Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (398)

Search Parameters:
Keywords = perturbation element

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6277 KiB  
Article
Implementation Method and Bench Testing of Fractional-Order Biquadratic Transfer Function-Based Mechatronic ISD Suspension
by Yujie Shen, Dongdong Qiu, Haolun Xu, Yanling Liu, Kecheng Sun, Xiaofeng Yang and Yan Guo
Sensors 2025, 25(14), 4255; https://doi.org/10.3390/s25144255 - 8 Jul 2025
Viewed by 151
Abstract
To address the challenge of physically realizing fractional-order electrical networks, this study proposes an implementation method for a mechatronic inerter–spring–damper (ISD) suspension based on a fractional-order biquadratic transfer function. Building upon a previously established model of a mechatronic ISD suspension, the influence of [...] Read more.
To address the challenge of physically realizing fractional-order electrical networks, this study proposes an implementation method for a mechatronic inerter–spring–damper (ISD) suspension based on a fractional-order biquadratic transfer function. Building upon a previously established model of a mechatronic ISD suspension, the influence of parameter perturbations on the suspension’s dynamic performance characteristics was systematically investigated. Positive real synthesis was employed to determine the optimal five-element passive network structure for the fractional-order biquadratic electrical network. Subsequently, the Oustaloup filter approximation algorithm was utilized to realize the integer-order equivalents of the fractional-order electrical components, and the approximation effectiveness was analyzed through frequency-domain and time-domain simulations. Bench testing validated the effectiveness of the proposed method: under random road excitation at 20 m/s, the root mean square (RMS) values of the vehicle body acceleration, suspension working space, and dynamic tire load were reduced by 7.86%, 17.45%, and 2.26%, respectively, in comparison with those of the traditional passive suspension. This research provides both theoretical foundations and practical engineering solutions for implementing fractional-order transfer functions in vehicle suspensions, establishing a novel technical pathway for comprehensively enhancing suspension performance. Full article
Show Figures

Figure 1

16 pages, 1784 KiB  
Essay
Identification of Mechanical Parameters of Prestressed Box Girder Bridge Based on Falling Weight Deflectometer
by Yijun Chen, Wenqi Wu, Qingzhao Li, Pan Guo, Yingchun Cai and Jiandong Wei
Buildings 2025, 15(13), 2243; https://doi.org/10.3390/buildings15132243 - 26 Jun 2025
Viewed by 199
Abstract
Traditional damage detection methods of prestressed concrete box girder bridges have low efficiency and cannot quantify the structure’s internal damage. We used an inversion method and a falling weight deflectometer to estimate the mechanical parameters of prestressed box girder bridges. A finite element [...] Read more.
Traditional damage detection methods of prestressed concrete box girder bridges have low efficiency and cannot quantify the structure’s internal damage. We used an inversion method and a falling weight deflectometer to estimate the mechanical parameters of prestressed box girder bridges. A finite element model of the bridge dynamics under impact loading was established. A perturbation-based update was conducted, and a multi-parameter inversion algorithm was constructed. The measured data were used for the efficient identification of the bridge’s elasticity modulus and the prestressing tensile force. The theoretical validation indicated a high modeling accuracy and inversion efficiency, with a convergence accuracy within 1%. The initial value had a minimal influence on the inversion results. The engineering application showed that the maximum error of the elastic modulus between the inversion and the rebound methods was 1.55%. The loss rates of the deck slab’s elastic modulus and the prestressing force obtained from the inversion were 4.39% and 7.64%, respectively. The proposed method provides a new strategy for evaluating damage to prestressed box girder bridges. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 12520 KiB  
Article
Stress Estimation in Viscous Flows Using an Iterative Tikhonov Regularized Stokes Inverse Model
by Yuanhao Gao, Yang Wang and Jizhou Zhang
Mathematics 2025, 13(11), 1884; https://doi.org/10.3390/math13111884 - 4 Jun 2025
Viewed by 274
Abstract
In this paper, we propose and develop a stationary Stokes Inverse Model (SIM) to estimate the stress distributions that are difficult to measure directly in flows. We estimate the driving stresses from the velocities by solving the inverse problem governed by Stokes equations [...] Read more.
In this paper, we propose and develop a stationary Stokes Inverse Model (SIM) to estimate the stress distributions that are difficult to measure directly in flows. We estimate the driving stresses from the velocities by solving the inverse problem governed by Stokes equations under iterative Tikhonov (IT) regularization. We investigate the heuristic L-curve criterion to determine the proper regularization parameter. The solution existence and uniqueness for the Stokes inverse problem have been analyzed. We also conducted convergence analysis and error estimation for perturbed data, providing a fast and stable convergence. The finite element method is applied to the numerical approach. Following the theoretical investigation and formulation, we validate the model and demonstrate that the velocity data closely match the velocity fields that were reconstructed using the computed stress distributions. In particular, the proposed SIM can be used to reliably derive the stress distributions for the flows governed by the Stokes equations with small Reynolds number. Additionally, the model is robust to a certain number of perturbations, which enables the precise and effective estimation of the stress distributions. The proposed stationary SIM may be widely applicable in the estimation of stresses from experimental velocity fields in engineering and biological applications. Full article
(This article belongs to the Special Issue Mathematical Modeling for Fluid Mechanics)
Show Figures

Figure 1

22 pages, 7959 KiB  
Article
Numerical Investigation of Transitional Oscillatory Boundary Layers: Turbulence Quantities
by Selman Baysal and V. S. Ozgur Kirca
Fluids 2025, 10(6), 143; https://doi.org/10.3390/fluids10060143 - 28 May 2025
Viewed by 831
Abstract
This study investigates the organized flow structures and turbulence quantities in a transitional oscillatory boundary-layer flow over a smooth bed using a DNS model set up by the open-source framework Nektar++ (v5.2.0). The present model was validated against the results of a previous [...] Read more.
This study investigates the organized flow structures and turbulence quantities in a transitional oscillatory boundary-layer flow over a smooth bed using a DNS model set up by the open-source framework Nektar++ (v5.2.0). The present model was validated against the results of a previous study involving a bypass transition mechanism in the intermittently turbulent regime. To trigger the initial perturbations, a roughness element was placed on the bed and removed at the very moment a two-dimensional vortex tube, caused by an inflectional-point shear-layer instability, was observed on it. Then, the turbulent spots where the flow experienced intense fluctuations in an otherwise laminar boundary layer were identified from the bed shear-stress distribution on the bed, which served as a reliable indicator of turbulence. These flow features emerged as the first sign of the initiation of turbulence. Several measurement points were selected to follow the bed shear-stress variations and to observe the spatial and temporal development of turbulent spots at a low-wave Reynolds number, Re=1.8×105. Along with these observations, phase-resolved turbulence quantities were also investigated over successive half-cycles for the first time in the literature to understand how turbulence develops and spreads over the flow domain. The results show that the turbulence generated in the near-bed region becomes stronger in the deceleration stage due to the adverse pressure gradient and diffuses away from the bed during the subsequent phases of the developing oscillatory boundary-layer flow. The findings related to the turbulence quantities also indicate that the turbulence gradually evolves and spreads into the fluid domain in successive half-cycles. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

16 pages, 3207 KiB  
Article
Modeling Networks of Four Elements
by Olga Kozlovska and Felix Sadyrbaev
Computation 2025, 13(5), 123; https://doi.org/10.3390/computation13050123 - 19 May 2025
Viewed by 324
Abstract
In this article, fourth-order systems of ordinary differential equations are studied. These systems are of a special form, which is used in modeling gene regulatory networks. The nonlinear part depends on the regulatory matrix W, which describes the interrelation between network elements. [...] Read more.
In this article, fourth-order systems of ordinary differential equations are studied. These systems are of a special form, which is used in modeling gene regulatory networks. The nonlinear part depends on the regulatory matrix W, which describes the interrelation between network elements. The behavior of solutions heavily depends on this matrix and other parameters. We research the evolution of trajectories. Two approaches are employed for this. The first approach combines a fourth-order system of two two-dimensional systems and then introduces specific perturbations. This results in a system with periodic attractors that may exhibit sensitive dependence on initial conditions. The second approach involves extending a previously identified system with chaotic solution behavior to a fourth-order system. By skillfully scanning multiple parameters, this method can produce four-dimensional chaotic systems. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

19 pages, 17377 KiB  
Article
Numerical Modeling of the Groundwater Temperature Variation Generated by a Ground-Source Heat Pump System in Milan
by Sara Barbieri, Matteo Antelmi, Pietro Mazzon, Sara Rizzo and Luca Alberti
Appl. Sci. 2025, 15(10), 5522; https://doi.org/10.3390/app15105522 - 15 May 2025
Viewed by 518
Abstract
The study presents the first application of the Connected Linear Network (CLN) package implemented in MODFLOW-USG to an existing Ground-Source Heat Pump (GSHP) system. The numerical element was specifically adapted by the authors in a previous study to simulate vertical Borehole Heat Exchangers [...] Read more.
The study presents the first application of the Connected Linear Network (CLN) package implemented in MODFLOW-USG to an existing Ground-Source Heat Pump (GSHP) system. The numerical element was specifically adapted by the authors in a previous study to simulate vertical Borehole Heat Exchangers (BHEs) and is here applied for the first time to evaluate the heat transfer in Milano subsurface induced by a GSHP system. The evaluation of interference between geothermal systems and wells is an important topic, especially in densely populated areas, which has scarcely been explored in the literature. Specifically, the aim is to evaluate the thermal perturbation and the possible interference between BHE systems and the drinkable water wells of the Armi pumping station managed by MM S.p.A. The simulation results show moderate groundwater thermal perturbation: approximately 3 °C at 100 m downgradient of the borefield and, furthermore, a limited impact (maximum 1 °C) in just two wells of the Armi pumping station. After 3 years of GSHP system operation, the thermal perturbation can extend for kilometers, but with limited variation in groundwater temperature (lower than 1 °C). Although the predicted groundwater temperature variation is not critical, the real-time monitoring of temperatures coupled with numerical modeling is essential to prevent thermal interference and optimize GSHP system performance. Full article
(This article belongs to the Special Issue Renewable Energy in Smart Cities)
Show Figures

Figure 1

58 pages, 3865 KiB  
Review
Flow and Flame Mechanisms for Swirl-Stabilized Combustors
by Paul Palies
Aerospace 2025, 12(5), 430; https://doi.org/10.3390/aerospace12050430 - 12 May 2025
Viewed by 1349
Abstract
This article reviews the physical and chemical mechanisms associated with unsteady swirl-stabilized partially or fully lean premixed combustion. The processes of flame stabilization, mode conversion, swirl number oscillation, equivalence ratio oscillation, and vortex rollup are described. The key challenges associated with flow-flame dynamics [...] Read more.
This article reviews the physical and chemical mechanisms associated with unsteady swirl-stabilized partially or fully lean premixed combustion. The processes of flame stabilization, mode conversion, swirl number oscillation, equivalence ratio oscillation, and vortex rollup are described. The key challenges associated with flow-flame dynamics for several sources of perturbations are presented and discussed. The Rayleigh criterion is discussed. This article summarizes the scientific knowledge gained on swirling flames dynamics in terms of modeling, theoretical analysis, and transient measurements with advanced diagnostics. The following are specifically documented: (i) the effect of the swirler on swirling flames; (ii) the analytical results, computational modeling, and experimental measurements of swirling flame dynamics; (iii) the influence of flow features on flame response of swirling flames for combustion instabilities studies; and (iv) the identification and description of the combustion dynamics mechanisms responsible for swirl-stabilized combustion instabilities. Relevant elements from the literature in this context for hydrogen fuel are included. Full article
(This article belongs to the Special Issue Scientific and Technological Advances in Hydrogen Combustion Aircraft)
Show Figures

Figure 1

15 pages, 4515 KiB  
Article
Analysis of Stress Perturbation Patterns in Oil and Gas Reservoirs Induced by Faults
by Haoran Sun, Shuang Tian, Yuankai Xiang, Leiming Cheng and Fujian Yang
Processes 2025, 13(5), 1416; https://doi.org/10.3390/pr13051416 - 6 May 2025
Viewed by 536
Abstract
The distribution of in situ stress fields in reservoirs is critical for the accurate exploration and efficient exploitation of hydrocarbon resources, especially in deep, fault-developed strata where tectonic activities significantly complicate stress field patterns. To clarify the perturbation effects of faults on in [...] Read more.
The distribution of in situ stress fields in reservoirs is critical for the accurate exploration and efficient exploitation of hydrocarbon resources, especially in deep, fault-developed strata where tectonic activities significantly complicate stress field patterns. To clarify the perturbation effects of faults on in situ stress fields in deep reservoirs, this study combines dynamic–static parameter conversion models derived from laboratory experiments (acoustic emission Kaiser effect and triaxial compression tests) with a coupled “continuous matrix–discontinuous fault” numerical framework implemented in FLAC3D6.0. Focusing on the BKQ Formation reservoir in the MH area, China, we developed a multivariate regression-based inversion model integrating gravitational and bidirectional tectonic stress fields, validated against field measurements with errors of −2.96% to 9.07%. The key findings of this study include the following: (1) fault slip induces stress reductions up to 22.3 MPa near fault zones, with perturbation ranges quantified via exponential decay functions (184.91–317.74 m); (2) the “continuous matrix–discontinuous fault” coupling method resolves limitations of traditional continuum models by simulating fault slip through interface contact elements; and (3) stress redistribution exhibits NW-SE gradients, aligning with regional tectonic compression. These results provide quantitative guidelines for optimizing hydrocarbon development boundaries and hydraulic fracturing designs in faulted reservoirs. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

18 pages, 7433 KiB  
Article
Stochastic Finite Element Analysis for Static Bending Beams with a Two-Dimensional Random Field of Material Properties
by Dang Diem Nguyen, Sy Dan Dao, Xuan Tung Nguyen and Van Tan Giap
Modelling 2025, 6(2), 37; https://doi.org/10.3390/modelling6020037 - 6 May 2025
Viewed by 1035
Abstract
This study presents the development and application of the stochastic finite element method (SFEM) to analyze the static response of beams with a two-dimensional (2D) spatially varying elastic modulus. A 2D stationary stochastic field is employed to model the elastic modulus, capturing the [...] Read more.
This study presents the development and application of the stochastic finite element method (SFEM) to analyze the static response of beams with a two-dimensional (2D) spatially varying elastic modulus. A 2D stationary stochastic field is employed to model the elastic modulus, capturing the material heterogeneity along both the longitudinal and vertical directions of the beam. The weighted integral method is applied to represent the random field as random variables and to compute the element stiffness matrices, while a first-order perturbation technique is utilized to estimate the statistical moments of the nodal displacement vector, including the mean and covariance matrix. This method enhances both computational efficiency and accuracy in capturing material heterogeneity compared to traditional approaches. The precision and effectiveness of the developed SFEM are evaluated through comparisons with Monte Carlo simulations (MCs), demonstrating strong agreement in the analysis of the coefficient of variation (COV) of displacement. A sensitivity analysis is conducted to examine the influence of the correlation length and dispersion of the stochastic field on the COV. The results indicate that the COV generally increases as these parameters grow, with the most significant variations occurring at small correlation lengths. As the correlation length becomes very large, the COV of displacement converges toward the standard deviation of the input stochastic field. Furthermore, the study reveals that the correlation length along the beam’s longitudinal axis has a more pronounced effect on the COV of displacement compared to the vertical correlation length. Full article
(This article belongs to the Section Modelling in Engineering Structures)
Show Figures

Figure 1

18 pages, 3725 KiB  
Article
Statistical Structural Damage Detection of Functionally Graded Euler–Bernoulli Beams Based on Element Modal Strain Energy Sensitivity
by Delei Yang, Chunyan Kang, Sihan Cheng, Zhongming Hu and Adesola Ademiloye
Buildings 2025, 15(9), 1521; https://doi.org/10.3390/buildings15091521 - 1 May 2025
Viewed by 333
Abstract
In practical engineering, uncertainties inevitably exist in the models and measurement data used for structures. Therefore, a statistical strategy related to damage detection methods become crucial. In this paper, a probabilistic statistical damage detection method for FG Euler–Bernoulli beam structures is proposed, extending [...] Read more.
In practical engineering, uncertainties inevitably exist in the models and measurement data used for structures. Therefore, a statistical strategy related to damage detection methods become crucial. In this paper, a probabilistic statistical damage detection method for FG Euler–Bernoulli beam structures is proposed, extending the approach originally developed for isotropic materials. Our approach determines the probability of damage occurrence for each element, which aids in evaluating whether beam structures have been damaged. This evaluation is based on integrating the sensitivity of modal strain energy for each element with the perturbation method. To demonstrate the effectiveness and accuracy of the proposed method, several numerical examples are investigated. These examples include a simply supported FG Euler–Bernoulli beam subjected to both single and multiple element damages. The influence of gradient index, damage severity, boundary condition, and noise level on the accuracy of detection are also considered. The studies demonstrate that the probability of damage for each element remains relatively stable despite variations in the gradient indices. For the damaged elements, these probabilities approach 1, indicating that the proposed method effectively identifies damage in FG beams even when the gradient index varies. Additionally, as the level of damage increases, the accuracy of damage detection tends to improve. However, varying boundary conditions can substantially affect the outcomes of damage identification, potentially leading to inconsistencies in results. Furthermore, our proposed method demonstrates excellent resistance against noise levels of up to 5%. We also found that different boundary conditions have a great impact on the damage detection. Full article
(This article belongs to the Special Issue Recent Developments in Structural Health Monitoring)
Show Figures

Figure 1

20 pages, 10754 KiB  
Article
Late Pleistocene Climate–Weathering Dynamics in Bohai Bay: High-Resolution Sedimentary Proxies and Their Global Paleoclimatic Synchronicity
by Yanxiang Lei, Xinyi Liu, Yanhui Zhang, Lei He, Zengcai Zhao, Liujuan Xie and Siyuan Ye
J. Mar. Sci. Eng. 2025, 13(5), 881; https://doi.org/10.3390/jmse13050881 - 29 Apr 2025
Viewed by 422
Abstract
Understanding the climate–weathering coupling mechanisms remains pivotal for interpreting global glacial–interglacial cycles, yet advancements have been constrained by the limited high-resolution sedimentary archives. The newly acquired BXZK2017-2 borehole (30.5 m core) from Bohai Bay provides an exceptional sedimentary sequence to investigate the Late [...] Read more.
Understanding the climate–weathering coupling mechanisms remains pivotal for interpreting global glacial–interglacial cycles, yet advancements have been constrained by the limited high-resolution sedimentary archives. The newly acquired BXZK2017-2 borehole (30.5 m core) from Bohai Bay provides an exceptional sedimentary sequence to investigate the Late Quaternary climate–weathering interactions. Through an integrated high-resolution chronostratigraphic framework (AMS 14C and OSL dating) coupled with multi-proxy sedimentological analyses (major element geochemistry and granulometric parameters), we reconstructed the chemical–weathering dynamics in the Bohai coastal region since the Late Pleistocene. Our findings revealed four distinct climate-weathering phases that correlate with the regional paleoenvironmental evolution and global climate perturbations: (1) enhanced weathering during mid-MIS3 to ~37.5 cal kyr BP (Chemical Index of Alteration (CIA): 55.9–62.2), corresponding to regional warming and strengthened summer monsoon circulation; (2) weathering minimum in late MIS3 through early–mid-MIS2 (37.5–14.8 cal kyr BP, CIA < 55), marking the peak aridity before the Last Glacial Maximum; (3) maximum weathering intensity from mid-MIS2 to early MIS1 (14.8–3.34 cal kyr BP, CIA: 65–68), documenting the postglacial humidification driven by the intensified East Asian Summer Monsoon; (4) renewed weathering decline during the Neoglacial (3.34 cal kyr BP-present, CIA: 59–63), coinciding with the late Holocene cooling events. Remarkably, this study identifies a striking synchronicity between the CIA in marine drill cores and δ18O records derived from Greenland ice cores. Our results indicate that chemical weathering proxies from marginal sea sediments can serve as robust recorders of post-Late Pleistocene climate variability, establishing a new proxy framework for global paleoclimate comparative research. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

22 pages, 12751 KiB  
Article
Seismic Signals of the Wushi MS7.1 Earthquake of 23 January 2024, Viewed Through the Angle of Hydrogeochemical Characteristics
by Zhaojun Zeng, Xiaocheng Zhou, Jinyuan Dong, Jingchao Li, Miao He, Jiao Tian, Yuwen Wang, Yucong Yan, Bingyu Yao, Shihan Cui, Gaoyuan Xing, Han Yan, Ruibing Li, Wan Zheng and Yueju Cui
Appl. Sci. 2025, 15(9), 4791; https://doi.org/10.3390/app15094791 - 25 Apr 2025
Viewed by 484
Abstract
On 23 January 2024, a MS7.1 earthquake struck Wushi County, Xinjiang Uygur Autonomous Region, marking the largest seismic event in the Southern Tianshan (STS) region in the past century. This study investigates the relationship between hydrothermal fluid circulation and seismic activity [...] Read more.
On 23 January 2024, a MS7.1 earthquake struck Wushi County, Xinjiang Uygur Autonomous Region, marking the largest seismic event in the Southern Tianshan (STS) region in the past century. This study investigates the relationship between hydrothermal fluid circulation and seismic activity by analyzing the chemical composition and origin of fluids in natural hot springs along the Maidan Fracture (MDF). Results reveal two distinct hydrochemical water types (Ca-HCO3 and Ca-Mg-Cl). The δD and δ18O values indicating spring water are influenced by atmospheric precipitation input and altitude. Circulation depths (621–3492 m) and thermal reservoir temperatures (18–90 °C) were estimated. Notably, the high 3He/4He ratios (3.71 Ra) and mantle-derived 3He content reached 46.48%, confirming that complex gas–water–rock interactions occur at fracture intersections. Continuous monitoring at site S13 (144 km from the epicenter of the Wushi MS7.1 earthquake) captured pre-and post-seismic hydrogeochemical fingerprints linked to the Wushi MS7.1 earthquake. Stress accumulation along the MDF induced permeability changes, perturbing hydrogeochemical equilibrium. At 42 days pre-Wushi MS7.1 earthquake, δ13C DIC exceeded +2σ thresholds (−2.12‰), signaling deep fracture expansion and CO2 release. By 38 days pre-Wushi MS7.1 earthquake, Na+, SO42−, and δ18O surpassed 2σ levels, reflecting hydraulic connection between deep-seated and shallow fracture networks. Ion concentrations and isotope values showed dynamic shifts during the earthquake, which revealed episodic stress transfer along fault asperities. Post-Wushi MS7.1 earthquake, fracture closure reduced deep fluid input, causing δ13C DIC to drop to −4.89‰, with ion concentrations returning to baseline within 34 days. Trace elements such as Be and Sr exhibited anomalies 12 days before the Wushi MS7.1 earthquake, while elements like Li, B, and Rb showed anomalies 24 days after the Wushi MS7.1 earthquake. Hydrochemical monitoring of hot springs captures such critical stress-induced signals, offering vital insights for earthquake forecasting in tectonically active regions. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

27 pages, 11891 KiB  
Article
Cyclic Changes in Sea Level and Sequence Stratigraphy During the Latest Pliensbachian–Early Toarcian (Early Jurassic) in the Southern Qiangtang Basin (Eastern Tethys): Geochemical and Mineralogical Perspectives
by Changjun Ji, Ahmed Mansour, Yun Chen, Zhenhan Wu and Michael Wagreich
Minerals 2025, 15(5), 440; https://doi.org/10.3390/min15050440 - 24 Apr 2025
Viewed by 324
Abstract
The Pliensbachian–Toarcian boundary and early Toarcian events indicate significant environmental and oceanographic instabilities attributed to the emplacement of the Karoo–Ferrar large igneous province and subsequent greenhouse gas emissions. These geologic processes influenced carbon cycle perturbations and global warming, consistent with phases of a [...] Read more.
The Pliensbachian–Toarcian boundary and early Toarcian events indicate significant environmental and oceanographic instabilities attributed to the emplacement of the Karoo–Ferrar large igneous province and subsequent greenhouse gas emissions. These geologic processes influenced carbon cycle perturbations and global warming, consistent with phases of a sea level rise. This study presents a high-resolution dataset of total organic carbon (TOC) and bulk rock geochemistry and mineralogy from a complete upper Pliensbachian–Toarcian interval of the Quse Formation at the Qixiangcuo section in the Southern Qiangtang Basin. The Qixiangcuo section consists of carbonate and siliciclastic organic carbon-poor sediments deposited in a shallow-shelf setting in the eastern Tethys Ocean. Chemostratigraphic data, including Ti, Zr, U, Ca, Mn, and Sr and their ratios normalized to Al, record characteristic changes linked to sea level evolution and resulting depositional sequences. Trends in these geochemical data allow for the subdivision of the Quse Formation into nine complete third-order transgressive–regressive sequences, referred to as Pliensbachian sequences PSQ1 and PSQ2, Toarcian sequences TSQ1 to TSQ7, and one incomplete sequence. Elemental proxies indicative of terrigenous detrital input and sediment grain size along with a mineralogical composition of quartz, plagioclase, and clay minerals exhibit similar trends. Increased values of these proxies suggest a sea level fall and the deposition of regressive systems tract (RST) sediments, with peak values indicating a maximum regressive surface (MRS), and vice versa for transgressive systems tract (TST) sediments and the maximum flooding surface (MFS). On the contrary, rising trends in calcite content and carbonate-bound elements indicate phases of a relative sea level transgression, reaching maximum values at the MFS, while declining trends mark a sea level regression. The Sr/Ca ratio exhibited inverse patterns to the carbonate proxies, in part, with rising values indicating a sea level fall and vice versa. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

25 pages, 9236 KiB  
Article
Enhancing Medium-Orbit Satellite Orbit Prediction: Application and Experimental Validation of the BiLSTM-TS Model
by Yang Guo, Bingchuan Li, Xueshu Shi, Zhengxu Zhao, Jian Sun and Jinsheng Wang
Electronics 2025, 14(9), 1734; https://doi.org/10.3390/electronics14091734 - 24 Apr 2025
Viewed by 491
Abstract
To mitigate the limited accuracy of the Simplified General Perturbations 4 (SGP4) model in predicting medium-orbit satellite trajectories, we propose an enhanced methodology integrating deep learning with traditional algorithms. The developed BiLSTM-TS forecasting framework comprises a Bidirectional Long Short-Term Memory (BiLSTM) network, trend [...] Read more.
To mitigate the limited accuracy of the Simplified General Perturbations 4 (SGP4) model in predicting medium-orbit satellite trajectories, we propose an enhanced methodology integrating deep learning with traditional algorithms. The developed BiLSTM-TS forecasting framework comprises a Bidirectional Long Short-Term Memory (BiLSTM) network, trend analysis module (T), and seasonal decomposition module (S). This architecture effectively captures sequential dependencies, trend variations, and periodic patterns within time series data, thereby improving prediction interpretability. In our experimental validation, we chose Beidou-2 M6 (C14), GSAT0203 (GALILEO 7), and the Global Positioning System (GPS) satellite named GPS BIIR-13 (PRN 02) as representative satellites. Satellite position data derived from conventional orbital models were input into the BiLSTM-TS framework for statistical learning to predict orbital deviations. These predicted errors were subsequently combined with SGP4 model outputs obtained through Two-Line Element set (TLE) data analysis to minimize overall trajectory inaccuracies. Using BeiDou-2 M6 (C14) as a case study, results indicated that the BiLSTM-TS implementation achieved significant error reduction; mean-squared error along the X-axis was reduced to 0.0309 km2, with mean absolute error of 0.1245 km, and maximum absolute error was constrained to 0.4448 km. Full article
Show Figures

Figure 1

19 pages, 1772 KiB  
Article
Analysis of Near-Polar and Near-Circular Periodic Orbits Around the Moon with J2, C22 and Third-Body Perturbations
by Xingbo Xu
Symmetry 2025, 17(5), 630; https://doi.org/10.3390/sym17050630 - 22 Apr 2025
Viewed by 300
Abstract
In the Moon–Earth elliptic restricted three-body problem, near-polar and near-circular lunar-type periodic orbits are numerically continued from Keplerian circular orbits using Broyden’s method with line search. The Hamiltonian system, expressed in Cartesian coordinates, is treated via the symplectic scaling method. The radii of [...] Read more.
In the Moon–Earth elliptic restricted three-body problem, near-polar and near-circular lunar-type periodic orbits are numerically continued from Keplerian circular orbits using Broyden’s method with line search. The Hamiltonian system, expressed in Cartesian coordinates, is treated via the symplectic scaling method. The radii of the initial Keplerian circular orbits are then scaled and normalized. For cases in which the integer ratios {j/k} of the mean motions between the inner and outer orbits are within the range [9,150], some periodic orbits of the elliptic restricted three-body problem are investigated. For the middle-altitude cases with j/k[38,70], the perturbations due to J2 and C22 are incorporated, and some new near-polar periodic orbits are computed. The orbital dynamics of these near-polar, near-circular periodic orbits are well characterized by the first-order double-averaged system in the Poincaré–Delaunay elements. Linear stability is assessed through characteristic multipliers derived from the fundamental solution matrix of the linear varational system. Stability indices are computed for both the near-polar and planar near-circular periodic orbits across the range j/k[9,50]. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

Back to TopTop