Feature Papers in BioChem

A special issue of BioChem (ISSN 2673-6411).

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 14271

Special Issue Editors


E-Mail Website
Guest Editor
School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
Interests: computational chemistry and biology; computational immunology; protein-protein interaction; protein aggregation diseases; neurodegenerative disease; Alzheimer’s disease; cancer and inflammation; antigen
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Faculdade de Ciências e Tecnologia (FCT), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
2. CCMAR, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
Interests: metals in molecular sciences; decavanadate biochemistry; polyoxometalates (POMs) interactions with proteins; POMs applications in environment and health
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As the Associate Editor-in-Chief of the esteemed journal BioChem (ISSN 2673-6411), I am excited to announce the launch of an inaugural Special Issue titled “Feature Papers in BioChem, 1st Edition”. This Special Issue aims at showcasing exceptional research in the diverse and interconnected fields of molecular biology, cell biology, structural biology, nucleic acid biology, chemical biology, synthetic biology, disease biology, biophysics, metallomics (or inorganic biochemistry), and theoretical biochemistry. As an international and interdisciplinary open-access journal, BioChem is dedicated to providing a platform for publishing high-quality reviews, research articles, communications, and letters that contribute to the advancement of scientific knowledge.

At BioChem, our primary objective is to encourage scientists to present their experimental and theoretical research in meticulous detail. We believe that the comprehensive reporting of research methodologies, results, and interpretations is crucial for advancing scientific understanding and enabling reproducibility. By emphasizing the importance of detailed reporting, we aim at fostering a culture of transparency and open science within the scientific community.

To ensure the publication of exceptional research, all submitted papers will undergo a rigorous evaluation process. Our team of knowledgeable Editors will conduct an initial assessment to determine the suitability of the submissions for the Special Issue. Following this, the selected papers will be subjected to a thorough and unbiased peer review by experts in the respective fields. This rigorous peer review process aims at maintaining the highest standards of scientific integrity and ensuring that only significant and impactful research is published in BioChem.

By launching the “Feature Papers in BioChem, 1st Edition” Special Issue, we endeavor to provide a platform for researchers to disseminate their groundbreaking discoveries and innovative methodologies. This Special Issue will serve as a catalyst for scientific collaboration and knowledge exchange among experts from various disciplines. It will enable scientists to stay updated on the latest advancements in biochemistry and related fields while also inspiring future investigations.

As an international open-access journal, BioChem ensures that published research is freely accessible to a global audience. This accessibility facilitates widespread dissemination, allowing researchers, educators, students, and policymakers to benefit from the latest findings and advancements in biochemistry. Moreover, the journal's interdisciplinary nature promotes the cross-pollination of ideas and encourages the development of novel approaches and solutions to scientific challenges.

In conclusion, the “Feature Papers in BioChem, 1st Edition” Special Issue represents an exciting opportunity for researchers to contribute to the scientific literature in the fields of molecular biology, cell biology, structural biology, nucleic acid biology, chemical biology, synthetic biology, disease biology, biophysics, and theoretical biochemistry. By emphasizing comprehensive reporting and rigorous peer review, BioChem ensures the publication of impactful and high-quality research. We invite scientists from around the world to submit their work to this Special Issue and join us in advancing the frontiers of biochemistry and related disciplines.

Prof. Dr. Buyong Ma
Dr. Manuel Aureliano
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. BioChem is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular biology
  • molecular basis of biological processes
  • structural biology
  • gene and protein structure and expression
  • folding of biomolecules
  • biochemistry
  • metallomics (or inorganic biochemistry) chemical biology
  • synthetic biology
  • protein biosynthesis
  • membrane function and post-translational modification
  • disease biology
  • drugs and pharmaceutics
  • cell biology
  • chemical, physical, mechanistic, and/or structural basis of biological or cell function
  • cells
  • nucleic acid biology
  • theoretical biochemistry
  • advances in biochemical, biophysical, and molecular methodologies as well as imaging techniques and data analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

11 pages, 4258 KiB  
Article
Mammarenavirus Z Protein Myristoylation and Oligomerization Are Not Required for Its Dose-Dependent Inhibitory Effect on vRNP Activity
by Haydar Witwit and Juan C. de la Torre
BioChem 2025, 5(2), 10; https://doi.org/10.3390/biochem5020010 - 29 Apr 2025
Viewed by 200
Abstract
Background/Objectives: N-Myristoyltransferase inhibitors (NMTi) represent a novel antiviral strategy against mammarenaviruses such as Lassa and Junin viruses. The Z matrix protein inhibits viral ribonucleoprotein (vRNP) activity in a dose-dependent manner. Here, we investigated whether Z-mediated vRNP inhibition depends on Z myristoylation or [...] Read more.
Background/Objectives: N-Myristoyltransferase inhibitors (NMTi) represent a novel antiviral strategy against mammarenaviruses such as Lassa and Junin viruses. The Z matrix protein inhibits viral ribonucleoprotein (vRNP) activity in a dose-dependent manner. Here, we investigated whether Z-mediated vRNP inhibition depends on Z myristoylation or oligomerization. Methods: We used HEK293T cells transfected with wild-type (WT) or G2A-mutated Z constructs in LCMV minigenome (MG) assays. Cells were treated with the NMTi IMP-1088 and the proteasome inhibitor MG132. Z protein expression, vRNP activity, and VLP production were analyzed by immunofluorescence, western blotting, and colocalization analyses. Results: IMP-1088 treatment led to proteasome-mediated degradation of Z, reducing its inhibition of vRNP activity, which was restored by MG132. The non-myristoylated Z G2A mutant retained vRNP inhibitory activity but showed impaired oligomerization and budding capacity. These findings demonstrate that Z-mediated vRNP inhibition is independent of myristoylation and oligomerization. Conclusions: Z myristoylation and oligomerization are not required for its inhibitory vRNP activity. Targeting Z myristoylation with NMTi impairs virus assembly and budding without affecting Z-mediated inhibition of vRNP activity, supporting the development of NMTi as a promising broad-spectrum antiviral strategy against mammarenaviruses. Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
Show Figures

Figure 1

16 pages, 2365 KiB  
Article
Hydrogels Made with Tilapia Fish Skin Increase Collagen Production and Have an Effect on MMP-2/MMP-9 Enzymes in Burn Treatment
by Berkay Baydogan, Aslihan Kucuk, Bensu Kozan, Merve Erdal, Burcin Irem Abas and Ozge Cevik
BioChem 2025, 5(2), 8; https://doi.org/10.3390/biochem5020008 - 22 Apr 2025
Viewed by 286
Abstract
Background/Objectives: Burns are a prevalent health concern that manifest on the skin’s surface or within organs due to various traumas and necessitate prompt intervention. The healing process of the skin involves a sequence of time-dependent events, commencing with the activation of growth [...] Read more.
Background/Objectives: Burns are a prevalent health concern that manifest on the skin’s surface or within organs due to various traumas and necessitate prompt intervention. The healing process of the skin involves a sequence of time-dependent events, commencing with the activation of growth factors and culminating in the expression of various genes. To expedite the healing process of burn wounds, there is a need to develop biodegradable materials and new technologies that are compatible with the skin. Methods: In this study, the roles of tilapia (TL, Oreochromis niloticus) fish skin in burn wound treatment processes were investigated. TL or TL-alginate hydrogels (AGTL) were applied to a burn wound created in Sprague Dawley rats for 7 and 14 days. Following the administration of treatment, the levels of hydroxyproline, a critical element in tissue reorganization, along with the gene expression levels of COL1A1, COL3A1, MMP-2, and MMP-9, and the protein expression levels of MMP-2 and MMP-9 were evaluated. Results: Wound closure processes were faster in AGTL-groups compared to TL-groups, and hydroxyproline levels were found to be higher. While the increase in MMP-2 levels was less, the increase in MMP-9 gene and protein levels was greater in the AGTL-group. Concurrently, COL1A1 levels decreased over 14 days, while COL3A1 levels increased in the AGTL-group. Conclusions: Consequently, it was determined that the biological substances in the TL structure, in conjunction with alginate, were effective in the healing and reorganization of the wound tissue. This finding suggests that tilapia may provide a valuable source of insights for future studies aimed at developing effective wound dressings for wound tissues. Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
Show Figures

Figure 1

25 pages, 2573 KiB  
Article
Overproduction of Phenolic Compounds in Pseudomonas putida KT2440 Through Endogen Deregulation of the Shikimate Pathway
by William Merre, Ricardo Andrade, Cyril Perot, Alexia Chandor-Proust and Caroline Ranquet
BioChem 2025, 5(1), 4; https://doi.org/10.3390/biochem5010004 - 11 Mar 2025
Viewed by 570
Abstract
Metabolic engineering of the shikimate pathway offers a promising strategy for enhancing the production of aromatic compounds in microbial hosts. However, feedback inhibition of key enzymes, such as the 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHP synthase), often limits the yield of target products. In this [...] Read more.
Metabolic engineering of the shikimate pathway offers a promising strategy for enhancing the production of aromatic compounds in microbial hosts. However, feedback inhibition of key enzymes, such as the 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHP synthase), often limits the yield of target products. In this study, we focused on the DAHP synthase (AroF-I) from Pseudomonas putida. Through computational modeling and experimental validation, we identified specific amino-acid residues responsible for tyrosine-mediated feedback inhibition. By targeted mutagenesis, we engineered DAHP synthase variants that exhibit reduced sensitivity to feedback inhibition. The introduction of these engineered enzymes into a metabolically engineered Pseudomonas putida strain resulted in significantly increased production of p-coumaric acid. Our findings provide valuable insights into the regulation of the shikimate pathway and demonstrate the potential of protein engineering to improve microbial production of aromatic compounds. Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
Show Figures

Figure 1

17 pages, 1395 KiB  
Article
Synthesis and Investigation of Tricyclic Isoquinoline Derivatives as Antibacterial Agents
by Matthew J. A. Phillips, Alison T. Ung, Elizabeth J. Harry, Jason Ashmore and Andrew M. McDonagh
BioChem 2025, 5(1), 1; https://doi.org/10.3390/biochem5010001 - 31 Dec 2024
Viewed by 872
Abstract
Isoquinoline derivatives exhibit a range of biological properties, including antibacterial activity, and are thus attractive as a scaffold for developing broad-spectrum antibacterial compounds. A series of six isoquinoline-based compounds were synthesized using the reaction of 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline with dimethyl acetylenedicarboxylate (DMAD) to provide the [...] Read more.
Isoquinoline derivatives exhibit a range of biological properties, including antibacterial activity, and are thus attractive as a scaffold for developing broad-spectrum antibacterial compounds. A series of six isoquinoline-based compounds were synthesized using the reaction of 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline with dimethyl acetylenedicarboxylate (DMAD) to provide the tricyclic (2Z)-[2-oxo-5,6-dihydropyrrolo[2,1,a]isoquinolin-3-ylidene]-2-ethanoate. The [2 + 3] cycloaddition of DMAD with C-6 and C-7 substituted 1-methyl-3,4-dihydroisoquinolines proceeded using aryl ethers or unsubstituted compounds, but not with amine, amide or nitro moieties at the C-7 position. Compounds 8d and 8f were found to have antibacterial properties against some Gram-positive pathogens (Staphylococcus aureus8d = 16 µg/mL, 8f = 32 µg/mL; Streptococcus pneumoniae—8f = 32 µg/mL; and Enterococcus faecium—8d = 128 µg/mL, 8f = 64 µg/mL). Evaluation of their cytotoxic properties against mammalian cell lines revealed some cytotoxic effects (8b and 8d, 125 µM, 24 h, HEp-2 cells) and (8a, 8b, 8d = 125 µM, 8f = 62.5 µM, 24 h, McCoy B cells), suggesting limitations in their antibacterial applications without further development. Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
Show Figures

Figure 1

10 pages, 1197 KiB  
Article
Anti-Müllerian Hormone Serum Levels as Biomarker of Ovarian Reserve in Adult Women with Juvenile Idiopathic Arthritis Treated with csDMARDs and/or bDMARDs: A Pilot Study
by Clara Di Mario, Maria Rita Gigante, Angelina Barini, Luca Petricca, Antonella Barini, Antonio Bianchi, Stefano Alivernini, Barbara Tolusso and Elisa Gremese
BioChem 2024, 4(4), 313-322; https://doi.org/10.3390/biochem4040016 - 18 Oct 2024
Viewed by 1078
Abstract
Background/Objectives: Juvenile idiopathic arthritis (JIA) is a chronic childhood disease that often persists into the reproductive years. JIA may impact long-term fertility due to the prolonged exposure to immunosuppressive therapies. Methods: A total of 35 adult JIA female patients of childbearing age and [...] Read more.
Background/Objectives: Juvenile idiopathic arthritis (JIA) is a chronic childhood disease that often persists into the reproductive years. JIA may impact long-term fertility due to the prolonged exposure to immunosuppressive therapies. Methods: A total of 35 adult JIA female patients of childbearing age and 20 age-matched healthy controls were studied to test their anti-Müllerian hormone (AMH) serum levels as a biomarker of ovarian reserve. Demographic characteristics, disease duration, previous and current treatments, disease activity (DAS44), and a health assessment questionnaire (HAQ) were recorded. Results: JIA patients had a mean age of 22.3 ± 2.9 years, a disease duration of 12.3 ± 6.1 years, and a DAS44 of 1.24 ± 0.61. No differences were found in AMH serum levels between JIA and controls (5.78 ± 2.37 ng/mL vs. 6.60 ± 2.68 ng/mL, respectively; p = 0.17). Among the patients, 22 (62.9%) were receiving a stable dose of methotrexate (MTX) and 19 (54.3%) a dose of TNFα inhibitors. No difference in AMH serum levels was observed between JIA patients who were or were not exposed to MTX (p = 0.29) or to TNFα inhibitors (p = 0.50). Conclusions: Ovarian reserve as assessed by AMH serum levels appears to be comparable between those with JIA and age-matched controls and does not appear to be influenced by disease characteristics or prior/concomitant exposure to immunosuppressive drugs. Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
Show Figures

Figure 1

22 pages, 4239 KiB  
Article
Proteomic Blueprint of Atlantic Cod (Gadus morhua) Otoliths Revealing Environmental Stress Insights through Label-Free Quantitative Shotgun Proteomics
by Trevena N. Youssef, Sherri L. Christian, Rick Rideout, Aaron Adamack, Pierre Thibault, Eric Bonneil, Travis D. Fridgen and Joseph Banoub
BioChem 2024, 4(2), 144-165; https://doi.org/10.3390/biochem4020008 - 19 Jun 2024
Viewed by 1596
Abstract
Otoliths of the fish’s inner ear serve as a natural chronological recorder because of their continuous formation marked by daily, monthly, and annual increments. Despite their importance, the comprehensive protein content of otoliths remains not fully identified. Using the label-free shotgun proteomics method [...] Read more.
Otoliths of the fish’s inner ear serve as a natural chronological recorder because of their continuous formation marked by daily, monthly, and annual increments. Despite their importance, the comprehensive protein content of otoliths remains not fully identified. Using the label-free shotgun proteomics method with one-dimensional liquid chromatography coupled to electrospray ionization-orbitrap tandem mass spectrometry, we quantified a broad range of proteins, with individual otoliths containing between 1341 and 1839 proteins. The identified proteins could potentially serve as a blueprint for fish growth from embryo to adult. We quantified eleven heat-shock proteins (HSPs) in both sexes and several proteins impacted by endocrine disruptors, indicating the otolith’s capacity to reflect environmental stress, potentially linked to climate change effects and altering of hormonal and neuroendocrine functions. Our bioinformatic ontology analysis confirmed the presence of proteins critical for various biological processes, including structural and enzymatic proteins. Protein–protein interaction (PPI) mapping also identified key interactions between the identified proteins. These findings significantly advance our understanding of otolith proteomics, offering a solid foundation for future work. Most of the identified proteins deposited daily and influenced by the environment were not implicated in the biomineralization of otolith, raising the potential for the otolith proteome to recreate details of fish life history at previously unrealized levels. Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
Show Figures

Graphical abstract

Review

Jump to: Research, Other

21 pages, 2045 KiB  
Review
Protein Ligases: Nature’s Gift for Protein/Peptide Synthesis
by Yvonne Ritsema, Huapeng Li and Qingfei Zheng
BioChem 2025, 5(2), 11; https://doi.org/10.3390/biochem5020011 (registering DOI) - 7 May 2025
Abstract
Proteins are structurally and functionally diverse biomacromolecules that serve a variety of essential activities to ensure complex biological homeostasis. The desire to elucidate and enhance these biological functions has been at the forefront of research for many decades. However, generating active proteins via [...] Read more.
Proteins are structurally and functionally diverse biomacromolecules that serve a variety of essential activities to ensure complex biological homeostasis. The desire to elucidate and enhance these biological functions has been at the forefront of research for many decades. However, generating active proteins via recombinant expression or through chemical total synthesis each has limitations in terms of yield and functionality. Nature has provided a solution to this problem through evolving protein ligases that catalyze the formation of amide bonds between peptides/proteins, which can be exploited by protein engineers to develop robust functional proteins. Here, we summarize the biochemical mechanisms and applications of multiple cysteine-based protein ligases, especially focusing on how they have been utilized for protein therapeutics and engineering, as well as how they inspired chemists to develop efficient methodologies for protein synthesis (e.g., native chemical ligation). Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
Show Figures

Figure 1

27 pages, 2485 KiB  
Review
Biotechnological Advances in Vanillin Production: From Natural Vanilla to Metabolic Engineering Platforms
by Arnold William Tazon, Fatima Awwad, Fatma Meddeb-Mouelhi and Isabel Desgagné-Penix
BioChem 2024, 4(4), 323-349; https://doi.org/10.3390/biochem4040017 - 27 Nov 2024
Cited by 1 | Viewed by 3463
Abstract
Vanillin, an aromatic aldehyde, is one of the most popular flavors worldwide, extensively used in the food, cosmetics, pharmaceutical, and agrochemical industries. Despite its widespread use, less than 1% of the total vanillin production is natural, with the majority being synthesized chemically. While [...] Read more.
Vanillin, an aromatic aldehyde, is one of the most popular flavors worldwide, extensively used in the food, cosmetics, pharmaceutical, and agrochemical industries. Despite its widespread use, less than 1% of the total vanillin production is natural, with the majority being synthesized chemically. While chemical synthesis can help to meet the growing demand for vanillin, a strong market trend has rapidly developed for products created from natural ingredients, including natural vanillin. Given the labor-intensive process of extracting vanillin from vanilla pods, there is a critical need for new metabolic engineering platforms to support the biotechnological production of nature-identical vanillin. This review highlights the significance of vanillin in various markets, its diverse applications, and the current state of bio-engineered production using both prokaryotic and eukaryotic biological systems. Although recent advancements have demonstrated successful vanillin production through biocatalytic approaches, our focus was to provide a current and innovative overview of vanillin bioengineering across various host systems with special consideration placed on microalgae, which are emerging as promising platforms for vanillin production through metabolic engineering. The use of these systems to support the biotechnological production of vanillin, while leveraging the photosynthetic capabilities of microalgae to capture CO2 and convert it into biomass, can significantly reduce the overall carbon footprint. Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
Show Figures

Figure 1

28 pages, 2505 KiB  
Review
Oxidative Stress-Induced Gastrointestinal Diseases: Biology and Nanomedicines—A Review
by Maryam Rezvani
BioChem 2024, 4(3), 189-216; https://doi.org/10.3390/biochem4030010 - 29 Jul 2024
Cited by 3 | Viewed by 2732
Abstract
Gastrointestinal diseases have been among the main concerns of medical and scientific societies for a long time. Several studies have emphasized the critical role of oxidative stress in the pathogenesis of the most common gastrointestinal diseases. To provide a comprehensive overview of gastrointestinal [...] Read more.
Gastrointestinal diseases have been among the main concerns of medical and scientific societies for a long time. Several studies have emphasized the critical role of oxidative stress in the pathogenesis of the most common gastrointestinal diseases. To provide a comprehensive overview of gastrointestinal diseases caused by oxidative stress, their biological aspects, molecular mechanisms and specific pathways, the results of the most recent published articles from the online databases were studied considering both the upper and lower parts of the digestive tract. The results revealed that although the oxidative stress in each part of the digestive system manifests itself in a specific way, all these diseases arise from the imbalance between the generation of the reactive intermediates (especially reactive oxygen species) and the antioxidant defense system. Annual incidence and mortality statistics of gastrointestinal diseases worldwide emphasize the urgent need to find an effective and non-invasive treatment method to overcome these life-threatening problems. Therefore, in the next step, a variety of nanomedicurfines developed to treat these diseases and their effect mechanisms were investigated precisely. Furthermore, the most important nanomedicines responsive to endogenous and exogenous stimuli were evaluated in detail. This review could pave the way to open a new horizon in effectively treating gastrointestinal diseases. Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
Show Figures

Figure 1

Other

Jump to: Research, Review

13 pages, 518 KiB  
Systematic Review
Appropriate Prescription of Non-Steroidal Anti-Inflammatory Drugs in Geriatric Patients—A Systematic Review
by Carolina Costa, Diana Soares, Ana Borges, Ana Gonçalves, José Paulo Andrade and Hugo Ribeiro
BioChem 2024, 4(4), 300-312; https://doi.org/10.3390/biochem4040015 - 11 Oct 2024
Viewed by 2246
Abstract
The elderly population is growing worldwide. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed, but their adverse events can pose significant risks. Different NSAID molecules can exhibit varying risk profiles. This study aims to evaluate the cardiovascular, gastrointestinal, and renal safety profiles of ibuprofen, [...] Read more.
The elderly population is growing worldwide. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed, but their adverse events can pose significant risks. Different NSAID molecules can exhibit varying risk profiles. This study aims to evaluate the cardiovascular, gastrointestinal, and renal safety profiles of ibuprofen, naproxen, acemetacin, diclofenac, celecoxib, and etoricoxib in elderly patients. A comprehensive literature search was conducted in PubMed and Cochrane Library. For the selection of articles, we used Medical Subject Headings (MeSH) terms “aged” sequentially and together with “ibuprofen”, “diclofenac”, “naproxen”, “acemetacin”, “celecoxib”, and “etoricoxib”. To assess the quality and interest of the articles, four independent reviewers screened titles and abstracts to identify potentially eligible studies. Strength of Recommendation Taxonomy (SORT) was used to rate the quality of individual studies and to establish recommendation strengths (RS). From 2086 articles identified, 39 studies met the inclusion criteria. Twenty studies analyzed cardiovascular safety, fourteen gastrointestinal safety, and four renal safety. When CV risk is the main concern celecoxib or naproxen are a good first choice (RS B). In high GI risk addition of PPI to naproxen or celecoxib use should be recommended (RS A). When renal function is on focus, celecoxib remains as first line of therapy (RS A). Diclofenac in the geriatric population should be avoided (RS B). Celecoxib is a good choice for elderly patients for whom it is difficult to direct pain treatment based on a single known risk factor (RS B). Full article
(This article belongs to the Special Issue Feature Papers in BioChem)
Show Figures

Figure 1

Back to TopTop