. Chem. Res. 2021, 60, 2578–2587. [Google Scholar] [CrossRef]
- Bhoumick, M.C.; Paul, S.; Roy, S.; Harvey, G.B.; Mitra, S. Recovery of Isoamyl Alcohol by Graphene Oxide Immobilized Membrane and Air-Sparged Membrane Distillation. Membranes 2024, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Hughes, S.; Maddox, I.S.; Cotta, M.A. Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst. Eng. 2005, 27, 215–222. [Google Scholar] [CrossRef]
- Sander, A.; Rogoši´c, M.; Frljak, L.; Vasiljevi´c, D.; Blaževi´c, I.; Parlov Vukovi´c, J. Separating 2-Propanol and Water: A Comparative Study of Extractive Distillation, Salting-Out, and Extraction. Separations 2025, 12, 196. [Google Scholar] [CrossRef]
- Janković, T.; Straathof, J.J.A.; Kiss, A.A. A perspective on downstream processing performance for recovery of bioalcohols. J. Chem. Technol. Biotechnol. 2024, 99, 1933–1940. [Google Scholar] [CrossRef]
- Lakshmy, K.S.; Lal, D.; Nair, A.; Babu, A.; Das, H.; Govind, N.; Dmitrenko, M.; Kuzminova, A.; Korniak, A.; Penkova, A.; et al. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers 2022, 14, 1604. [Google Scholar] [CrossRef]
- Fendu, E.M.; Nicolae, M. Synthesis and simulation of a distillation columns system for the propylene glycols mixtures separation. Eng. Rep. 2021, 3, 12301. [Google Scholar] [CrossRef]
- McCarley, K. Finding the Capacity of a Distillation Column. 2021. Available online: https://www.aiche.org/resources/publications/cep/2021/december/finding-capacity-distillation-column (accessed on 6 September 2025).
- Luyben, W.L. Plantwide control of an isopropyl alcohol dehydration process. AIChE J. 2006, 52, 2290–2296. [Google Scholar] [CrossRef]
- Woods, D.R. Rules of Thumb in Engineering Practice; Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar]
Components | Composition, wt.% |
---|---|
Ethanol | 9.0 |
Iso-propanol | 1.0 |
1-propanol | 1.0 |
Iso-butanol | 1.5 |
1-butanol | 0.5 |
2-Methyl-1-butanol | 2.0 |
3-Methyl-1-butanol | 70.0 |
1-hexanol | 1.0 |
Water | 14.0 |
Total | 100.0 |
Experiment | Subcode | Value, ppmw. | Arithmetic Mean | Standard Deviation, | Standard Error of the Mean | Relative Standard Deviation |
---|---|---|---|---|---|---|
1 mL hexane + 1 mL FO | 1a | 14,478 | 14,630 | 172.188 | 99.41 | 1.177 |
1b | 14,595 | |||||
1c | 14,817 | |||||
2 mL hexane + 1 mL FO | 2a | 11,398 | 11,390 | 95.253 | 54.994 | 0.836 |
2b | 11,291 | |||||
2c | 11,481 | |||||
3 mL hexane + 1 mL FO | 3a | 8551 | 8587 | 33.406 | 19.287 | 0.389 |
3b | 8617 | |||||
3c | 8593 | |||||
4 mL hexane + 1 mL FO | 4a | 5469 | 5493 | 21.932 | 12.662 | 0.399 |
4b | 5512 | |||||
4c | 5498 |
Parameters | Column C1 | Column C2 |
---|---|---|
Number of trays | 18 1 | 20 1 |
Feed tray number | 12 | 11 |
Top pressure, barg | 1.1 | 1.1 |
Bottom pressure, barg | 1.2 | 1.2 |
Top temperature, °C | 77.57 | 88.57 |
Bottom temperature, °C | 102.16 | 157.14 |
Reflux ratio, molar | 1.0 | 3.0 |
Variable Cost of Production (VCOP) | |
Hexane loss cost (industrial purity) | 1000 USD/tonne |
Steam cost | 12 USD/tonne |
Electrical energy cost | 0.20 USD/kWh |
Water cost | 0.048 USD/m3 |
Miscellaneous (consumable materials, waste water treatments, waste disposal) | 2% of VCOP |
Fixed Cost of Production (FCOP) | |
Operating labor (OL) | 25,000 USD/year/each operator |
Supervision (S) | 25% of OL |
Direct salary overhead (DSO) | 50% of (OL + S) |
Maintenance (M) | 3% of ISBL |
Property taxes and insurance | 2% of ISBL |
Rent of land (and/or buildings) | 1% of (ISBL + OSBL) |
General plant overhead | 65% of (OL + S + DSO + M) |
Environmental charges | 1% of (ISBL + OSBL) |
Components | Aqueous Phase (AP1), kg/h | Organic Phase (OP1), kg/h | Fusel Oil, kg/h |
---|---|---|---|
Ethanol | 16.6018 | 163.3982 | 180.00 |
Iso-propanol | 0.7115 | 19.2885 | 20.00 |
1-propanol | 0.4889 | 19.5111 | 20.00 |
Iso-butanol | 0.6622 | 29.3378 | 30.00 |
1-butanol | 0.0836 | 9.9164 | 10.00 |
2-Methyl-1-butanol | 0.1583 | 39.8417 | 40.00 |
3-Methyl-1-butanol | 5.1603 | 1394.8397 | 1400.00 |
1-hexanol | 0.0157 | 19.9843 | 20.00 |
Water | 201.6033 | 78.3967 | 280.00 |
Hexane | 0.0131 | 1999.9869 | 0.00 |
Total | 225.4986 | 3774.5014 | 2000.00 |
Components | Distillate Flow (D1), kg/h | Mass Concentration in D1, wt.% | Bottom Flow (B1), kg/h | Mass Concentration in B1, wt.% |
---|---|---|---|---|
Ethanol | 154.9999 | 11.19 | 8.3983 | 0.35151 |
Iso-propanol | 6.5660 | 0.47399 | 12.7225 | 0.53249 |
1-propanol | 3.3049 | 0.23858 | 16.2062 | 0.6783 |
Iso-butanol | 3.0073 | 0.21709 | 26.3305 | 0.0110 |
1-butanol | 0.2090 | 0.01509 | 9.7074 | 0.40630 |
2-Methyl-1-butanol | 0.1396 | 0.00101 | 39.7022 | 0.0166 |
3-Methyl-1-butanol | 4.5332 | 0.32725 | 1390.3064 | 0.5819 |
1-hexanol | 0.00 | 0.00 | 19.9843 | 0.83643 |
Water | 78.3967 | 5.66 | 0.00 | 0.00 |
Hexane | 1134.1098 | 81.87 | 865.8771 | 0.3624 |
Total | 1385.2664 | 100.00 | 2389.2349 | 100.00 |
Components | Distillate Flow (D2), kg/h | Mass Concentration in D2, wt.% | Bottom Flow (B2), kg/h | Mass Concentration in B2, wt.% |
---|---|---|---|---|
Ethanol | 8.3983 | 0.89566 | 0.00 | 0.00 |
Iso-propanol | 12.722 | 0.0136 | 0.00 | 0.00 |
1-propanol | 16.0000 | 0.0171 | 0.2062 | 0.014205 |
Iso-butanol | 24.9098 | 0.0266 | 1.4206 | 0.097867 |
1-butanol | 0.9123 | 0.09730 | 8.7963 | 0.60599 |
2-Methyl-1-butanol | 0.1006 | 0.01073 | 39.6015 | 2.73 |
3-Methyl-1-butanol | 8.7408 | 0.93219 | 1381.5656 | 95.18 |
1-hexanol | 0.00 | 0.00 | 19.9843 | 1.38 |
Water | 0.00 | 0.00 | 0.00 | 0.00 |
Hexane | 865.8758 | 92.34 | 0.00 | 0.00 |
Total | 937.6597 | 100.00 | 1451.5750 | 100.00 |
Components | Aqueous Phase (AP2), kg/h | Organic Phase (OP2), kg/h |
---|---|---|
Ethanol | 115.0145 | 48.3837 |
Iso-propanol | 9.2788 | 10.0093 |
1-propanol | 10.9967 | 8.3082 |
Iso-butanol | 17.5988 | 10.3183 |
1-butanol | 0.6377 | 0.4836 |
2-Methyl-1-butanol | 0.0434 | 0.1968 |
3-Methyl-1-butanol | 5.1560 | 8.118 |
1-hexanol | 0.00 | 0.00 |
Water | 76.7733 | 1.6235 |
Hexane | 6.6861 | 1993.2995 |
Total | 242.1852 | 2080.7409 |
Parameters | Condenser 1 | Reboiler 1 | Condenser 2 | Reboiler 2 |
---|---|---|---|---|
Duty, kWh/h | 387.6 | 535.6 | 363.2 | 414.5 |
LMTD, °C | 39.005 | 99.823 | 50.873 | 44.408 |
U, kW/m2·K | 0.852 | 0.57 | 0.852 | 0.57 |
Area, m2 | 11.747 | 9.413 | 8.431 | 16.377 |
Utility, kg/h | 12,344.4 | 990.0 | 11,567.7 | 767.0 |
Ratio 1:1 of Hexane to FO | Ratio 4:1 of Hexane to FO | |||
---|---|---|---|---|
Equipment Type | Equipment Cost Ce, USD | Fixed Capital Cost C or ISBL, USD | Equipment Cost Ce, USD | Fixed Capital Cost C or ISBL, USD |
Column C1 | 98,953 | 395,812 | 141,336 | 565,343 |
Column C2 | 73,055 | 292,221 | 254,886 | 1,019,542 |
Decanter Dc1 | 10,379 | 41,514 | 35,551 | 142,205 |
Decanter Dc2 | 6928 | 27,711 | 32,731 | 130,922 |
Reboiler 1 | 19,215 | 67,254 | 19,689 | 68,942 |
Reboiler 2 | 19,970 | 69,893 | 30,609 | 107,130 |
Condenser 1 | 14,344 | 50,205 | 14,626 | 51,191 |
Condenser 2 | 13,962 | 48,867 | 21,374 | 74,809 |
Mixer M1 and M2 | 1185 | 2962 | 1416 | 3541 |
Centrifugal pump P1, including electrical motors | 6447 | 25,788 | 6721 | 26,883 |
Two tanks of 50 m3 | 50,000 | 125,000 | - | - |
One tank of 50 m3, and one tank of 150 m3 | - | - | 85,000 | 212,500 |
Centrifugal pumps, including electrical motors for feed flows | 10,778 | 143,887 | 13,098 | 52,392 |
Hexane cost (70% load of tank) | 23,065 | 23,065 | 92,260 | 92,260 |
Cost, USD | Ratio 1:1 of Hexane to FO | Ratio 4:1 of Hexane to FO |
---|---|---|
ISBL | 1,314,181 | 2,520,985 |
OSBL | 394,254 | 756,296 |
EC | 512,530 | 983,184 |
CO | 170,843 | 327,728 |
FCI (2006 prices) | 2,391,809 | 4,588,193 |
FCI (2023 prices) | 3,991,512 | 7,656,894 |
Cost, USD | Ratio 1:1 of Hexane to FO | Ratio 4:1 of Hexane to FO |
---|---|---|
Variable Cost of Production (VCOP) | ||
Hexane cost (only hexane loss) | 2400 | 6400 |
Steam cost | 168,672 | 752,256 |
Electrical energy cost | 800,176 | 816,640 |
Water cost | 9182 | 46,709 |
Miscellaneous (consumable materials, wastewater treatments, waste disposal) | 19,609 | 32,400 |
Annual VCOP | 1,000,039 | 1,654,445 |
Fixed Cost of Production (FCOP) | ||
Operating labor (OL) | 600,000 | 600,000 |
Supervision (S) | 150,000 | 150,000 |
Direct salary overhead (DSO) | 375,000 | 375,000 |
Maintenance (M) | 39,425 | 75,630 |
Property taxes and insurance | 26,284 | 50,420 |
Rent of land (and/or buildings) | 17,084 | 32,773 |
General plant overhead | 756,877 | 780,409 |
Environmental charges | 17,084 | 32,173 |
Annual FCOP | 1,981,754 | 2,097,004 |
Annual COP | 2,981,793 | 3,751,449 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neagu, M.; Cursaru, D.-L.; Missyurin, A.; Goian, O. Efficient Separation of Isoamyl Alcohol from Fusel Oil Using Non-Polar Solvent and Hybrid Decanter–Distillation Process. Appl. Sci. 2025, 15, 9954. https://doi.org/10.3390/app15189954
Neagu M, Cursaru D-L, Missyurin A, Goian O. Efficient Separation of Isoamyl Alcohol from Fusel Oil Using Non-Polar Solvent and Hybrid Decanter–Distillation Process. Applied Sciences. 2025; 15(18):9954. https://doi.org/10.3390/app15189954
Chicago/Turabian StyleNeagu, Mihaela, Diana-Luciana Cursaru, Alexey Missyurin, and Octavian Goian. 2025. "Efficient Separation of Isoamyl Alcohol from Fusel Oil Using Non-Polar Solvent and Hybrid Decanter–Distillation Process" Applied Sciences 15, no. 18: 9954. https://doi.org/10.3390/app15189954
APA StyleNeagu, M., Cursaru, D.-L., Missyurin, A., & Goian, O. (2025). Efficient Separation of Isoamyl Alcohol from Fusel Oil Using Non-Polar Solvent and Hybrid Decanter–Distillation Process. Applied Sciences, 15(18), 9954. https://doi.org/10.3390/app15189954