Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = peptide bond synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3363 KB  
Review
Peptide Identity of Electrochemically Deposited Polyarginine: A Critical Assessment
by Ivan Švancara and Milan Sýs
Chemosensors 2026, 14(1), 27; https://doi.org/10.3390/chemosensors14010027 - 16 Jan 2026
Viewed by 260
Abstract
This review examines the feasibility of electrochemical synthesis of poly-L-arginine (PArg) using repetitive cyclic voltammetry in neutral aqueous phosphate-buffered saline. Previous studies on electrochemical deposition of PArg onto different carbonaceous electrode materials are discussed with respect to the already reported mechanistic models. Some [...] Read more.
This review examines the feasibility of electrochemical synthesis of poly-L-arginine (PArg) using repetitive cyclic voltammetry in neutral aqueous phosphate-buffered saline. Previous studies on electrochemical deposition of PArg onto different carbonaceous electrode materials are discussed with respect to the already reported mechanistic models. Some controversial interpretations are of interest, predominantly the formation of peptide bonds during the electropolymerisation of L-arginine. Several alternative anodic pathways are considered via the possibilities and limitations of ways of attaching L-arginine molecules to the electrode surface. Furthermore, the role of oxygen-containing surface groups is discussed, as this aspect has been largely overlooked in the context of L-arginine deposition, despite the O-terminating character of the electrode surface and its effect on the reactivity of the nucleophilic guanidine group in L-arginine. Also, the application of extremely high potentials around +2 V vs. Ag/AgCl/3 mol L−1 KCl is considered, as it can lead to the generation of reactive oxygen species that may interfere with or even govern the entire deposition process. Thus, the absence of such considerations may raise doubts about the peptide nature of the electrochemically assisted polymerisation of this basic amino acid. Finally, it seems that the identity of the electrochemically synthesised PArg does not correspond to that of this polymer prepared by conventional methods, such as solid-phase peptide synthesis, solution-phase synthesis, or N-carboxy-anhydride polymerisation, and therefore the whole process remains unproved. Full article
(This article belongs to the Special Issue New Electrodes Materials for Electroanalytical Applications)
Show Figures

Figure 1

21 pages, 2883 KB  
Article
Solid-Phase Synthesis Approaches and U-Rich RNA-Binding Activity of Homotrimer Nucleopeptide Containing Adenine Linked to L-azidohomoalanine Side Chain via 1,4-Linked-1,2,3-Triazole
by Piotr Mucha, Małgorzata Pieszko, Irena Bylińska, Wiesław Wiczk, Jarosław Ruczyński and Piotr Rekowski
Int. J. Mol. Sci. 2025, 26(23), 11687; https://doi.org/10.3390/ijms262311687 - 2 Dec 2025
Viewed by 397
Abstract
Nucleopeptides (NPs) are unnatural hybrid polymers designed by coupling nucleobases to the side chains of amino acid residues within peptides. In this study, we present the synthesis of an Fmoc-protected nucleobase amino acid (NBA) monomer (Fmoc-1,4-TzlNBAA) with adenine attached to the [...] Read more.
Nucleopeptides (NPs) are unnatural hybrid polymers designed by coupling nucleobases to the side chains of amino acid residues within peptides. In this study, we present the synthesis of an Fmoc-protected nucleobase amino acid (NBA) monomer (Fmoc-1,4-TzlNBAA) with adenine attached to the side chain of L-homoazidoalanine (Aha) through a 1,4-linked-1,2,3-triazole. The coupling was accomplished by a Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) of Fmoc-Aha and N9-propargyladenine. Subsequently, a homotrinucleopeptide (HalTzlAAA) containing three 1,4-TzlNBAA residues was synthesized, using different solid-phase peptide synthesis (SPPS) approaches, and its ability to recognize U-rich motifs of RNAs involved in the HIV replication cycle was studied using circular dichroism (CD) and fluorescence spectroscopy. CD curves confirmed the binding of HalTzlAAA to U-rich motifs of the transactivation responsive element (TAR UUU RNA HIV-1) bulge and the anticodon stem–loop domain of human tRNALys3 (ASLLys3) by a decrease in the positive ellipticity band intensity around 265 nm during the complexation. 5′-(FAM(6))-labeled TAR UUU and hASLLys3 were used for fluorescence anisotropy binding studies. Fluorescence data revealed that HalTzlAAA bound TAR’s UUU bulge with a moderate affinity (Kd ≈ 38 µM), whereas the ASLLys3 UUUU-containing loop sequence was recognized with 2.5 times lower affinity (with Kd ≈ 75 µM). Both the standard SPPS method and its variants, which involved the attachment of adenine to the L-Aha side chain using the click reaction during the synthesis on the resin or after the nucleopeptide cleavage, were characterized by a similar efficiency and yield. The CD and fluorescence results demonstrated that HalTzlAAA recognized the U-rich sequences of the RNAs with moderate and varied affinities. It is likely that both the hydrogen bonds associated with the complementarity of the interacting sequences and the conformational aspects associated with the high conformational dynamics of U-rich motifs are important in the recognition process. The nucleopeptide represents a new class of RNA binders and may be a promising scaffold for the development of new antiviral drugs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

21 pages, 2320 KB  
Review
Emerging Applications of Thiol-Based Catalysts in Hydrogen Atom Transfer Reactions: A Comprehensive Review
by Hao Yang, Yanyan Liao, Hao Guo and Ming Wang
Molecules 2025, 30(20), 4058; https://doi.org/10.3390/molecules30204058 - 11 Oct 2025
Cited by 2 | Viewed by 1085
Abstract
Hydrogen atom transfer (HAT) is a fundamental class of radical transformations that enables the direct generation of open-shell radical intermediates from R–H bonds (R = C, N, etc.), offering unique opportunities for green and sustainable synthesis. Significant progress has been made not only [...] Read more.
Hydrogen atom transfer (HAT) is a fundamental class of radical transformations that enables the direct generation of open-shell radical intermediates from R–H bonds (R = C, N, etc.), offering unique opportunities for green and sustainable synthesis. Significant progress has been made not only in identifying diverse molecular scaffolds capable of mediating HAT but also in developing synthetic methodologies to achieve precise stereocontrol in these processes. In this context, this review highlights recent advances in the use of sugar-derived compounds, cysteine-containing peptides, and chiral/achiral thiols/thiophenols as catalysts for stereoselective HAT, emphasizing their potential to expand the synthetic utility of HAT in organic transformations. Full article
(This article belongs to the Special Issue Organosulfur and Organoselenium Chemistry II)
Show Figures

Scheme 1

17 pages, 3154 KB  
Article
Polyethylene Glycol-Based Solid Polymer Electrolyte with Disordered Structure Design for All-Solid-State Lithium-Ion Batteries
by Wanlin Wu, Yingmeng Zhang, Zhongke Zhao, Yihan Lin, Yongliang Li, Xiangzhong Ren, Peixin Zhang and Lingna Sun
Micromachines 2025, 16(10), 1123; https://doi.org/10.3390/mi16101123 - 30 Sep 2025
Viewed by 1366
Abstract
In this work, a novel solid polymer electrolyte with a disordered structure has been designed, combining polyethylene glycol (PEG) as the flexible segments and hexamethylene diisocyanate (HDI) as the rigid segments. The synthesis was realized by alternating flexible PEG with rigid HDI through [...] Read more.
In this work, a novel solid polymer electrolyte with a disordered structure has been designed, combining polyethylene glycol (PEG) as the flexible segments and hexamethylene diisocyanate (HDI) as the rigid segments. The synthesis was realized by alternating flexible PEG with rigid HDI through a peptide bond (–CO–NH–), which disrupts the ordered structures of PEG, generating electron-deficient Lewis acid groups. The pathbreaking introduction of HDI blocks not only bridges links between the PEG molecules but also generates electron-deficient Lewis acid groups. Therefore, the original ordered structures of PEG are disrupted by both the alternating chains between PEG and HDI and the Lewis acid groups. As a result, the PEGH/L4000 electrolytes (PEG molecular weight of 4000) exhibit a strong anion-capture ability that decreases the crystallinity of polymers, which further achieves a high ionic conductivity close to 10−3 S·cm−1 with the lithium-ion transference numbers up to 0.88. The symmetric Li|PEGH/L4000|Li cells maintain a low and stable voltage polarization for more than 800 h at 0.1 mA·cm−2. Furthermore, the LiFePO4|PEGH/L4000|Li all-solid-state cells perform well both in cycling and rate performances. The design of polymer disordered structures for polymer electrolytes provides a new thought for manufacturing all-solid-state lithium-ion batteries with high safety as well as long life. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

37 pages, 3778 KB  
Review
Peptide-Based Inorganic Nanoparticles as Efficient Intracellular Delivery Systems
by Amir Nasrolahi Shirazi, Rajesh Vadlapatla, Ajoy Koomer, Anthony Nguyen, Vian Khoury and Keykavous Parang
Pharmaceutics 2025, 17(9), 1123; https://doi.org/10.3390/pharmaceutics17091123 - 28 Aug 2025
Cited by 3 | Viewed by 2151
Abstract
Background/Objectives: Peptide-based inorganic nanoparticles (PINPs) have emerged as promising candidates for intracellular delivery due to their unique structural and functional attributes. These hybrid nanostructures combine the high surface area and tunable optical/magnetic properties of metal cores (e.g., Au, Ag, Fe3O [...] Read more.
Background/Objectives: Peptide-based inorganic nanoparticles (PINPs) have emerged as promising candidates for intracellular delivery due to their unique structural and functional attributes. These hybrid nanostructures combine the high surface area and tunable optical/magnetic properties of metal cores (e.g., Au, Ag, Fe3O4) with the biocompatibility, targeting specificity, and responsive behavior of peptides. In particular, peptides with amphipathic or cell-penetrating features could facilitate efficient transport of molecular cargos across cellular membranes while enabling stimulus-responsive drug release in target tissues. Methods: We review key synthesis methods (especially green, peptide-mediated one-pot approaches), functionalization strategies (e.g., thiol-gold bonds, click chemistries), and characterization techniques (TEM, DLS, FTIR, etc.) that underpin PINP design. In addition, we highlight diverse peptide classes (linear, cyclic, amphipathic, self-assembling) and their roles (targeting ligands, capping/stabilizing agents, reducing agents) in constructing multifunctional nanocarriers. Results: The prospects of PINPs are considerable: they enable targeted drug delivery with imaging/theranostic capability, improve drug stability and cellular uptake, and harness peptide programmability for precision nanomedicine. However, challenges such as in vivo stability, immunogenicity, and standardization of evaluation must be addressed. Conclusions: Overall, PINPs represent multifunctional platforms that could significantly advance drug delivery and diagnostic applications in the future. Full article
(This article belongs to the Special Issue Metal Nanoparticles for Pharmaceutical Applications)
Show Figures

Figure 1

17 pages, 3065 KB  
Article
Matrix Metalloproteinase-2-Responsive Peptide-Modified Cleavable PEGylated Liposomes for Paclitaxel Delivery
by Xingyu Zhao and Yinghuan Li
Pharmaceuticals 2025, 18(7), 1042; https://doi.org/10.3390/ph18071042 - 15 Jul 2025
Cited by 4 | Viewed by 3689
Abstract
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity [...] Read more.
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity to enhance tissue-specific drug delivery. In this study, we engineered MMP-2-responsive GPLGVRG peptide-modified cleavable PEGylated liposomes for targeted paclitaxel (PTX) delivery. Methods: Molecular docking simulations employed the MMP-2 crystal structure (PDB ID: 7XJO) to assess GPLGVRG peptide binding affinity. A cleavable, enzyme-sensitive peptide-PEG conjugate (Chol-PEG2K-GPLGVRG-PEG5K) was synthesized via small-molecule liquid-phase synthesis and characterized by 1H NMR and MALDI-TOF MS. Liposomes incorporating this conjugate (S-Peps-PEG5K) were formulated to evaluate whether MMP-2-mediated peptide degradation triggers detachment of long-chain PEG moieties, thereby enhancing internalization by 4T1 breast cancer cells. Additionally, the effects of tumor microenvironmental pH (~6.5) and MMP-2 concentration on drug release dynamics were investigated. Results: Molecular docking revealed robust GPLGVRG-MMP-2 interactions, yielding a binding energy of −7.1 kcal/mol. The peptide formed hydrogen bonds with MMP-2 residues Tyr A:23 and Arg A:53 (bond lengths: 2.4–2.5 Å) and engaged in hydrophobic contacts, confirming MMP-2 as the primary recognition site. Formulations containing 5 mol% Chol-PEG2K-GPLGVRG-PEG5K combined with 0.15 µg/mL MMP-2 (S-Peps-PEG5K +MMP) exhibited superior internalization efficiency and significantly reduced clonogenic survival compared to controls. Notably, acidic pH (~6.5) induced MMP-2-mediated cleavage of the GPLGVRG peptide, accelerating S-Peps-PEG5K dissociation and facilitating drug release. Conclusions: MMP-2-responsive, cleavable PEGylated liposomes markedly improve PTX accumulation and controlled release at tumor sites by dynamically modulating their stealth properties, offering a promising strategy to enhance chemotherapy efficacy in breast cancer. Full article
Show Figures

Graphical abstract

10 pages, 1743 KB  
Short Note
4-(4-Formyl-3,5-dimethoxyphenoxy)butyric Acid (BAL)
by Alex Lovstedt, Tracy R. Thompson and George Barany
Molbank 2025, 2025(3), M2029; https://doi.org/10.3390/M2029 - 26 Jun 2025
Viewed by 1356
Abstract
The title compound, 4-(4-formyl-3,5-dimethoxyphenoxy)butyric acid (BAL), is an important “handle” for solid-phase synthesis of peptides and related compounds. Reported here is an X-ray single crystal structural analysis of BAL. The molecule is almost entirely flat, and the crystal is held together by π-stacking [...] Read more.
The title compound, 4-(4-formyl-3,5-dimethoxyphenoxy)butyric acid (BAL), is an important “handle” for solid-phase synthesis of peptides and related compounds. Reported here is an X-ray single crystal structural analysis of BAL. The molecule is almost entirely flat, and the crystal is held together by π-stacking and hydrogen bonding. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

24 pages, 2102 KB  
Review
Peptides in Cosmetics: From Pharmaceutical Breakthroughs to Skincare Innovations
by Yuxiang Tang, Tong Nie, Lu Zhang, Xiaohui Liu and Haiteng Deng
Cosmetics 2025, 12(3), 107; https://doi.org/10.3390/cosmetics12030107 - 23 May 2025
Cited by 10 | Viewed by 19524
Abstract
Peptides are molecules composed of two or more amino acids linked by peptide bonds, and they play essential biological roles. In recent decades, peptides have become pivotal bioactive ingredients in pharmaceuticals and cosmetics due to their unique features. Originally developed for therapeutic purposes, [...] Read more.
Peptides are molecules composed of two or more amino acids linked by peptide bonds, and they play essential biological roles. In recent decades, peptides have become pivotal bioactive ingredients in pharmaceuticals and cosmetics due to their unique features. Originally developed for therapeutic purposes, peptides have gained popularity in the cosmetic field, providing solutions for anti-aging, whitening, moisturizing, and skin repair. Moreover, innovations such as artificial intelligence-assisted peptide design, efficient delivery systems, and the integration of multifunctional ingredients have significantly contributed to the industry’s rapid evolution. This review explores the historical milestones of peptides in medicine and cosmetics, delves into cutting-edge synthesis technologies, and dissects the molecular mechanisms behind their cosmetic properties. Research in medicinal peptides has promoted the development of cosmetic peptides. Despite their potential, challenges such as stability, bioavailability, and cost-effective production remain barriers to widespread adoption. Future studies should focus on enhancing peptide stability, developing synergistic formulations, and conducting large-scale clinical trials to validate long-term efficacy. With continuous innovation, peptides are poised to redefine the cosmetic industry, bridging the gap between pharmaceuticals and skincare for safer and more effective solutions. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

16 pages, 1467 KB  
Article
Structural Identification and Molecular Interaction Modeling Analysis of Antioxidant Activity Selenium-Enriched Peptides from Selenium-Enriched Pleurotus eryngii
by Lili Chen, Menghan Nie, Jing Yang, Weibin Zhang, Tom Hsiang, Yuji Jiang, Baogui Xie and Bingzhi Chen
Antioxidants 2025, 14(5), 586; https://doi.org/10.3390/antiox14050586 - 13 May 2025
Cited by 3 | Viewed by 1316
Abstract
This study investigated the structure–activity relationships between SePEPs (selenium-enriched peptides) and PEPs (selenium-free peptides) and compared the antioxidant activities of SePEPs and PEPs. The results showed that SePEPs exhibited higher antioxidant activity than PEPs at the same molecular weight, with the molecular weights [...] Read more.
This study investigated the structure–activity relationships between SePEPs (selenium-enriched peptides) and PEPs (selenium-free peptides) and compared the antioxidant activities of SePEPs and PEPs. The results showed that SePEPs exhibited higher antioxidant activity than PEPs at the same molecular weight, with the molecular weights of 0–3500 Da exhibiting the highest in vitro antioxidant activity. Chelation between selenium and peptides led to a more compact structure and increased particle density in SePEPs. A spectroscopic analysis revealed new peaks and redshifts in SePEPs, along with a higher content of hydrophobic amino acids than PEPs. A molecular interaction modeling analysis indicated that hydrogen bonding and hydrophobic interactions primarily drove the binding between selenium-containing peptides and 1,1-diphenyl-2-picrylhydrazyl (DPPH). Moreover, the solid-phase synthesized MSePGP exhibited significantly greater antioxidant activity than glutathione at high concentrations. At 10 mg/mL, the DPPH radical scavenging rate of MSePGP was 68.5 ± 2.2%. These findings provide a theoretical basis for the design and synthesis of selenium-enriched peptides with enhanced antioxidant properties. Full article
Show Figures

Figure 1

21 pages, 2045 KB  
Review
Protein Ligases: Nature’s Gift for Protein/Peptide Synthesis
by Yvonne Ritsema, Huapeng Li and Qingfei Zheng
BioChem 2025, 5(2), 11; https://doi.org/10.3390/biochem5020011 - 7 May 2025
Cited by 1 | Viewed by 3071
Abstract
Proteins are structurally and functionally diverse biomacromolecules that serve a variety of essential activities to ensure complex biological homeostasis. The desire to elucidate and enhance these biological functions has been at the forefront of research for many decades. However, generating active proteins via [...] Read more.
Proteins are structurally and functionally diverse biomacromolecules that serve a variety of essential activities to ensure complex biological homeostasis. The desire to elucidate and enhance these biological functions has been at the forefront of research for many decades. However, generating active proteins via recombinant expression or through chemical total synthesis each has limitations in terms of yield and functionality. Nature has provided a solution to this problem through evolving protein ligases that catalyze the formation of amide bonds between peptides/proteins, which can be exploited by protein engineers to develop robust functional proteins. Here, we summarize the biochemical mechanisms and applications of multiple cysteine-based protein ligases, especially focusing on how they have been utilized for protein therapeutics and engineering, as well as how they inspired chemists to develop efficient methodologies for protein synthesis (e.g., native chemical ligation). Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
Show Figures

Figure 1

11 pages, 2869 KB  
Article
An Orthogonal Protection Strategy for the Synthesis of Conotoxins Containing Three Disulfide Bonds
by Hengyu Zhang, Lai Yue Chan, Huanhuan Zhang, Tao Jiang, David J. Craik, Wenqing Cai and Rilei Yu
Mar. Drugs 2025, 23(4), 168; https://doi.org/10.3390/md23040168 - 14 Apr 2025
Cited by 4 | Viewed by 1642
Abstract
Disulfide bonds are crucial for stabilizing bioactive peptides such as conotoxins. We have developed a method for synthesizing conotoxins with three disulfide bonds using Mob, Trt, and Acm protection groups for regionally selective synthesis. This approach enabled the efficient synthesis of peptides with [...] Read more.
Disulfide bonds are crucial for stabilizing bioactive peptides such as conotoxins. We have developed a method for synthesizing conotoxins with three disulfide bonds using Mob, Trt, and Acm protection groups for regionally selective synthesis. This approach enabled the efficient synthesis of peptides with the desired disulfide bond connectivities independent of their sequences. Using our strategy, we synthesized five conotoxins, achieving yields of 20–30%. The results demonstrate the potential of our method for synthesizing complex peptides with multiple disulfide bonds. Full article
Show Figures

Figure 1

8 pages, 954 KB  
Communication
On-Resin Acetamidomethyl (Acm) Removal and Disulfide Formation in Cysteinyl Peptides Using N-Chlorosuccinimide (NCS) in the Presence of Other Cys-Protecting Groups
by Amit Chakraborty, Fernando Albericio and Beatriz G. de la Torre
Int. J. Mol. Sci. 2025, 26(6), 2523; https://doi.org/10.3390/ijms26062523 - 11 Mar 2025
Cited by 1 | Viewed by 2789
Abstract
Acetamidomethyl (Acm)-protected cysteine derivatives are essential components of multi-disulfide synthesis, particularly due to the availability of multimodal removal conditions for Acm protection. Most of these removal conditions are harsh and are commonly used to remove Acm protection at the last step of regioselective [...] Read more.
Acetamidomethyl (Acm)-protected cysteine derivatives are essential components of multi-disulfide synthesis, particularly due to the availability of multimodal removal conditions for Acm protection. Most of these removal conditions are harsh and are commonly used to remove Acm protection at the last step of regioselective synthesis of a multi-disulfide, implying that the removal of Acm is performed in the absence of other Cys thiol protections. In this context, N-chlorosuccinimide (NCS)-mediated removal of Acm and concomitant disulfide bridge formation provides a fast and reliable way to synthesize multi-disulfides. In the present study, we demonstrate that NCS-mediated Acm removal and disulfide bond formation can be performed in the presence of other commonly used Cys thiol protections. Interestingly, Acm can be removed with NCS without affecting the Trt group, which is also removed with I2. Later, we successfully employ the NCS-based Acm removal method in the synthesis of multi-disulfide peptides like α-conotoxin SI. Full article
(This article belongs to the Special Issue Solid-Phase Peptides: Syntheses and Applications)
Show Figures

Figure 1

17 pages, 4152 KB  
Article
ConoGPT: Fine-Tuning a Protein Language Model by Incorporating Disulfide Bond Information for Conotoxin Sequence Generation
by Guohui Zhao, Cheng Ge, Wenzheng Han, Rilei Yu and Hao Liu
Toxins 2025, 17(2), 93; https://doi.org/10.3390/toxins17020093 - 17 Feb 2025
Viewed by 1464
Abstract
Conotoxins are a class of peptide toxins secreted by marine mollusks of the Conus genus, characterized by their unique mechanism of action and significant biological activity, making them highly valuable for drug development. However, traditional methods of acquiring conotoxins, such as in vivo [...] Read more.
Conotoxins are a class of peptide toxins secreted by marine mollusks of the Conus genus, characterized by their unique mechanism of action and significant biological activity, making them highly valuable for drug development. However, traditional methods of acquiring conotoxins, such as in vivo extraction or chemical synthesis, face challenges of high costs, long cycles, and limited exploration of sequence diversity. To address these issues, we propose the ConoGPT model, a conotoxin sequence generation model that fine-tunes the ProtGPT2 model by incorporating disulfide bond information. Experimental results demonstrate that sequences generated by ConoGPT exhibit high consistency with authentic conotoxins in physicochemical properties and show considerable potential for generating novel conotoxins. Furthermore, compared to models without disulfide bond information, ConoGPT outperforms in terms of generating sequences with ordered structures. The majority of the filtered sequences were shown to possess significant binding affinities to nicotinic acetylcholine receptor (nAChR) targets based on molecular docking. Molecular dynamics simulations of the selected sequences further confirmed the dynamic stability of the generated sequences in complex with their respective targets. This study not only provides a new technological approach for conotoxin design but also offers a novel strategy for generating functional peptides. Full article
(This article belongs to the Special Issue Conotoxins: Evolution, Classifications and Targets)
Show Figures

Figure 1

20 pages, 5088 KB  
Article
Molecular Modification of Queen Bee Acid and 10-Hydroxydecanoic Acid with Specific Tripeptides: Rational Design, Organic Synthesis, and Assessment for Prohealing and Antimicrobial Hydrogel Properties
by Song Hong, Sachin B. Baravkar, Yan Lu, Abdul-Razak Masoud, Qi Zhao and Weilie Zhou
Molecules 2025, 30(3), 615; https://doi.org/10.3390/molecules30030615 - 30 Jan 2025
Cited by 4 | Viewed by 2200
Abstract
Royal jelly and medical grade honey are traditionally used in treating wounds and infections, although their effectiveness is often variable and insufficient. To overcome their limitations, we created novel amphiphiles by modifying the main reparative and antimicrobial components, queen bee acid (hda) and [...] Read more.
Royal jelly and medical grade honey are traditionally used in treating wounds and infections, although their effectiveness is often variable and insufficient. To overcome their limitations, we created novel amphiphiles by modifying the main reparative and antimicrobial components, queen bee acid (hda) and 10-hydroxyl-decanoic acid (hdaa), through peptide bonding with specific tripeptides. Our molecular design incorporated amphiphile targets as being biocompatible in wound healing, biodegradable, non-toxic, hydrogelable, prohealing, and antimicrobial. The amphiphilic molecules were designed in a hda(hdaa)-aa1-aa2-aa3 structural model with rational selection criteria for each moiety, prepared via Rink/Fmoc-tBu-based solid-phase peptide synthesis, and structurally verified by NMR and LC–MS/MS. We tested several amphiphiles among those containing moieties of hda or hdaa and isoleucine–leucine–aspartate (ILD-amidated) or IL-lysine (ILK-NH2). These tests were conducted to evaluate their prohealing and antimicrobial hydrogel properties. Our observation of their hydrogelation and hydrogel-rheology showed that they can form hydrogels with stable elastic moduli and injectable shear-thinning properties, which are suitable for cell and tissue repair and regeneration. Our disc-diffusion assay demonstrated that hdaa-ILK-NH2 markedly inhibited Staphylococcus aureus. Future research is needed to comprehensively evaluate the prohealing and antimicrobial properties of these novel molecules modified from hda and hdaa with tripeptides. Full article
Show Figures

Graphical abstract

19 pages, 3054 KB  
Article
Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
by Marcelo Augusto Garcia-Junior, Bruno Silva Andrade, Ana Paula Lima, Iara Pereira Soares, Ana Flávia Oliveira Notário, Sttephany Silva Bernardino, Marco Fidel Guevara-Vega, Ghabriel Honório-Silva, Rodrigo Alejandro Abarza Munoz, Ana Carolina Gomes Jardim, Mário Machado Martins, Luiz Ricardo Goulart, Thulio Marquez Cunha, Murillo Guimarães Carneiro and Robinson Sabino-Silva
Biosensors 2025, 15(2), 75; https://doi.org/10.3390/bios15020075 - 28 Jan 2025
Cited by 15 | Viewed by 3401
Abstract
Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations [...] Read more.
Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3−/4 solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of −250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva. Full article
Show Figures

Figure 1

Back to TopTop