Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,245)

Search Parameters:
Keywords = periodic potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 973 KiB  
Article
Normalization of Oxygen Levels Induces a Metabolic Reprogramming in Livers Exposed to Intermittent Hypoxia Mimicking Obstructive Sleep Apnea
by Miguel Á. Hernández-García, Beatriz Aldave-Orzáiz, Carlos Ernesto Fernández-García, Esther Fuertes-Yebra, Esther Rey, Ángela Berlana, Ramón Farré, Carmelo García-Monzón, Isaac Almendros, Pedro Landete and Águeda González-Rodríguez
Antioxidants 2025, 14(8), 971; https://doi.org/10.3390/antiox14080971 (registering DOI) - 7 Aug 2025
Abstract
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), is strongly associated with metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD). IH exacerbates MASLD progression through oxidative stress, inflammation, and lipid accumulation. This study aims to investigate the impact of oxygen normalization [...] Read more.
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), is strongly associated with metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD). IH exacerbates MASLD progression through oxidative stress, inflammation, and lipid accumulation. This study aims to investigate the impact of oxygen normalization on metabolic dysfunction in OSA patients using continuous positive airway pressure (CPAP) therapy, and in mice exposed to IH followed by a reoxygenation period. In the clinical study, 76 participants (44 OSA patients and 32 controls) were analyzed. OSA patients had higher insulin resistance, triglycerides, very low density lipoprotein (VLDL) content, and liver enzyme levels, along with a higher prevalence of liver steatosis. After 18 months of CPAP therapy, OSA patients showed significant improvements in insulin resistance, lipid profiles (total cholesterol and VLDL), liver function markers (AST and albumin), and steatosis risk scores (Fatty Liver Index and OWLiver test). In the experimental study, IH induced hepatic lipid accumulation, oxidative stress, and inflammation, and reoxygenation reversed these deleterious effects in mice. At the molecular level, IH downregulated fatty acid oxidation (FAO)-related genes, thus impairing the FAO process. Reoxygenation maintained elevated levels of lipogenic genes but restored FAO gene expression and activity, suggesting enhanced lipid clearance despite ongoing lipogenesis. Indeed, serum β hydroxybutyrate, a key marker of hepatic FAO in patients, was impaired in OSA patients but normalized after CPAP therapy, supporting improved FAO function. CPAP therapy improves lipid profiles, liver function, and MASLD progression in OSA patients. Experimental findings highlight the therapeutic potential of oxygen normalization in reversing IH-induced liver damage by FAO pathway restoration, indicating a metabolic reprogramming in the liver. Full article
(This article belongs to the Special Issue Oxidative Stress in Sleep Disorders)
20 pages, 4142 KiB  
Article
Repeated Administration of Guar Gum Hydrogel Containing Sesamol-Loaded Nanocapsules Reduced Skin Inflammation in Mice in an Irritant Contact Dermatitis Model
by Vinicius Costa Prado, Bruna Rafaela Fretag de Carvalho, Kauani Moenke, Amanda Maccangnan Zamberlan, Samuel Felipe Atuati, Ana Clara Perazzio Assis, Evelyne da Silva Brum, Raul Edison Luna Lazo, Andréa Inês Horn Adams, Luana Mota Ferreira, Sara Marchesan Oliveira and Letícia Cruz
Pharmaceutics 2025, 17(8), 1029; https://doi.org/10.3390/pharmaceutics17081029 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Dermatitis is frequently treated with dexamethasone cutaneous application, which causes adverse effects mainly when it is chronically administered. Sesamol is a phytochemical compound known for its anti-inflammatory activity and low toxicity. Therefore, this study reports the optimization of a guar gum [...] Read more.
Background/Objectives: Dermatitis is frequently treated with dexamethasone cutaneous application, which causes adverse effects mainly when it is chronically administered. Sesamol is a phytochemical compound known for its anti-inflammatory activity and low toxicity. Therefore, this study reports the optimization of a guar gum hydrogel with enhanced physicochemical and microbiological stability, providing an effective dosage form for topical application of sesamol nanocapsules to treat irritant contact dermatitis. Methods: Nano-based hydrogel containing 1 mg/g sesamol was prepared by adding the nanocapsule suspension to form a 2.5% (w/v) guar gum dispersion. Dynamic rheological analysis indicates that the formulations exhibit a non-Newtonian flow with pseudoplastic behavior. Hydrogels were evaluated by Fourier-transformed infrared (FTIR) spectroscopy, and, following spectrum acquisition, an unsupervised chemometrics model was developed to identify crucial variables. Additionally, the physicochemical and microbiological stability of the hydrogel was evaluated over a 60-day period. Results: ATR-FTIR spectra of all hydrogels evaluated are very similar after preparation and 60 days of storage. However, it showed a slight increase in average diameter and PDI and decreased pH values after 60 days. Microbiological assessment demonstrated that the hydrogel met the requirements for the microbial count over 60 days. The dermatitis model was induced by repeated applications of croton oil in the right ears of mice. The effectiveness of the hydrogels was evaluated by assessing ear edema and migration of polymorphonuclear cells. The nano-based hydrogel exhibited anti-inflammatory properties similar to those of dexamethasone. Conclusions: Therefore, the nano-based hydrogel containing sesamol exhibits therapeutic potential for treating cutaneous inflammatory diseases. Full article
Show Figures

Figure 1

24 pages, 2032 KiB  
Article
BCTDNet: Building Change-Type Detection Networks with the Segment Anything Model in Remote Sensing Images
by Wei Zhang, Jinsong Li, Shuaipeng Wang and Jianhua Wan
Remote Sens. 2025, 17(15), 2742; https://doi.org/10.3390/rs17152742 (registering DOI) - 7 Aug 2025
Abstract
Observing building changes in remote sensing images plays a crucial role in monitoring urban development and promoting sustainable urbanization. Mainstream change detection methods have demonstrated promising performance in identifying building changes. However, buildings have large intra-class variance and high similarity with other objects, [...] Read more.
Observing building changes in remote sensing images plays a crucial role in monitoring urban development and promoting sustainable urbanization. Mainstream change detection methods have demonstrated promising performance in identifying building changes. However, buildings have large intra-class variance and high similarity with other objects, limiting the generalization ability of models in diverse scenarios. Moreover, most existing methods only detect whether changes have occurred but ignore change types, such as new construction and demolition. To address these issues, we present a building change-type detection network (BCTDNet) based on the Segment Anything Model (SAM) to identify newly constructed and demolished buildings. We first construct a dual-feature interaction encoder that employs SAM to extract image features, which are then refined through trainable multi-scale adapters for learning architectural structures and semantic patterns. Moreover, an interactive attention module bridges SAM with a Convolutional Neural Network, enabling seamless interaction between fine-grained structural information and deep semantic features. Furthermore, we develop a change-aware attribute decoder that integrates building semantics into the change detection process via an extraction decoding network. Subsequently, an attribute-aware strategy is adopted to explicitly generate distinct maps for newly constructed and demolished buildings, thereby establishing clear temporal relationships among different change types. To evaluate BCTDNet’s performance, we construct the JINAN-MCD dataset, which covers Jinan’s urban core area over a six-year period, capturing diverse change scenarios. Moreover, we adapt the WHU-CD dataset into WHU-MCD to include multiple types of changing. Experimental results on both datasets demonstrate the superiority of BCTDNet. On JINAN-MCD, BCTDNet achieves improvements of 12.64% in IoU and 11.95% in F1 compared to suboptimal methods. Similarly, on WHU-MCD, it outperforms second-best approaches by 2.71% in IoU and 1.62% in F1. BCTDNet’s effectiveness and robustness in complex urban scenarios highlight its potential for applications in land-use analysis and urban planning. Full article
111 pages, 6426 KiB  
Article
Economocracy: Global Economic Governance
by Constantinos Challoumis
Economies 2025, 13(8), 230; https://doi.org/10.3390/economies13080230 (registering DOI) - 7 Aug 2025
Abstract
Economic systems face critical challenges, including widening income inequality, unemployment driven by automation, mounting public debt, and environmental degradation. This study introduces Economocracy as a transformative framework aimed at addressing these systemic issues by integrating democratic principles into economic decision-making to achieve social [...] Read more.
Economic systems face critical challenges, including widening income inequality, unemployment driven by automation, mounting public debt, and environmental degradation. This study introduces Economocracy as a transformative framework aimed at addressing these systemic issues by integrating democratic principles into economic decision-making to achieve social equity, economic efficiency, and environmental sustainability. The research focuses on two core mechanisms: Economic Productive Resets (EPRs) and Economic Periodic Injections (EPIs). EPRs facilitate proportional redistribution of resources to reduce income disparities, while EPIs target investments to stimulate job creation, mitigate automion-related job displacement, and support sustainable development. The study employs a theoretical and analytical methodology, developing mathematical models to quantify the impact of EPRs and EPIs on key economic indicators, including the Gini coefficient for inequality, unemployment rates, average wages, and job displacement due to automation. Hypothetical scenarios simulate baseline conditions, EPR implementation, and the combined application of EPRs and EPIs. The methodology is threefold: (1) a mathematical–theoretical validation of the Cycle of Money framework, establishing internal consistency; (2) an econometric analysis using global historical data (2000–2023) to evaluate the correlation between GNI per capita, Gini coefficient, and average wages; and (3) scenario simulations and Difference-in-Differences (DiD) estimates to test the systemic impact of implementing EPR/EPI policies on inequality and labor outcomes. The models are further strengthened through tools such as OLS regression, and Impulse results to assess causality and dynamic interactions. Empirical results confirm that EPR/EPI can substantially reduce income inequality and unemployment, while increasing wage levels, findings supported by both the theoretical architecture and data-driven outcomes. Results demonstrate that Economocracy can significantly lower income inequality, reduce unemployment, increase wages, and mitigate automation’s effects on the labor market. These findings highlight Economocracy’s potential as a viable alternative to traditional economic systems, offering a sustainable pathway that harmonizes growth, social justice, and environmental stewardship in the global economy. Economocracy demonstrates potential to reduce debt per capita by increasing the efficiency of public resource allocation and enhancing average income levels. As EPIs stimulate employment and productivity while EPRs moderate inequality, the resulting economic growth expands the tax base and alleviates fiscal pressures. These dynamics lead to lower per capita debt burdens over time. The analysis is situated within the broader discourse of institutional economics to demonstrate that Economocracy is not merely a policy correction but a new economic system akin to democracy in political life. Full article
Show Figures

Figure 1

17 pages, 3578 KiB  
Article
Space Medicine Meets Serious Games: Boosting Engagement with the Medimon Creature Collector
by Martin Hundrup, Jessi Holte, Ciara Bordeaux, Emma Ferguson, Joscelyn Coad, Terence Soule and Tyler Bland
Multimodal Technol. Interact. 2025, 9(8), 80; https://doi.org/10.3390/mti9080080 - 7 Aug 2025
Abstract
Serious games that integrate educational content with engaging gameplay mechanics hold promise for reducing cognitive load and increasing student motivation in STEM and health science education. This preliminary study presents the development and evaluation of the Medimon NASA Demo, a game-based learning prototype [...] Read more.
Serious games that integrate educational content with engaging gameplay mechanics hold promise for reducing cognitive load and increasing student motivation in STEM and health science education. This preliminary study presents the development and evaluation of the Medimon NASA Demo, a game-based learning prototype designed to teach undergraduate students about the musculoskeletal and visual systems—two critical domains in space medicine. Participants (n = 23) engaged with the game over a two-week self-regulated learning period. The game employed mnemonic-based characters, visual storytelling, and turn-based battle mechanics to reinforce medical concepts. Quantitative results demonstrated significant learning gains, with posttest scores increasing by an average of 23% and a normalized change of c = 0.4. Engagement levels were high across multiple dimensions of situational interest, and 74% of participants preferred the game over traditional formats. Qualitative analysis of open-ended responses revealed themes related to intrinsic appeal, perceived learning efficacy, interaction design, and cognitive resource management. While the game had minimal impact on short-term STEM career interest, its educational potential was clearly supported. These findings suggest that mnemonic-driven serious games like Medimon can effectively enhance engagement and learning in health science education, especially when aligned with real-world contexts such as space medicine. Full article
(This article belongs to the Special Issue Video Games: Learning, Emotions, and Motivation)
Show Figures

Figure 1

32 pages, 5466 KiB  
Article
Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate
by Dennis Thom, Artur Bugała, Dorota Bugała and Wojciech Czekała
Energies 2025, 18(15), 4198; https://doi.org/10.3390/en18154198 - 7 Aug 2025
Abstract
In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely [...] Read more.
In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely integrates detailed multi-variant fixed-tilt PV system simulations with comprehensive economic evaluation under temperate climate conditions, addressing site-specific spatial constraints and grid integration considerations that have rarely been combined in previous works. In this paper, an energy and economic efficiency analysis for a photovoltaic power plant, located in central Poland, designed in eight variants (10°, 15°, 20°, 25°, 30° PV module inclination angle for a south orientation and 10°, 20°, 30° for an east–west orientation) for a limited building area of approximately 300,000 m2 was conducted. In PVSyst computer simulations, PVGIS-SARAH2 solar radiation data were used together with the most common data for describing the Polish local solar climate, called Typical Meteorological Year data (TMY). The most energy-efficient variants were found to be 20° S and 30° S, configurations with the highest surface production coefficient (249.49 and 272.68 kWh/m2) and unit production efficiency values (1123 and 1132 kWh/kW, respectively). These findings highlight potential efficiency gains of up to approximately 9% in surface production coefficient and financial returns exceeding 450% ROI, demonstrating significant economic benefits. In economic terms, the 15° S variant achieved the highest values of financial parameters, such as the return on investment (ROI) (453.2%), the value of the average annual share of profits in total revenues (56.93%), the shortest expected payback period (8.7 years), the value of the levelized cost of energy production (LCOE) (0.1 EUR/kWh), and one of the lowest costs of building 1 MWp of a photovoltaic farm (664,272.7 EUR/MWp). Among the tested variants of photovoltaic farms with an east–west geographical orientation, the most advantageous choice is the 10° EW arrangement. The results provide valuable insights for policymakers and investors aiming to optimize photovoltaic deployment in temperate climates, supporting the broader transition to renewable energy and alignment with national energy policy goals. Full article
Show Figures

Figure 1

20 pages, 7704 KiB  
Article
Laser Scanning and Photogrammetry for Graphic Analysis and Heritage Documentation: The Lopera Tower, a 14th-Century Castilian Fortress
by Juan Francisco Molina Rozalem, Jesús Rodríguez Medina and Ignacio Acosta
Appl. Sci. 2025, 15(15), 8737; https://doi.org/10.3390/app15158737 - 7 Aug 2025
Abstract
Spain is among the European countries with the greatest number of preserved castles and defensive structures—some estimates place the total at around 10,000, the majority of which date back to the medieval period. Yet, surprisingly, many of these fortifications remain uncatalogued and in [...] Read more.
Spain is among the European countries with the greatest number of preserved castles and defensive structures—some estimates place the total at around 10,000, the majority of which date back to the medieval period. Yet, surprisingly, many of these fortifications remain uncatalogued and in an advanced state of ruin. This study focuses on a small fortress that has been overlooked by historiography and neglected by public authorities, yet which still stands after seven centuries: the Tower of Lopera, a castle belonging to the so-called Banda Morisca (the frontier of Al-Andalus in the 14th century). Using a combination of digital documentation techniques—namely, portable laser scanning, photogrammetry (via drone and camera), and digital image processing software—we have been able to digitize, geometrize, and document both the surviving architectural remains and their immediate physical environment. Rather than pursuing the latest technological innovations, this methodology prioritizes practical and realistic solutions based on the resources typically available to cultural heritage administrations. Our work serves two main objectives: to demonstrate the viability of applying such tools to this typology of architectural heritage and to conduct a detailed graphic and geometric analysis of the structure. Given the abundance of similar abandoned fortresses in Spain, the findings presented here could inform future heritage documentation strategies on a broader, potentially national, scale. Full article
Show Figures

Figure 1

18 pages, 549 KiB  
Article
Clinical Evaluation of Ripasudil for Corneal Edema: A Large-Scale Retrospective Cohort Study
by Nir Erdinest, Michael Tabi, Nadav Shemesh, Jamel Corredores, Claudia Yahalom, Yossi Eshel, Benjamin Stern, David Smadja, Zvi Gur and Itay Lavy
J. Clin. Med. 2025, 14(15), 5572; https://doi.org/10.3390/jcm14155572 - 7 Aug 2025
Abstract
Objectives: This study evaluated the therapeutic potential of topical Ripasudil hydrochloride hydrate in managing various forms of corneal edema. Methods: This retrospective study included 96 patients of 72.20 ± 10.52 years, with 53 females (55.2%) who were treated with Ripasudil for corneal edema, [...] Read more.
Objectives: This study evaluated the therapeutic potential of topical Ripasudil hydrochloride hydrate in managing various forms of corneal edema. Methods: This retrospective study included 96 patients of 72.20 ± 10.52 years, with 53 females (55.2%) who were treated with Ripasudil for corneal edema, with a mean treatment duration of 5.2 ± 2.3 months, divided into four groups: post-cataract surgery (n = 32), Fuchs endothelial corneal dystrophy (FECD; n = 29), post-Descemet membrane endothelial keratoplasty (DMEK; n = 25), and post-penetrating keratoplasty (PKP; n = 10). All patients were treated with Ripasudil, typically administered three times daily in the first week and twice daily in the following months. Clinical efficacy outcomes were assessed using changes in best-corrected visual acuity (BCVA), central corneal thickness (CCT), and endothelial cell count (ECC) with specular microscopy, anterior segment optical coherence tomography (OCT), and slit-lamp examination, while intraocular pressure (IOP) was measured using the iCare tonometer. Results: Ripasudil treatment led to a reduction in CCT and improvement in visual acuity across most groups, with minimal changes in ECC. CCT decreased by 30.44 μm (p < 0.001), 25.56 μm (p < 0.001), 8.41 μm (p = 0.05), and 6.80 μm (p > 0.1); visual acuity improved by 0.27 (p = 0.001), 0.18 (p = 0.02), 0.17 (p = 0.025), and 0.07 logMAR units (p > 0.1); and ECC changed by +7.0 (p > 0.1), 15.4 (p > 0.1), −7.6 (p > 0.1), and 2.3 cells/mm2 (p > 0.1) in the post-cataract surgery, FECD, post-DMEK, and post-PKP groups, respectively. Conclusions: No adverse events or progression of edema were recorded during the follow-up period. These findings support the role of Ripasudil as a non-invasive pharmacological approach to managing corneal edema and delaying or possibly avoiding surgical interventions, such as corneal transplantation, in selected cases. Full article
Show Figures

Figure 1

15 pages, 894 KiB  
Article
Mediating Impact of Intranasal Oxytocin on the Interaction Between Irritability and Reactive Aggression in Youth with Severe Irritability
by Jake J. Son, Ji-Woo Suk, William F. Garvey, Ryan T. Edwards, Ellen Leibenluft, R. J. R. Blair and Soonjo Hwang
Life 2025, 15(8), 1253; https://doi.org/10.3390/life15081253 - 7 Aug 2025
Abstract
Objective: Irritability and reactive aggression are transdiagnostic features that are predictive of adverse long-term outcomes. This investigation examined whether intranasal oxytocin administration impacts the interaction between irritability and reactive aggression, and whether these effects can be detected at a neural level via a [...] Read more.
Objective: Irritability and reactive aggression are transdiagnostic features that are predictive of adverse long-term outcomes. This investigation examined whether intranasal oxytocin administration impacts the interaction between irritability and reactive aggression, and whether these effects can be detected at a neural level via a facial expression processing task during functional MRI (fMRI). Methods: In this study, 40 children and adolescents with severe irritability and psychiatric diagnoses of disruptive mood and behavioral disorders were assigned to either intranasal oxytocin or placebo administration over a 3-week period in a randomized, double-blind trial (ClinicalTrials, NCT02824627). Clinical measures and fMRI during a facial expression processing task were collected pre- and post-intervention. Brain regions sensitive to oxytocin administration were determined using whole-brain statistical analyses, with post hoc analyses to determine whether changes in the neural activity mediated the relationship between changes in irritability and reactive aggression across the intervention period. Results: Youth who received intranasal oxytocin administration exhibited significant decreases in irritability and reactive aggression compared to their counterparts in the placebo group. Further, oxytocin administration was associated with significant increases in neural activity in the right superior prefrontal cortex, which fully mediated the relationship between improvements in irritability and improvements in reactive aggression. Conclusions: Intranasal oxytocin significantly reduced irritability and reactive aggression in youth, as well as neural activity in the prefrontal cortex, such that increases in the cortical activity fully mediated the relationship between changes in irritability and reactive aggression. Taken together, these findings may reflect oxytocin-related enhancements in emotional regulation in youth with severe irritability, a potential therapeutic mechanism for mitigating reactive aggression. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

14 pages, 646 KiB  
Review
The Role of Sensor Technologies in Estrus Detection in Beef Cattle: A Review of Current Applications
by Inga Merkelytė, Artūras Šiukščius and Rasa Nainienė
Animals 2025, 15(15), 2313; https://doi.org/10.3390/ani15152313 - 7 Aug 2025
Abstract
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each [...] Read more.
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each cow produces one calf per year, maintaining a calving interval of 365 days. However, this goal is difficult to achieve, as the gestation period in beef cows lasts approximately 280 days, leaving only 80–85 days for successful conception. Traditional methods, such as visual estrus detection, are becoming increasingly unreliable due to expanding herd sizes and the subjectivity of visual observation. Additionally, silent estrus—where ovulation occurs without noticeable behavioral changes—further complicates the accurate estrous-based identification of the optimal insemination period. To enhance reproductive efficiency, advanced technologies are increasingly being integrated into cattle management. Sensor-based monitoring systems, including accelerometers, pedometers, and ruminoreticular boluses, enable the precise tracking of activity changes associated with the estrous cycle. Furthermore, infrared thermography offers a non-invasive method for detecting body temperature fluctuations, allowing for more accurate estrus identification and optimized timing of insemination. The use of these innovative technologies has the potential to significantly improve reproductive efficiency in beef cattle herds and contribute to overall farm productivity and sustainability. The objective of this review is to examine advancements in smart technologies applied to beef cattle reproductive management, presenting commercially available technologies and recent scientific studies on innovative systems. The focus is on sensor-based monitoring systems and infrared thermography for optimizing reproduction. Additionally, the challenges associated with these technologies and their potential to enhance reproductive efficiency and sustainability in the beef cattle industry are discussed. Despite the benefits of advanced technologies, their implementation in cattle farms is hindered by financial and technical challenges. High initial investment costs and the complexity of data analysis may limit their adoption, particularly in small and medium-sized farms. However, the continuous development of these technologies and their adaptation to farmers’ needs may significantly contribute to more efficient and sustainable reproductive management in beef cattle production. Full article
(This article belongs to the Special Issue Reproductive Management Strategies for Dairy and Beef Cows)
Show Figures

Figure 1

19 pages, 17158 KiB  
Article
Deep Learning Strategy for UAV-Based Multi-Class Damage Detection on Railway Bridges Using U-Net with Different Loss Functions
by Yong-Hyoun Na and Doo-Kie Kim
Appl. Sci. 2025, 15(15), 8719; https://doi.org/10.3390/app15158719 - 7 Aug 2025
Abstract
Periodic visual inspections are currently conducted to maintain the condition of railway bridges. These inspections rely on direct visual assessments by human inspectors, often requiring specialized equipment such as aerial ladders. However, this method is not only time-consuming and costly but also involves [...] Read more.
Periodic visual inspections are currently conducted to maintain the condition of railway bridges. These inspections rely on direct visual assessments by human inspectors, often requiring specialized equipment such as aerial ladders. However, this method is not only time-consuming and costly but also involves significant safety risks. Therefore, there is a growing need for a more efficient and reliable alternative to traditional visual inspections of railway bridges. In this study, we evaluated and compared the performance of damage detection using U-Net-based deep learning models on images captured by unmanned aerial vehicles (UAVs). The target damage types include cracks, concrete spalling and delamination, water leakage, exposed reinforcement, and paint peeling. To enable multi-class segmentation, the U-Net model was trained using three different loss functions: Cross-Entropy Loss, Focal Loss, and Intersection over Union (IoU) Loss. We compared these methods to determine their ability to distinguish actual structural damage from environmental factors and surface contamination, particularly under real-world site conditions. The results showed that the U-Net model trained with IoU Loss outperformed the others in terms of detection accuracy. When applied to field inspection scenarios, this approach demonstrates strong potential for objective and precise damage detection. Furthermore, the use of UAVs in the inspection process is expected to significantly reduce both time and cost in railway infrastructure maintenance. Future research will focus on extending the detection capabilities to additional damage types such as efflorescence and corrosion, aiming to ultimately replace manual visual inspections of railway bridge surfaces with deep-learning-based methods. Full article
Show Figures

Figure 1

16 pages, 17061 KiB  
Article
Numerical Analysis of Cavitation Suppression on a NACA 0018 Hydrofoil Using a Surface Cavity
by Pankaj Kumar, Ebrahim Kadivar and Ould el Moctar
J. Mar. Sci. Eng. 2025, 13(8), 1517; https://doi.org/10.3390/jmse13081517 - 6 Aug 2025
Abstract
This study examines the hydrodynamic and acoustic performance of plain NACA0018 hydrofoil and modified NACA0018 hydrofoils (foil with a cavity on suction surface) at a Reynolds number (Re) of 40,000, which is indicative of small-scale turbines and [...] Read more.
This study examines the hydrodynamic and acoustic performance of plain NACA0018 hydrofoil and modified NACA0018 hydrofoils (foil with a cavity on suction surface) at a Reynolds number (Re) of 40,000, which is indicative of small-scale turbines and marine applications. A cavity was created on suction side surface at 40–50% of the chord length, which is chosen for its efficacy in cavitation control. The present analysis examines the impact of the cavity on lift-to-drag-ratio (L/D) and cavity length at three cavitation numbers (1.7, 1.2, and 0.93) for plain and modified hydrofoils. Simulations demonstrate a significant enhancement of 7% in the lift-to-drag ratio relative to traditional designed foils. Contrary to earlier observations, the cavity length increases instead of decreasing for the modified hydrofoil. Both periodic steady and turbulent inflow conditions are captured that simulate the complex cavity dynamics and flow–acoustic interactions. It is found that a reduction in RMS velocity with modified blade suggests flow stabilization. Spectral analysis using Mel-frequency techniques confirms the cavity’s potential to reduce low-frequency flow-induced noise. These findings offer new insights for designing quieter and more efficient hydrofoils and turbine blades. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

11 pages, 533 KiB  
Article
Paired-Pulse Repetitive Trans-Spinal Magnetic Stimulation Supports Balance Ability While the Coil Orientation Significantly Determines the Effects: A Randomised, Placebo-Controlled Trial
by Jitka Veldema, Michel Klemm, Jan Straub, Saskia Kurtzhals, Lea Sasse and Teni Steingräber
Biomedicines 2025, 13(8), 1920; https://doi.org/10.3390/biomedicines13081920 - 6 Aug 2025
Abstract
Objectives: The primary objective was to investigate and compare the effects of three paired-pulse repetitive trans-spinal magnetic stimulation (PP-rTSMS) protocols on balance control and corticospinal network function. Methods: PP-rTSMS (800 pulses, frequency 100 Hz, intensity 70% of the resting motor threshold) was [...] Read more.
Objectives: The primary objective was to investigate and compare the effects of three paired-pulse repetitive trans-spinal magnetic stimulation (PP-rTSMS) protocols on balance control and corticospinal network function. Methods: PP-rTSMS (800 pulses, frequency 100 Hz, intensity 70% of the resting motor threshold) was applied over the eighth thoracic vertebra (Th8) in twenty-seven young healthy individuals. Each proband received three verum sessions (using a verum coil with handle oriented (i) cranially, (ii) caudally, and (iii) laterally) and (iv) one sham session (using a sham coil) in a randomised order. Balance ability (Y Balance Test) and corticospinal network functions (motor evoked potentials (MEPs), cortical silent periods (SCPs)) were tested immediately (i) prior to and (ii) after each interventional session. Results: Each verum session induced a significant improvement in balance ability (cranially (F1,26 = 8.009; p = 0.009; η2 = 0.236), caudally (F1,26 = 4.846; p = 0.037; η2 = 0.157), and laterally (F1,26 = 23,804; p ≤ 0.001; η2 = 0.478) oriented grip) as compared to the sham session. In addition, the laterally oriented coil grip was associated with significantly greater balance benefits than both the cranial (F1,26 = 10.173; p = 0.004; η2 = 0.281) and caudal (F1,26 = 14.058; p ≤ 0.001; η2 = 0.351) grip orientations. No significant intervention-induced effects were detected on corticospinal network functions. Conclusions: Our data show that PP-rTSMS effectively supports balance control and that coil orientation significantly influences these effects. Further studies should test variations of this promising approach on healthy and disabled cohorts. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

10 pages, 1522 KiB  
Article
Impact of Continuous Veno-Venous Hemodiafiltration on Thyroid Homeostasis in Critically Ill Patients
by Alicja Filipczyk, Magdalena A. Wujtewicz, Michał Okrągły and Karol P. Steckiewicz
J. Clin. Med. 2025, 14(15), 5542; https://doi.org/10.3390/jcm14155542 - 6 Aug 2025
Abstract
Background: Patients in Intensive Care Units (ICUs) often develop non-thyroidal illness syndrome. Potentially, thyroid hormones may be removed during continuous veno-venous hemodiafiltration (CVVHDF), as their molecular size is smaller than the filter pores’ cutoff. The study’s main aim was to assess whether [...] Read more.
Background: Patients in Intensive Care Units (ICUs) often develop non-thyroidal illness syndrome. Potentially, thyroid hormones may be removed during continuous veno-venous hemodiafiltration (CVVHDF), as their molecular size is smaller than the filter pores’ cutoff. The study’s main aim was to assess whether the serum concentration of thyroid hormones changes over time during CVVHDF. Methods: This was a prospective observational trial that included 30 patients treated in an ICU. All patients developed acute kidney injury (AKI) and had clinical indications for implementation of CVVHDF. Blood samples were collected before initiation of CVVHDF and at 1, 2, 3, 6, 9 and 12 days after. The last sample was collected three days after CVVHDF withdrawal. Thyroid function was evaluated by determining the serum concentration of TSH, thyrotropin-releasing hormone (TRH), free triiodothyronine (fT3), free thyroxine (fT4), total triiodothyronine (tT3), total thyroxine (tT4) and reverse triiodothyronine (rT3). We additionally calculated the total activity of peripheral deiodinases (GD) using a mathematical model. Results: TRH and TSH levels remained mostly within normal ranges. fT4 and tT4 were in normal range or slightly below. In contrast, fT3 and tT3 were undetectably low in most patients throughout. Reverse T3 levels remained within normal limits. There were no statistically significant changes in any thyroid hormone levels over the CVVHDF treatment period. The calculated peripheral GD activity was lower than normal, but importantly, it did not change significantly over time. Conclusions: Thyroid hormones are not lost due to hemodiafiltration. Decreased deiodinases activity is responsible for alterations in serum concentrations of thyroid hormones in patients during CVVHDF. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Figure 1

19 pages, 28819 KiB  
Article
Dynamical Analysis, Feedback Control Circuit Implementation, and Fixed-Time Sliding Mode Synchronization of a Novel 4D Chaotic System
by Huaigu Tian, Xifeng Yi, Yang Zhang, Zhen Wang, Xiaojian Xi and Jindong Liu
Symmetry 2025, 17(8), 1252; https://doi.org/10.3390/sym17081252 - 6 Aug 2025
Abstract
This paper presents a novel four-dimensional (4D) chaotic system exhibiting parametric symmetry breaking and multistability. Through equilibrium stability analysis, attractor reconstruction, Lyapunov Exponent spectra (LEs), and bifurcation diagrams, we reveal a continuous transition from symmetric period attractors to asymmetric chaotic states and rich [...] Read more.
This paper presents a novel four-dimensional (4D) chaotic system exhibiting parametric symmetry breaking and multistability. Through equilibrium stability analysis, attractor reconstruction, Lyapunov Exponent spectra (LEs), and bifurcation diagrams, we reveal a continuous transition from symmetric period attractors to asymmetric chaotic states and rich dynamical behaviors. Additionally, considering the potential of this system in practical applications, a feedback control simulation circuit is designed and implemented to ensure its stability and effectiveness under real-world conditions. Finally, among various control strategies, this paper proposes an innovative Fixed-Time Sliding Mode Synchronization (FTSMS) strategy, determines its synchronization convergence time, and provides an important theoretical foundation for the practical application of the system. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Chaos Theory and Application)
Show Figures

Figure 1

Back to TopTop