Paired-Pulse Repetitive Trans-Spinal Magnetic Stimulation Supports Balance Ability While the Coil Orientation Significantly Determines the Effects: A Randomised, Placebo-Controlled Trial
Abstract
1. Introduction
1.1. Paired-Pulse Repetitive Magnetic Stimulation over the Spinal Cord
1.2. The Influence of Coil Orientation on Stimulation-Induced Effects
2. Methods
2.1. Study Design
2.2. Participants
2.3. Assessments
2.3.1. Balance Control
2.3.2. Neurophysiological Measures
2.3.3. Adverse Effects
2.4. Intervention
2.5. Analysis
3. Results
3.1. Y Balance Test
3.2. Neurophysiological Measures
3.3. Adverse Effects
4. Discussion
4.1. PP-rTSMS Is a Promising Approach to Support Human Abilities
4.2. Coil Orientation Significantly Influences Stimulation-Induced Effects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behrangrad, S.; Zoghi, M.; Kidgell, D.; Jaberzadeh, S. The Effect of a Single Session of Non-Invasive Brain Stimulation on Balance in Healthy Individuals: A Systematic Review and Best Evidence Synthesis. Brain Connect. 2021, 11, 695–716. [Google Scholar] [CrossRef]
- Bueno, G.A.S.; do Bomfim, A.D.; Campos, L.F.; Martins, A.C.; Elmescany, R.B.; Stival, M.M.; Funghetto, S.S.; de Menezes, R.L. Non-invasive neuromodulation in reducing the risk of falls and fear of falling in community-dwelling older adults: Systematic review. Front. Aging Neurosci. 2024, 15, 1301790. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Gin, T.; Bao, D.; Zhou, J. The Effects of Repetitive Transcranial Magnetic Stimulation on Standing Balance and Walking in Older Adults with Age-related Neurological Disorders: A Systematic Review and Meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 842–852. [Google Scholar] [CrossRef]
- Veldema, J.; Gharabaghi, A. Non-invasive brain stimulation for improving gait, balance, and lower limbs motor function in stroke. J. Neuroeng. Rehabil. 2022, 19, 84. [Google Scholar] [CrossRef]
- Zhang, X.; Jing, F.; Liu, Y.; Tang, J.; Hua, X.; Zhu, J.; Tuo, H.; Lin, Q.; Gao, P.; Liu, W. Effects of non-invasive brain stimulation on walking and balance ability in Parkinson’s patients: A systematic review and meta-analysis. Front. Aging Neurosci. 2023, 14, 1065126. [Google Scholar] [CrossRef]
- Chen, J.M.; Li, X.L.; Pan, Q.H.; Yang, Y.; Xu, S.M.; Xu, J.W. Effects of non-invasive brain stimulation on motor function after spinal cord injury: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2023, 20, 3. [Google Scholar] [CrossRef]
- Yin, L.; Wang, X.; Chen, L.; Liu, D.; Li, H.; Liu, Z.; Huang, Y.; Chen, J. Repetitive transcranial magnetic stimulation for cerebellar ataxia: A systematic review and meta-analysis. Front. Neurol. 2023, 14, 1177746. [Google Scholar] [CrossRef]
- Dijkstra, B.W.; Bekkers, E.M.; Gilat, M.; de Rond, V.; Hardwick, R.M.; Nieuwboer, A. Functional neuroimaging of human postural control: A systematic review with meta-analysis. Neurosci. Biobehav. Rev. 2020, 115, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Surgent, O.J.; Dadalko, O.I.; Pickett, K.A.; Travers, B.G. Balance and the brain: A review of structural brain correlates of postural balance and balance training in humans. Gait Posture 2019, 71, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Taube, W.; Gruber, M.; Gollhofer, A. Spinal and supraspinal adaptations associated with balance training and their functional relevance. Acta Physiol. 2008, 193, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Zhou, S. Soleus H-reflex and its relation to static postural control. Gait Posture 2011, 33, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Kawaishi, Y.; Matsumoto, N.; Nishiwaki, T.; Hirano, T. Postactivation depression of soleus H-reflex increase with recovery of lower extremities motor functions in patients with subacute stroke. J. Phys. Ther. Sci. 2017, 29, 1539–1542. [Google Scholar] [CrossRef]
- Feldman, A.G.; Levin, M.F.; Garofolini, A.; Piscitelli, D.; Zhang, L. Central pattern generator and human locomotion in the context of referent control of motor actions. Clin. Neurophysiol. 2021, 132, 2870–2889. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Parihar, A.; Khanna, A.; Gomez, J.; Chakraborty, W.; Jerry, M.; Grisafe, B.; Raychowdhury, A.; Datta, S. Programmable coupled oscillators for synchronized locomotion. Nat. Commun. 2019, 10, 3299. [Google Scholar] [CrossRef]
- Dietz, V. Spinal cord pattern generators for locomotion. Clin. Neurophysiol. 2003, 114, 1379–1389. [Google Scholar] [CrossRef]
- Veldema, J.; Steingräber, T.; von Grönheim, L.; Wienecke, J.; Regel, R.; Schack, T.; Schütz, C. Direct Current Stimulation over the Primary Motor Cortex, Cerebellum, and Spinal Cord to Modulate Balance Performance: A Randomized Placebo-Controlled Trial. Bioengineering 2024, 11, 353. [Google Scholar] [CrossRef]
- Steingräber, T.; Grönheim, L.V.; Klemm, M.; Straub, J.; Sasse, L.; Veldema, J. High-Definition Trans-Spinal Current Stimulation Improves Balance and Somatosensory Control: A Randomised, Placebo-Controlled Trial. Biomedicines 2024, 12, 2379. [Google Scholar] [CrossRef]
- Frey, J.; Hess, C.W.; Kugler, L.; Wajid, M.; Wagle Shukla, A. Transcranial Magnetic Stimulation in Tremor Syndromes: Pathophysiologic Insights and Therapeutic Role. Front. Neurol. 2021, 12, 700026. [Google Scholar] [CrossRef]
- Brihmat, N.; Allexandre, D.; Saleh, S.; Zhong, J.; Yue, G.H.; Forrest, G.F. Stimulation Parameters Used During Repetitive Transcranial Magnetic Stimulation for Motor Recovery and Corticospinal Excitability Modulation in SCI: A Scoping Review. Front. Hum. Neurosci. 2022, 16, 800349. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, E.; Sadjadi, S.M.; Asgarinejad, M.; Dehghani, A.; Rajabion, L.; Soltanian-Zadeh, H. Neuroenhancement by repetitive transcranial magnetic stimulation (rTMS) on DLPFC in healthy adults. Cogn. Neurodyn. 2025, 19, 34. [Google Scholar] [CrossRef]
- Fan, S.; Wang, W.; Zheng, X. Repetitive Transcranial Magnetic Stimulation for the Treatment of Spinal Cord Injury: Current Status and Perspective. Int. J. Mol. Sci. 2025, 26, 825. [Google Scholar] [CrossRef]
- Hand, B.J.; Merkin, A.; Opie, G.M.; Ziemann, U.; Semmler, J.G. Repetitive paired-pulse TMS increases motor cortex excitability and visuomotor skill acquisition in young and older adults. Cereb. Cortex 2023, 33, 10660–10675. [Google Scholar] [CrossRef]
- Khedr, E.M.; Gilio, F.; Rothwell, J. Effects of low frequency and low intensity repetitive paired pulse stimulation of the primary motor cortex. Clin. Neurophysiol. 2004, 115, 1259–1263. [Google Scholar] [CrossRef]
- Opie, G.M.; Sasaki, R.; Hand, B.J.; Semmler, J.G. Modulation of Motor Cortex Plasticity by Repetitive Paired-Pulse TMS at Late I-Wave Intervals Is Influenced by Intracortical Excitability. Brain Sci. 2021, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Sommer, M.; Kamm, T.; Tergau, F.; Ulm, G.; Paulus, W. Repetitive paired-pulse transcranial magnetic stimulation affects corticospinal excitability and finger tapping in Parkinson’s disease. Clin. Neurophysiol. 2002, 113, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Thickbroom, G.W.; Byrnes, M.L.; Edwards, D.J.; Mastaglia, F.L. Repetitive paired-pulse TMS at I-wave periodicity markedly increases corticospinal excitability: A new technique for modulating synaptic plasticity. Clin. Neurophysiol. 2006, 117, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Hamada, M.; Ugawa, Y. Quadripulse stimulation--a new patterned rTMS. Restor. Neurol. Neurosci. 2010, 28, 419–424. [Google Scholar] [CrossRef]
- Matsumoto, H.; Ugawa, Y. Quadripulse stimulation (QPS). Exp. Brain Res. 2020, 238, 1619–1625. [Google Scholar] [CrossRef]
- Farzan, F. Single-Pulse Transcranial Magnetic Stimulation (TMS) Protocols and Outcome Measures. In Transcranial Magnetic Stimulation; Rotenberg, A., Horvath, J., Pascual-Leone, A., Eds.; Springer: New York, NY, USA, 2014; pp. 69–115. [Google Scholar]
- Richter, L.; Neumann, G.; Oung, S.; Schweikard, A.; Trillenberg, P. Optimal coil orientation for transcranial magnetic stimulation. PLoS ONE 2013, 8, e60358. [Google Scholar] [CrossRef]
- Laakso, I.; Hirata, A.; Ugawa, Y. Effects of coil orientation on the electric field induced by TMS over the hand motor area. Phys. Med. Biol. 2014, 59, 203–218. [Google Scholar] [CrossRef]
- Niehaus, L.; Meyer, B.U.; Weyh, T. Influence of pulse configuration and direction of coil current on excitatory effects of magnetic motor cortex and nerve stimulation. Clin. Neurophysiol. 2000, 111, 75–80. [Google Scholar] [CrossRef]
- Brasil-Neto, J.P.; Cohen, L.G.; Panizza, M.; Nilsson, J.; Roth, B.J.; Hallett, M. Optimal focal transcranial magnetic activation of the human motor cortex: Effects of coil orientation, shape of the induced current pulse, and stimulus intensity. J. Clin. Neurophysiol. 1992, 9, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Rossini, P.M.; Burke, D.; Chen, R.; Cohen, L.G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P.B.; George, M.S.; et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015, 126, 1071–1107. [Google Scholar] [CrossRef]
- Cerins, A.; Thomas, E.H.X.; Barbour, T.; Taylor, J.J.; Siddiqi, S.H.; Trapp, N.; McGirr, A.; Caulfield, K.A.; Brown, J.C.; Chen, L. A New Angle on Transcranial Magnetic Stimulation Coil Orientation: A Targeted Narrative Review. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2024, 9, 744–753. [Google Scholar]
- Xia, A.W.L.; Jin, M.; Qin, P.P.I.; Kan, R.L.D.; Zhang, B.B.B.; Giron, C.G.; Lin, T.T.Z.; Li, A.S.M.; Kranz, G.S. Instantaneous effects of prefrontal transcranial magnetic stimulation on brain oxygenation: A systematic review. Neuroimage 2024, 293, 120618. [Google Scholar] [CrossRef]
- Lee, J.S.A.; Bestmann, S.; Evans, C. A Future of Current Flow Modelling for Transcranial Electrical Stimulation? Curr. Behav. Neurosci. Rep. 2011, 8, 150–159. [Google Scholar] [CrossRef]
- Mahinda, H.A.M.; Murty, O.P. Variability in thickness of human skull bones and sternum—An autopsy experience. J. Forensic Med. Toxicol. 2009, 26, 26–31. [Google Scholar]
- Meyer, B.U.; Diehl, R.; Steinmetz, H.; Britton, T.C.; Benecke, R. Magnetic stimuli applied over motor and visual cortex: Influence of coil position and field polarity on motor responses, phosphenes, and eye movements. Electroencephalogr. Clin. Neurophysiol. Suppl. 1991, 43, 121–134. [Google Scholar] [PubMed]
- Kammer, T.; Beck, S.; Erb, M.; Grodd, W. The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Clin. Neurophysiol. 2001, 112, 2015–2021. [Google Scholar] [CrossRef]
- Kammer, T.; Vorwerg, M.; Herrnberger, B. Anisotropy in the visual cortex investigated by neuronavigated transcranial magnetic stimulation. Neuroimage 2007, 36, 313–321. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Jin, J.; Wang, X.; Li, Y.; Liu, Z.; Yin, T. Influence of coil orientation on the TMS-induced electric field within the clinically recommended brain region for major depressive disorder. Brain Stimul. 2025, 18, 109–111. [Google Scholar] [CrossRef]
- Hill, A.C.; Davey, N.J.; Kennard, C. Current orientation induced by magnetic stimulation influences a cognitive task. Neuroreport 2000, 11, 3257–3259. [Google Scholar] [CrossRef]
- Nielsen, J.F.; Sinkjaer, T. Long-lasting depression of soleus motoneurons excitability following repetitive magnetic stimuli of the spinal cord in multiple sclerosis patients. Mult. Scler. 1997, 3, 18–30. [Google Scholar] [CrossRef]
- Reis Menezes, J.; Bernhart Carra, R.; Aline Nunes, G.; da Silva Simões, J.; Jacobsen Teixeira, M.; Paiva Duarte, K.; Ciampi de Andrade, D.; Barbosa, E.R.; Antônio Marcolin, M.; Cury, R.G. Transcutaneous magnetic spinal cord stimulation for freezing of gait in Parkinson’s disease. J. Clin. Neurosci. 2020, 81, 306–309. [Google Scholar] [CrossRef]
- Nielsen, J.F.; Klemar, B.; Hansen, H.J.; Sinkjaer, T. A new treatment of spasticity with repetitive magnetic stimulation in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 1995, 58, 254–255. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, S.; Chan, A.W.; Collins, G.S.; Hróbjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A.; et al. CONSORT 2025 statement: Updated guideline for reporting randomised trials. BMJ 2025, 389, e081123. [Google Scholar] [CrossRef] [PubMed]
- Keel, J.C.; Smith, M.J.; Wassermann, E.M. A safety screening questionnaire for transcranial magnetic stimulation. Clin. Neurophysiol. 2001, 112, 720. [Google Scholar] [CrossRef]
- Plisky, P.; Schwartkopf-Phifer, K.; Huebner, B.; Garner, M.B.; Bullock, G. Systematic Review and Meta-Analysis of the Y-Balance Test Lower Quarter: Reliability, Discriminant Validity, and Predictive Validity. Int. J. Sports Phys. Ther. 2021, 16, 1190–1209. [Google Scholar] [CrossRef]
- Veldema, J.; Nowak, D.A.; Bösl, K.; Gharabaghi, A. Hemispheric Differences of 1 Hz rTMS over Motor and Premotor Cortex in Modulation of Neural Processing and Hand Function. Brain Sci. 2023, 13, 752. [Google Scholar] [CrossRef]
- Lüdemann-Podubecká, J.; Bösl, K.; Nowak, D.A. Inhibition of the contralesional dorsal premotor cortex improves motor function of the affected hand following stroke. Eur. J. Neurol. 2016, 23, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Zewdie, E.; Ciechanski, P.; Kuo, H.C.; Giuffre, A.; Kahl, C.; King, R.; Cole, L.; Godfrey, H.; Seeger, T.; Swansburg, R.; et al. Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations. Brain Stimul. 2020, 13, 565–575. [Google Scholar] [CrossRef]
- Chakraverty, R.; Pynsent, P.; Isaacs, K. Which spinal levels are identified by palpation of the iliac crests and the posterior superior iliac spines? J. Anat. 2007, 210, 232–236. [Google Scholar] [CrossRef]
- Cooperstein, R.; Haneline, M.T. Spinous process palpation using the scapular tip as a landmark vs a radiographic criterion standard. J. Chiropr. Med. 2007, 6, 87–93. [Google Scholar] [CrossRef]
- Takano, M.; Havlicek, J.; Phillips, D.; Nakajima, S.; Mimura, M.; Noda, Y. Development of an Advanced Sham Coil for Transcranial Magnetic Stimulation and Examination of Its Specifications. J. Pers. Med. 2021, 11, 1058. [Google Scholar] [CrossRef]
- Maher, J.M.; Markey, J.C.; Ebert-May, D. The other half of the story: Effect size analysis in quantitative research. CBE Life Sci. Educ. 2013, 12, 345–351. [Google Scholar] [CrossRef]
- Schneiders, A.G.; Sullivan, S.J.; O’Malley, K.J.; Clarke, S.V.; Knappstein, S.A.; Taylor, L.J. A valid and reliable clinical determination of footedness. PM R 2010, 2, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Chalfouh, C.; Guillou, C.; Hardouin, J.; Delarue, Q.; Li, X.; Duclos, C.; Schapman, D.; Marie, J.P.; Cosette, P.; Guérout, N. The Regenerative Effect of Trans-spinal Magnetic Stimulation After Spinal Cord Injury: Mechanisms and Pathways Underlying the Effect. Neurotherapeutics 2020, 17, 2069–2088. [Google Scholar] [CrossRef] [PubMed]
- Zhai, C.; Wang, Z.; Cai, J.; Fang, L.; Li, X.; Jiang, K.; Shen, Y.; Wang, Y.; Xu, X.; Liu, W.; et al. Repeated trans-spinal magnetic stimulation promotes microglial phagocytosis of myelin debris after spinal cord injury through LRP-1. Exp. Neurol. 2024, 379, 114844. [Google Scholar] [CrossRef] [PubMed]
- Fawaz, S.I.; Izumi, S.I.; Hamada, S.M.; Omara, A.A.; Wassef, G.O.; Saber, H.G.; Salama, S.M. Role of Cervical Spinal Magnetic Stimulation in Improving Posture and Functional Ambulation of Patients with Relapsing Remitting Multiple Sclerosis. Rehabil. Res. Pract. 2022, 2022, 6009104. [Google Scholar]
- Mitsui, T.; Arii, Y.; Taniguchi, K.; Tsutsumi, S.; Takahara, M.; Mabuchi, M.; Sumitomo, N.; Matsuura, M.; Kuroda, Y. Efficacy of Repetitive Trans-spinal Magnetic Stimulation for Patients with Parkinson’s Disease: A Randomised Controlled Trial. Neurotherapeutics 2022, 19, 1273–1282. [Google Scholar] [CrossRef]
- Koser, D.E.; Moeendarbary, E.; Hanne, J.; Kuerten, S.; Franze, K. CNS cell distribution and axon orientation determine local spinal cord mechanical properties. Biophys. J. 2015, 108, 2137–2147. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Vöröslakos, M.; Kronberg, G.; Henin, S.; Krause, M.R.; Huang, Y.; Opitz, A.; Mehta, A.; Pack, C.C.; Krekelberg, B.; et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 2018, 9, 5092. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, H.H.; Hamilton, T.S.; Steggerda, F.R.; Bean, H.W. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J. Biol. Chem. 1953, 58, 625–637. [Google Scholar] [CrossRef]
Real PP-rTSMS Coil Grip Cranially | Real PP-rTSMS Coil Grip Caudally | Real PP-rTSMS Coil Grip Laterally | Sham PP-rTSMS | |||||
---|---|---|---|---|---|---|---|---|
YBT (cm) | total | pre | 504 ± 51 | 503 ± 50 | 503 ± 47 | 496 ± 45 | ||
post | 513 ± 50 *S | 510 ± 48 *S | 523 ± 50 *S,Ca,Cr | 497 ± 44 | ||||
right leg | pre | 251 ± 28 | 251 ± 26 | 251 ± 24 | 247 ± 24 | |||
post | 256 ± 27 *S | 254 ± 25 | 262 ± 26 *S,Ca,Cr | 248 ± 24 | ||||
left leg | pre | 253 ± 24 | 252 ± 24 | 252 ± 23 | 249 ± 22 | |||
post | 257 ± 23 *S | 256 ± 24 *S | 261 ± 25 *S,Ca,Cr | 249 ± 22 | ||||
MEP | Amplitude (mV) | right leg | pre | 0.70 ± 0.57 | 0.61 ± 0.45 | 0.64 ± 0.66 | 0.71 ± 0.94 | |
post | 0.68 ± 0.51 | 0.60 ± 0.45 | 0.63 ± 0.58 | 0.70 ± 0.59 | ||||
left leg | pre | 711 ± 600 | 540 ± 466 | 740 ± 745 | 492 ± 294 | |||
post | 678 ± 492 | 558 ± 428 | 787 ± 754 | 534 ± 416 | ||||
Duration (ms) | right leg | pre | 23.0 ± 4.0 | 21.9 ± 2.5 | 21.8 ± 4.7 | 22.4 ± 2.9 | ||
post | 22.8 ± 5.0 | 21.8 ± 2.7 | 22.1 ± 4.2 | 22.9 ± 2.7 | ||||
left leg | pre | 22.7 ± 2.9 | 22.4 ± 3.1 | 22.2 ± 3.1 | 21.9 ± 3.6 | |||
post | 22.5 ± 3.5 | 22.2 ± 3.2 | 23.1 ± 3.2 | 21.7 ± 4.6 | ||||
CSP | Amplitude (mV) | right leg | pre | 3.94 ± 1.39 | 3.80 ± 1.43 | 3.69 ± 1.54 | 3.76 ± 1.52 | |
post | 4.00 ± 1.50 | 3.59 ± 1.43 | 3.65 ± 1.51 | 3.53 ± 1.34 | ||||
left leg | pre | 3.57 ± 1.41 | 3.13 ± 1.30 | 3.62 ± 1.65 | 3.29 ± 1.52 | |||
post | 3.22 ± 1.21 | 3.09 ± 1241 | 3.51 ± 1.41 | 3.03 ± 1.25 | ||||
Duration (ms) | right leg | pre | 186 ± 50 | 185 ± 46 | 174 ± 40 | 181 ± 45 | ||
post | 192 ± 44 | 191 ± 41 | 189 ± 46 | 187 ± 40 | ||||
left leg | pre | 180 ± 42 | 186 ± 47 | 177 ± 41 | 189 ± 53 | |||
post | 190 ± 39 | 198 ± 30 | 193 ± 43 | 198 ± 49 |
Real PP-rTSMS Coil Grip Cranially | Real PP-rTSMS Coil Grip Caudally | Real PP-rTSMS Coil Grip Laterally | Sham PP-rTSMS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nr. | severity | Nr. | severity | Nr. | severity | Nr. | severity | |||||
mean | total | mean | total | mean | total | mean | total | |||||
Fatigue | 11 | 1.3 ± 0.7 | 14.0 | 10 | 2.1 ± 1.1 | 21.0 | 10 | 2.2 ± 1.0 | 22.0 | 10 | 1.8 ± 1.1 | 18.0 |
Headache | 9 | 1.3 ± 1.0 | 12.0 | 5 | 1.6 ± 0.9 | 8.0 | 5 | 1.6 ± 0.5 | 8.0 | 6 | 1.5 ± 0.8 | 9.0 |
Neck pain | 4 | 1.5 ± 0.6 | 6.0 | 3 | 1.7 ± 0.6 | 5.0 | 2 | 2.0 ± 0.0 | 4.0 | 2 | 2.0 ± 1.4 | 4.0 |
Lightheadedness | 3 | 1.33 ± 0.6 | 4.0 | 3 | 1.3 ± 0.6 | 4.0 | 4 | 1.5 ± 0.6 | 6.0 | 2 | 2.0 ± 1.4 | 4.0 |
Unplesant tingling | 2 | 1.0 ± 0.0 | 2.0 | 1 | 2.0 ± 0.0 | 2.0 | 2 | 1.8 ± 0.4 | 3.5 | 1 | 1.0 ± 0.0 | 1.0 |
Toothache | 2 | 1.0 ± 0.0 | 2.0 | 1 | 1.0 ± 1.0 | 1.0 | - | - | - | 3 | 1.7 ± 1.2 | 5.0 |
Nausea | 1 | 1.0 ± 0.0 | 1.0 | 1 | 1.0 ± 0.0 | 1.0 | - | - | - | 1 | 1.0 ± 0.0 | 1.0 |
Burning sensation | 1 | 2.0 ± 0.0 | 2.0 | - | - | - | - | - | - | - | - | - |
Itching | 1 | 3.0 ± 0.0 | 3.0 | - | - | - | - | - | - | - | - | - |
Ringing in ears | - | - | - | - | - | - | 1 | 4.0 ± 0.0 | - | - | - | - |
Hearing problems | - | - | - | - | - | - | - | - | - | - | - | - |
Vision problems | - | - | - | - | - | - | - | - | - | - | - | - |
Others problems | - | - | - | - | - | - | - | - | - | - | - | - |
34 | 1.4 ± 0.14 | 46.0 | 24 | 1.8 ± 0.30 | 42.0 | 23 | 2.1 ± 0.33 | 47.5 | 25 | 1.7 ± 0.24 | 42.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veldema, J.; Klemm, M.; Straub, J.; Kurtzhals, S.; Sasse, L.; Steingräber, T. Paired-Pulse Repetitive Trans-Spinal Magnetic Stimulation Supports Balance Ability While the Coil Orientation Significantly Determines the Effects: A Randomised, Placebo-Controlled Trial. Biomedicines 2025, 13, 1920. https://doi.org/10.3390/biomedicines13081920
Veldema J, Klemm M, Straub J, Kurtzhals S, Sasse L, Steingräber T. Paired-Pulse Repetitive Trans-Spinal Magnetic Stimulation Supports Balance Ability While the Coil Orientation Significantly Determines the Effects: A Randomised, Placebo-Controlled Trial. Biomedicines. 2025; 13(8):1920. https://doi.org/10.3390/biomedicines13081920
Chicago/Turabian StyleVeldema, Jitka, Michel Klemm, Jan Straub, Saskia Kurtzhals, Lea Sasse, and Teni Steingräber. 2025. "Paired-Pulse Repetitive Trans-Spinal Magnetic Stimulation Supports Balance Ability While the Coil Orientation Significantly Determines the Effects: A Randomised, Placebo-Controlled Trial" Biomedicines 13, no. 8: 1920. https://doi.org/10.3390/biomedicines13081920
APA StyleVeldema, J., Klemm, M., Straub, J., Kurtzhals, S., Sasse, L., & Steingräber, T. (2025). Paired-Pulse Repetitive Trans-Spinal Magnetic Stimulation Supports Balance Ability While the Coil Orientation Significantly Determines the Effects: A Randomised, Placebo-Controlled Trial. Biomedicines, 13(8), 1920. https://doi.org/10.3390/biomedicines13081920