Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (255)

Search Parameters:
Keywords = perilla

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1692 KiB  
Communication
Nanogel Loaded with Perilla frutescens Leaf-Derived Exosome-like Nanovesicles and Indomethacin for the Treatment of Inflammatory Arthritis
by Xianqiang Li, Fei Wang, Rui Wang, Yanjie Cheng, Jinhuan Liu and Wanhe Luo
Biology 2025, 14(8), 970; https://doi.org/10.3390/biology14080970 (registering DOI) - 1 Aug 2025
Viewed by 281
Abstract
Inflammatory arthritis (IA) is a chronic condition marked by joint dysfunction and pain, posing significant challenges for effective drug delivery. This study separated Perilla frutescens leaf-derived exosome-like nanovesicles (PFE) to effectively penetrate the stratum corneum barrier. These nanovesicles and indomethacin (IND) were subsequently [...] Read more.
Inflammatory arthritis (IA) is a chronic condition marked by joint dysfunction and pain, posing significant challenges for effective drug delivery. This study separated Perilla frutescens leaf-derived exosome-like nanovesicles (PFE) to effectively penetrate the stratum corneum barrier. These nanovesicles and indomethacin (IND) were subsequently developed into a nanogel designed for topical drug delivery systems (PFE-IND-GEL). PFE exhibited a typical vesicular structure with a mean diameter of 98.4 ± 1.3 nm. The hydrodynamic size and zeta potential of PFE-IND-GEL were 129.6 ± 5.9 nm and −17.4 ± 1.9 mV, respectively. Mechanistic investigations in HaCaT keratinocytes showed that PFE significantly downregulated tight junction proteins (ZO-1 and Occludin, p < 0.01) via modulation of the IL-17 signaling pathway, as evidenced by transcriptomic analysis. In a sodium urea crystal-induced rat IA model, the topical application of PFE-IND-GEL significantly reduced joint swelling (p < 0.05) and serum levels of inflammatory cytokines (IL-6, IL-1α, TNF-α) compared to control groups. Histopathological analysis confirmed the marked attenuation of synovial inflammation and cartilage preservation in treated animals. These findings underscore the dual role of PFE as both a topical permeation enhancer and an anti-inflammatory agent, presenting a promising strategy for managing IA. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

22 pages, 844 KiB  
Article
Anti-Hair Loss Potential of Perilla Seed Extracts: In Vitro Molecular Insights from Supercritical Fluid Extraction
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pipat Tangjaidee, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Sarana Rose Sommano, Korawit Chaisu, Apinya Satsook and Juan Manuel Castagnini
Foods 2025, 14(15), 2583; https://doi.org/10.3390/foods14152583 - 23 Jul 2025
Viewed by 413
Abstract
Perilla seed has long been recognized in traditional diets for its health-promoting properties, but its potential role in hair loss prevention remains underexplored. This study compared three extraction methods—maceration (MAC), screw pressing (SC), and supercritical fluid extraction (SFE)—to determine their efficiency in recovering [...] Read more.
Perilla seed has long been recognized in traditional diets for its health-promoting properties, but its potential role in hair loss prevention remains underexplored. This study compared three extraction methods—maceration (MAC), screw pressing (SC), and supercritical fluid extraction (SFE)—to determine their efficiency in recovering bioactive compounds and their effects on androgenetic alopecia (AGA)-related pathways. The SFE extract contained the highest levels of polyunsaturated fatty acids and tocopherols, while MAC uniquely recovered a broader range of polyphenols. Among all extracts, SFE-derived perilla seed extract showed the most consistent biological effects, promoting proliferation of human hair follicle dermal papilla cells (HFDPCs) by 139.4 ± 1.1% at 72 h (p < 0.05). It also reduced TBARS and nitrite levels in HFDPCs to 66.75 ± 0.62% of control and 0.87 ± 0.01 μM, respectively, indicating strong antioxidant and anti-inflammatory effects. Importantly, the SFE extract significantly downregulated SRD5A1-3 and TGF-β1 expression—key genes involved in androgen-mediated hair follicle regression—outperforming finasteride, dutasteride, and minoxidil in vitro by approximately 1.10-fold, 1.25-fold, and 1.50-fold, respectively (p < 0.05). These findings suggest that perilla seed extract obtained via supercritical fluid extraction may offer potential as a natural candidate to prevent hair loss through multiple biological mechanisms. These in vitro results support its further investigation for potential application in functional food or nutraceutical development targeting scalp and hair health. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

16 pages, 2282 KiB  
Article
Comparison of LC-PUFAs Biosynthetic Characteristics in Male and Female Tilapia at Different Ontogenetic Stages
by Fang Chen, Liuling Gao, Junfeng Guan, Chao Xu, Deshou Wang, Yuanyou Li and Dizhi Xie
Life 2025, 15(8), 1167; https://doi.org/10.3390/life15081167 - 23 Jul 2025
Viewed by 252
Abstract
Tilapia possess the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA); however, variations in this capacity across different growth stages and between sexes remain poorly understood. This study evaluated the LC-PUFA biosynthetic capacity in male and female tilapia fed two distinct diets—perilla oil [...] Read more.
Tilapia possess the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA); however, variations in this capacity across different growth stages and between sexes remain poorly understood. This study evaluated the LC-PUFA biosynthetic capacity in male and female tilapia fed two distinct diets—perilla oil (rich in α-linolenic acid, ALA) and peanut oil (rich in linoleic acid, LA)—over 24 weeks, spanning four growth stages (I-IV, from fry to adult). The results revealed that during stages I to III, both diets produced similar final body weights. However, in stage IV, male tilapia fed the peanut oil diet exhibited significantly higher body weight compared to those fed perilla oil, whereas females showed no significant differences between diets. Throughout stages III and IV, males were consistently heavier than females. LC-PUFA levels in the liver and intestine varied across growth stages, with the lowest levels at stage II and the highest at stage III. Notably, male tilapia exhibited higher expression levels of fads2 and elovl5 compared to the females across stages II to IV. The hepatic and intestinal mRNA levels increased by up to 6.40-fold and 3.85-fold, respectively, indicating a greater LC-PUFA biosynthetic capacity in males. This study provides valuable insights into the biosynthesis of LC-PUFA in tilapia, highlighting the influence of growth stage, sex and dietary fatty acid composition on this process, and laying a foundation for further evaluating the functional significance of dietary lipid sources in aquaculture. Full article
(This article belongs to the Special Issue Nutrition–Physiology Interactions in Aquatic Species)
Show Figures

Figure 1

25 pages, 2029 KiB  
Article
Germination Enhances Phytochemical Profiles of Perilla Seeds and Promotes Hair Growth via 5α-Reductase Inhibition and Growth Factor Pathways
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pichchapa Linsaenkart, Pipat Tangjaidee, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Sarana Rose Sommano, Korawit Chaisu, Apinya Satsook and Juan Manuel Castagnini
Biology 2025, 14(7), 889; https://doi.org/10.3390/biology14070889 - 20 Jul 2025
Viewed by 485
Abstract
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated [...] Read more.
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated (NG-PS) and germinated in distilled water (0 ppm selenium; G0-PS), and germinated with 80 ppm selenium (G80-PS)—obtained from supercritical fluid extraction (SFE) and screw compression (SC). SFE extracts exhibited significantly higher levels of polyphenols, tocopherols, and fatty acids compared to SC extracts. Among the germinated groups, G0-PS showed the highest bioactive compound content and antioxidant capacity. Remarkably, treatment with SFE-G0-PS led to a significant increase in the proliferation and migration of hair follicle cells, reaching 147.21 ± 2.11% (p < 0.05), and resulted in complete wound closure. In addition, its antioxidant and anti-inflammatory properties were reflected by a marked scavenging effect on TBARS (59.62 ± 0.66% of control) and suppressed nitrite amounts (0.44 ± 0.01 µM). Moreover, SFE-G0-PS markedly suppressed SRD5A1-3 gene expression—key regulators in androgenetic alopecia—in both DU-145 and HFDPCs, with approximately 2-fold and 1.5-fold greater inhibition compared to finasteride and minoxidil, respectively. Simultaneously, it upregulated the expression of hair growth-related genes, including CTNNB1, SHH, SMO, GLI1, and VEGF, by approximately 1.5-fold, demonstrating stronger activation than minoxidil. These findings suggest the potential of SFE-G0-PS as a natural therapeutic agent for promoting hair growth and preventing hair loss. Full article
Show Figures

Figure 1

18 pages, 1583 KiB  
Article
Developing a Dynamic Simulation Model for Point-of-Care Ultrasound Assessment and Learning Curve Analysis
by Sandra Usaquén-Perilla, Laura Valentina Bocanegra-Villegas and Jose Isidro García-Melo
Systems 2025, 13(7), 591; https://doi.org/10.3390/systems13070591 - 16 Jul 2025
Viewed by 294
Abstract
The development of new diagnostic technologies is accelerating, and budgetary constraints in the health sector necessitate a systematic decision-making process to acquire emerging technologies. Health Technology Assessment methodologies integrate technology, clinical efficacy, patient safety, and organizational and financial factors in this context. However, [...] Read more.
The development of new diagnostic technologies is accelerating, and budgetary constraints in the health sector necessitate a systematic decision-making process to acquire emerging technologies. Health Technology Assessment methodologies integrate technology, clinical efficacy, patient safety, and organizational and financial factors in this context. However, these methodologies do not include the learning curve, a critical factor in operator-dependent technologies. This study presents an evaluation model incorporating the learning curve, developed from the domains of the AdHopHTA project. Using System Dynamics (SD), the model was validated and calibrated as a case study to evaluate the use of Point-of-Care Ultrasound (POCUS) in identifying dengue. This approach allowed for the analysis of the impact of the learning curve and patient demand on the revenues and costs of the healthcare system and the cost–benefit indicator associated with dengue detection. The model assesses physician competency and how different training strategies and frequencies of use affect POCUS adoption. The findings underscore the importance of integrating the learning curve into decision-making. This study highlights the need for further investigation into the barriers that limit the effective use of POCUS, particularly in resource-limited settings. It proposes a framework to improve the integration of this technology into clinical practice for early dengue detection. Full article
(This article belongs to the Special Issue System Dynamics Modeling and Simulation for Public Health)
Show Figures

Figure 1

16 pages, 5978 KiB  
Article
A Chinese Herbal Compound Fertilizer Improved the Soil Bacterial Community and Promoted the Quality of Chrysanthemum morifolium ‘Huangju’
by Hongliang Li, Hongyao Qu, Huaqiang Xuan, Bei Liu, Lixiang Zhu, Xianchao Shang, Yi Xie, Li Zhang, Long Yang, Ling Yuan, Sitakanta Pattanaik, Li Xiang and Xin Hou
Agronomy 2025, 15(7), 1512; https://doi.org/10.3390/agronomy15071512 - 21 Jun 2025
Viewed by 527
Abstract
Chrysanthemum morifolium, ‘Huangju’, is a golden chrysanthemum used for making tea. Limited by land resources, the continuous cropping of Chrysanthemum morifolium ‘Huangju’ has led to serious soil issues, which affects its yield and quality. In this study, different ratios of traditional Chinese [...] Read more.
Chrysanthemum morifolium, ‘Huangju’, is a golden chrysanthemum used for making tea. Limited by land resources, the continuous cropping of Chrysanthemum morifolium ‘Huangju’ has led to serious soil issues, which affects its yield and quality. In this study, different ratios of traditional Chinese medicine compound fertilizers were used to regulate the soil environment in order to achieve the green prevention and control of continuous cropping obstacles of the golden chrysanthemum. Five treatments were set up in the experiment: the control (CK) and different proportions of the Chinese herbal compound fertilizer T1, T2, T3, and T4. After the application of the traditional Chinese medicine compound fertilizer, the physical and chemical soil properties of the golden chrysanthemum were changed to varying degrees, resulting in an increased yield of golden silk chrysanthemum and an improved tea quality. This preliminary study on the application of the traditional Chinese medicine compound fertilizer T2 and T3—that is, Sophora flavescensStemona sessilifoliaMentha haplocalyxPerilla frutescensArtemisia annua at ratios of 2:1:2:1:1.5 and 3:1:3:1:2—treatments provided the best results and can be further developed to alleviate the continuous cropping obstacles of fertilizers. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

20 pages, 6360 KiB  
Article
Regulatory Effects of Companion Plants (Maize (Zea mays) and Perilla frutescens) on American Ginseng Growth and Microbiome in Root Rot-Infested Field
by Dan Luo, Dengqun Liao, Tingting Han, Changhao Ji, Chao He and Xianen Li
Plants 2025, 14(12), 1871; https://doi.org/10.3390/plants14121871 - 18 Jun 2025
Viewed by 437
Abstract
American ginseng (AG) cultivation suffers from severe diseases, requiring heavy pesticide use. This study aimed to explore whether companion planting with maize (AG-maize) or Perilla frutescens (AG-perilla) could enhance AG growth and alter rhizosphere/root microbiomes in a root rot-infested field. Compared to monoculture [...] Read more.
American ginseng (AG) cultivation suffers from severe diseases, requiring heavy pesticide use. This study aimed to explore whether companion planting with maize (AG-maize) or Perilla frutescens (AG-perilla) could enhance AG growth and alter rhizosphere/root microbiomes in a root rot-infested field. Compared to monoculture (CK), companion planting significantly improved AG growth and survival rate at wither stage, with AG-maize showing the superior efficacy- increasing root length and fresh weight, and plant height by 39.04%, 46.10%, and 48.69%, respectively, while raising survival rate from 1.51% to 14.54%. Microbial analysis revealed that companion planting increased microbiome diversity and network complexity. At green fruit stage, AG-perilla increased rhizosphere fungal Chao1 index by 42.6%, while AG-maize and AG-perilla elevated endophytic fungal Shannon indices by 46.68% and 74.84%, respectively. At wither stage, AG-maize notably enriched beneficial microbes (e.g., soil Pseudomonas +108.49%, Bacillus +200.73%) while reducing pathogens (soil Fusarium −20.04%, root endophytic Alternaria −54.55%). Structural equation model indicated AG-maize improved AG survival via core species-driven antibiosis and nutrient regulation, with keystone species Lysobacter sp. RHLT3-4 and Verrucomicrobium sp. IMCC25902 significantly correlating with AG health. The AG-maize system fostered synergistic microbial networks, enriching beneficial taxa and suppressing pathogens. These findings provide a foundation for developing eco-friendly disease management and high-yield AG cultivation strategies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

18 pages, 4825 KiB  
Article
Development of D-Limonene Nanoemulsions for Oral Cancer Inhibition: Investigating the Role of Ostwald Ripening Inhibitors and Cell Death Mechanisms
by Suwisit Manmuan, Yotsanan Weerapol, Tiraniti Chuenbarn, Sontaya Limmatvapirat, Chutima Limmatvapirat and Sukannika Tubtimsri
Int. J. Mol. Sci. 2025, 26(11), 5279; https://doi.org/10.3390/ijms26115279 - 30 May 2025
Cited by 1 | Viewed by 564
Abstract
The aim of this study was to investigate the effect of Ostwald ripening inhibitors on D-limonene (D-LMN) nanoemulsions and to elucidate their impact on oral cancer cells. Various inhibitors, including olive oil, soybean oil, and perilla oil, were incorporated into [...] Read more.
The aim of this study was to investigate the effect of Ostwald ripening inhibitors on D-limonene (D-LMN) nanoemulsions and to elucidate their impact on oral cancer cells. Various inhibitors, including olive oil, soybean oil, and perilla oil, were incorporated into D-LMN nanoemulsions at different ratios (25:75–75:25, D-LMN to inhibitor). The resulting nanoemulsions were evaluated for droplet size, size distribution, zeta potential, stability, droplet morphology, cytotoxicity, antimetastatic and anti-invasive activities, apoptosis induction, and cell cycle arrest. Results showed that the 75:25 D-LMN to inhibitor ratio produced the smallest droplet size and exhibited great stability, particularly with perilla oil. Notably, D-LMN nanoemulsions displayed strong anti-oral cancer effects by reducing cell viability, metastasis, and invasion. Apoptosis was induced, as evidenced by nuclear fragmentation, Annexin V binding, and altered expression of BAX, BCL-XL, Cytochrome c, and Caspase-9. Additionally, the nanoemulsions caused cell cycle arrest via downregulation of Cyclin D1, CDK2, CDK4, and CDK6. These findings highlight the potential of D-LMN nanoemulsions as a promising alternative therapeutic strategy for oral cancer treatment. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

14 pages, 3006 KiB  
Article
Unlocking the Potential of Perillaldehyde: A Novel Mechanism for Chronic Myeloid Leukemia by Targeting HSP70
by Miaomiao Zhang, Jinfeng Wang, Rongsong Jiang, Ming Liu and Weiyi Zhang
Molecules 2025, 30(11), 2294; https://doi.org/10.3390/molecules30112294 - 23 May 2025
Cited by 1 | Viewed by 452
Abstract
Leukemia is a malignant tumor of the hematopoietic system. Approximately 15% of adult leukemias are chronic myeloid leukemias (CMLs), and this incidence increases annually. The BCR-ABL oncoprotein drives the initiation, promotion, and progression of CML. Although tyrosine kinase inhibitors (TKIs) are first-line therapies [...] Read more.
Leukemia is a malignant tumor of the hematopoietic system. Approximately 15% of adult leukemias are chronic myeloid leukemias (CMLs), and this incidence increases annually. The BCR-ABL oncoprotein drives the initiation, promotion, and progression of CML. Although tyrosine kinase inhibitors (TKIs) are first-line therapies for CML, BCR-ABL-mediated drug resistance limits their clinical efficacy and patient prognosis. Perillaldehyde (PAE), a monoterpene and primary volatile oil from perilla, is a promising small-molecule candidate for degrading BCR-ABL and has potential medical applications. The molecular mechanism showed that PAE regulated the expression of autophagy- and apoptosis-related proteins in K562 cells. Confocal laser observation showed that PAE damaged the mitochondrial membrane potential and induced ROS generation. Further evaluations indicated that PAE targeted HSP70 and inactivated the phosphorylation of BCR-ABL, thereby inhibiting its downstream proteins. This study may produce a lead compound for CML therapy as PAE may be an effective treatment for further exploration. Full article
Show Figures

Graphical abstract

25 pages, 6574 KiB  
Article
Quantitative Comparison of Yield, Quality, and Metabolic Products of Different Medicinal Parts of Two Types of Perilla frutescens Cultivated in a New Location from Different Regions
by Zhenbin Huang, Xiang Zhang, Liangshuai Fan, Xiaojun Jin, Hongyan Wang, Jiali Cheng, Chenyue Wang and Qing Fang
Plants 2025, 14(10), 1486; https://doi.org/10.3390/plants14101486 - 15 May 2025
Cited by 1 | Viewed by 662
Abstract
This study focuses on multiple origins of green-back purple and dual-faced purple Perilla frutescens, employing field cultivation experiments combined with detection methods, such as HPLC, LC-MS, and GC-MS, to compare the differences in yield, quality, and metabolic products of the different colored [...] Read more.
This study focuses on multiple origins of green-back purple and dual-faced purple Perilla frutescens, employing field cultivation experiments combined with detection methods, such as HPLC, LC-MS, and GC-MS, to compare the differences in yield, quality, and metabolic products of the different colored P. frutescens. The results indicate that green-back purple P. frutescens significantly outperformed dual-faced purple P. frutescens in terms of leaf, stem, and seed yields, while the effective component contents in the leaves and seeds of dual-faced purple P. frutescens are higher than those of dual-faced green P. frutescens. An analysis of the anthocyanin components in P. frutescens leaves and the volatile components in P. frutescens seeds shows that the total anthocyanin content in dual-faced purple P. frutescens leaves is 34.63% higher than that in green-back purple P. frutescens, whereas the total volatile components in the seeds of green-back purple P. frutescens exceeds those in dual-faced P. frutescens by 12.99%. The Mantel test indicates a potential correlation mechanism between the anthocyanin components in P. frutescens leaves and the volatile components in P. frutescens seeds, which are significantly associated with the yield quality of both P. frutescens leaves and seeds. This study found that P. frutescens with blue–green leaves yields more than double-sided purple P. frutescens, although the quality of its leaves and seeds is inferior to that of double-sided purple P. frutescens. Furthermore, the anthocyanin components in P. frutescens leaves and the volatile components in P. frutescens seeds exhibit significant correlations with the yield and quality of both leaves and seeds, offering important insights for the production and application of P. frutescens. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

25 pages, 13259 KiB  
Article
Anthocyanin-Loaded Double Pickering Emulsion Stabilized by Phosphorylated Perilla Seed Protein Isolate–Pectin Complexes and Its Environmental Stability
by Zhao Chen, Jun Yang, Hao Guo, Xiuling Zhang and Wentao Zhang
Foods 2025, 14(9), 1650; https://doi.org/10.3390/foods14091650 - 7 May 2025
Viewed by 825
Abstract
Thus far, the focus of research has been on employing perilla seed protein isolate (PSPI) to stabilize emulsions encapsulating hydrophobic substances, but there is a dearth of studies focusing on PSPI-stabilized double emulsions for encapsulating hydrophilic materials. This experiment investigated the environmental stability [...] Read more.
Thus far, the focus of research has been on employing perilla seed protein isolate (PSPI) to stabilize emulsions encapsulating hydrophobic substances, but there is a dearth of studies focusing on PSPI-stabilized double emulsions for encapsulating hydrophilic materials. This experiment investigated the environmental stability (thermal, ionic strength, and freeze–thaw stability) of PSPI-stabilized double emulsions encapsulating anthocyanins. During thermal stability experiments, the emulsion color lightened as the treatment temperature increased, whereas the microstructures of the emulsions exhibited no notable differences among the groups. The anthocyanin retention and antioxidant capacity decreased with increasing thermal treatment temperature. After thermal treatment, no creaming or separation was observed, and anthocyanin retention remained above 65% in all groups. Ionic strength exerted a certain influence on the stability of the emulsions, with droplet size increasing and anthocyanin retention dwindling as ionic strength intensified. At an ionic strength of 100 mmol/L, anthocyanin retention surpassed 70%. No delamination was observed at any of the ionic strengths. With the augmentation of freeze–thaw cycles, the emulsions darkened and yet remained unseparated, droplet size progressively increased, and anthocyanin retention progressively decreased. The findings indicate that the emulsions were environmentally stable and could serve as a reference for the development of related emulsions. Full article
Show Figures

Graphical abstract

25 pages, 6020 KiB  
Article
Preparation of a Novel Perilla Essential Oil/Grape Seed Extract–Chitosan/Gelatin Composite Edible Gel Film and Its Application in the Preservation of Grass Carp
by Shan Xue, Rui Xu and Jia Liu
Gels 2025, 11(5), 321; https://doi.org/10.3390/gels11050321 - 25 Apr 2025
Viewed by 652
Abstract
In this study, a new edible gel of Perilla essential oil (PE)/grape seed extract (GSE)–chitosan/gelatin was prepared, and it was applied to the preservation of silver carp. By establishing a fuzzy mathematical model, using a single-factor experiment and Box–Behnken response surface optimization combined [...] Read more.
In this study, a new edible gel of Perilla essential oil (PE)/grape seed extract (GSE)–chitosan/gelatin was prepared, and it was applied to the preservation of silver carp. By establishing a fuzzy mathematical model, using a single-factor experiment and Box–Behnken response surface optimization combined with matlab analysis, the optimum preparation conditions of composite gel films were determined: the addition of PE (p < 0.01) was 6.91 μL/mL, the addition of GSE (p < 0.05) was 0.45 mg/mL, and the addition of gelatin (p > 0.05) was 1.63%. Under these conditions, the composite gel films exhibited an excellent water vapor barrier and mechanical properties. Using Fourier-transform infrared spectroscopy (FTIR) analysis, it was found that the addition of PE enhanced or weakened the absorption peaks, indicating the molecular interaction between PE and the substrate. Scanning electron microscopy (SEM) observed that the surfaces of the composite gel films with added PE were smooth, but there were a few pores in the cross-section. X-ray diffraction (XRD) analysis showed that PE had good compatibility with other components. The fresh-keeping experiment showed that the composite gel films could significantly prolong the fresh-keeping period of grass carp. After 10 days of storage at 4 °C, compared with the blank group (without plastic wrap) and the control group (with composite gel film, no PE added), the experimental group (with composite gel films, PE added) showed better fresh-keeping effect in terms of sensory score, moisture content, pH value, TBARS value, and TVB-N value (p < 0.05). Correlation analysis further confirmed the positive effects of composite gel films on water content, pH value, TVB-N, and other quality indexes of silver carp, indicating that the composite gel films will have broad application prospects in the food preservation field. This study provides an innovative basis and theoretical basis for the development and application of natural polysaccharide/protein composite edible film, which is helpful to promote the development of green food-packaging materials. Full article
(This article belongs to the Special Issue Advancements in Food Gelation: Exploring Mechanisms and Applications)
Show Figures

Figure 1

12 pages, 2553 KiB  
Article
Effects of Perilla Seed Oil on Blood Lipids, Oxidative Stress, and Inflammation in Hyperlipidemic Rats
by Suwajee Pothinam, Chaochetdhapada Putpim, Thanyaporn Siriwoharn and Wachira Jirarattanarangsri
Foods 2025, 14(8), 1380; https://doi.org/10.3390/foods14081380 - 17 Apr 2025
Viewed by 996
Abstract
A high-fat diet is a key factor contributing to hyperlipidemia. Perilla seed oil, a plant-based source of omega-3, has the potential to reduce this risk. However, its effects have not been fully established. This study aimed to evaluate the effects of perilla seed [...] Read more.
A high-fat diet is a key factor contributing to hyperlipidemia. Perilla seed oil, a plant-based source of omega-3, has the potential to reduce this risk. However, its effects have not been fully established. This study aimed to evaluate the effects of perilla seed oil on blood lipid levels, oxidative stress, and inflammation in rats induced with hyperlipidemia through a high-fat diet. Male Wistar rats were administered perilla seed oil at a dosage of 0.67 g/kg body weight per day for 8 weeks. The results showed that perilla seed oil significantly reduced triglyceride levels by 38.00% and 41.88% and total cholesterol levels by 17.16% and 15.91% in the high-fat diet and normal diet groups, respectively (p < 0.05). However, perilla seed oil had no significant effect on HDL and LDL levels. Additionally, perilla seed oil supplementation significantly reduced malondialdehyde (MDA) levels, a biomarker of oxidative stress, by 68.18% in the high-fat diet group and 29.72% in the normal diet group. Regarding its anti-inflammatory effects, perilla seed oil reduced interleukin-6 (IL-6) levels by 15.21% and 64.27% in the high-fat diet and normal diet groups, respectively (p < 0.05). These findings suggest that perilla seed oil has the potential to reduce the risk of metabolic syndrome. Full article
Show Figures

Figure 1

17 pages, 11922 KiB  
Article
Assessing Skin Photoprotection in the Infrared Range: The Reflectance Profiles of Cold-Pressed Plant Oils
by Elżbieta Mickoś, Monika Michalak, Magdalena Hartman-Petrycka, Anna Banyś, Paula Babczyńska, Robert Koprowski and Sławomir Wilczyński
Cosmetics 2025, 12(2), 80; https://doi.org/10.3390/cosmetics12020080 - 14 Apr 2025
Viewed by 1076
Abstract
The harmful effects of solar radiation on the skin are known and scientifically proven, with recent studies indicating that not only ultraviolet (UV) radiation but also infrared (IR) radiation contributes to skin photoaging and increases the risk of carcinogenesis. Infrared radiation is also [...] Read more.
The harmful effects of solar radiation on the skin are known and scientifically proven, with recent studies indicating that not only ultraviolet (UV) radiation but also infrared (IR) radiation contributes to skin photoaging and increases the risk of carcinogenesis. Infrared radiation is also responsible for the degradation of protective carotenoids in the skin, the disruption of calcium homeostasis, and the activation of apoptosis pathways. The biological mechanisms underlying these effects include an increased level of reactive oxygen species and increased expression of metalloproteinases in the skin. The aim of this study was to evaluate the photoprotective properties of 10 cold-pressed plant oils in the infrared spectral range from 1000 nm to 2500 nm by assessing their impact on the directional–hemispherical reflectance (DHR) of human skin after their topical application. This study was conducted in vivo on the skin of 12 volunteers, with non-invasive DHR measurements taken before and directly after the application of the oil and 30 min later. Additionally, the correlation between the oil’s compounds (chlorophyll a, chlorophyll b, lycopene, and β-carotene) and antioxidant activity, expressed as the DPPH free radical scavenging capacity, was analyzed in relation to the differences in the skin’s DHR observed. An interesting result was obtained in the context of protecting the skin against IR radiation. A statistically significant increase in the skin’s reflectance after the penetration of the oil (p < 0.05) was observed in the 1700–2500 nm range for the chokeberry, fig, pomegranate, and perilla oils, suggesting their potential as photoprotective agents against IR. These findings indicate that chokeberry, fig, pomegranate, and perilla oils may serve as ingredients in cosmetic formulations designed for broad-spectrum skin photoprotection, complementing traditional UV filters with additional protection against infrared radiation. However, further research is needed to confirm these findings in a larger population. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

23 pages, 5327 KiB  
Article
Protect Effects of Perilla Seed Extract and Its Active Ingredient Luteolin Against Inflammatory Bowel Disease Model via the PI3K/AKT Signal Pathway In Vivo and In Vitro
by Jin Zhang, Linlu Zhao, Jieyi He, Huining Wu, Mengru Guo, Zhichao Yu, Xingbin Ma, Yanhong Yong, Youquan Li, Xianghong Ju and Xiaoxi Liu
Int. J. Mol. Sci. 2025, 26(8), 3564; https://doi.org/10.3390/ijms26083564 - 10 Apr 2025
Cited by 1 | Viewed by 738
Abstract
The purpose of this study was to investigate the anti-inflammatory effects of Perilla Seed Extract (PSE) and its active ingredient on Inflammatory Bowel Disease (IBD) in vitro and in vivo. Thirty-two C57/BL mice were randomly divided into four groups (n = 8): [...] Read more.
The purpose of this study was to investigate the anti-inflammatory effects of Perilla Seed Extract (PSE) and its active ingredient on Inflammatory Bowel Disease (IBD) in vitro and in vivo. Thirty-two C57/BL mice were randomly divided into four groups (n = 8): control group (CON), PBS group, LPS group (LPS 3.5 mg/kg given intraperitoneally [ip] on day 7 of the study only), and PSE group (100 mg/kg orally daily + LPS ip at 3.5 mg/kg on day 7). Mice were euthanized 24 h after LPS administration. MODE-K cells were divided into five groups: control group (CON), LPS group (50 μg/mL LPS for 2 h), and PSE group (low dose, 25 μg/mL PSE + LPS; middle dose, 50 μg/mL PSE + LPS; high dose, 100 μg/mL PSE + LPS). In vivo, compared with the CON group, LPS revealed a significant decrease in the villus length-to-crypt depth ratio (p < 0.01) and goblet cell density per unit area (p < 0.01). Conversely, PSE administration resulted in a significant increase in the villus length-to-crypt depth ratio (p < 0.01) and goblet cell density (p < 0.01). LPS significantly increased the ROS content (p < 0.01), the secretion of inflammatory cytokines of IL-6 (p < 0.01), TNF-α (p < 0.01), and the mRNA expressions of HO-1 (p < 0.01). LPS significantly decreased the mRNA expressions of Occludin (p < 0.01) and Claudin1 (p < 0.01). In contrast, PSE treatment led to a marked decrease in ROS levels (p < 0.01), along with a reduction in the secretion of inflammatory factors IL-6 (p < 0.01) and TNF-α(p < 0.05), as well as the mRNA expressions of HO-1 (p < 0.01). Concurrently, PSE significantly increased the mRNA expressions of Occludin (p < 0.05) and Claudin1 (p < 0.01). In vitro, PSE treatment also significantly reversed LPS-induced inflammation, oxidation and tight junction–related factors. Network pharmacology identified 97 potential targets for PSE in treating IBD, while transcriptomics analysis revealed 342 differentially expressed genes (DEGs). Network pharmacology and transcriptomics analysis indicated that significant pathways included the PI3K-Akt signaling pathway, MAPK signaling pathway, and TNF signaling pathway, of which the PI3K-AKT pathway may represent the primary mechanism. In an in vivo setting, compared with the CON group, LPS led to a significant increase in the protein expression of p-PI3K/PI3K (p < 0.01) and p-AKT1/AKT1 (p < 0.01). Conversely, PSE resulted in a significant decrease in the protein expression of p-PI3K/PI3K (p < 0.01) and p-AKT1/AKT1 (p < 0.01). In vitro, compared with the LPS group, PSE also significantly blocked the protein expression of p-PI3K/PI3K (p < 0.01) and p-AKT1/AKT1 (p < 0.01). The chemical composition of PSE was analyzed using UPLC-MS/MS, which identified six components including luteolin (content 0.41%), rosmarinic acid (content 0.27%), α-linolenic acid (content 1.2%), and oleic acid (content 0.2%). Molecular docking found that luteolin could establish stable binding with eight targets, and luteolin significantly decreased the p-AKT1/AKT1 ratio (p < 0.01) compared to the LPS group in MODE-K cells. In summary, PSE demonstrates efficacy against IBD progression by enhancing intestinal barrier function and inhibiting inflammatory responses and oxidative stress via the PI3K/AKT signaling pathway, and luteolin’s inhibition of AKT1 protein phosphorylation appears to play a particularly crucial role in this therapeutic mechanism. Full article
(This article belongs to the Special Issue Characterization and Biological Function of Plant Extracts)
Show Figures

Graphical abstract

Back to TopTop