Polyethylene Glycol-Based Solid Polymer Electrolyte with Disordered Structure Design for All-Solid-State Lithium-Ion Batteries
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.M.; Wu, C.S.; Yan, Y.E.; Li, D.-S.; Yang, H.Y. In Situ Electrochemical Oxidation for High-Energy-Density Aqueous Batteries: Mechanisms, Materials, and Prospects. Adv. Mater. 2025, e07933. [Google Scholar] [CrossRef]
- Song, Z.; Ma, Y.; Cheng, X.; Zhu, Z.; Zhong, Y.; He, J.; Wang, T.; Xu, D.; Zhang, Q.; Ozoemena, K.I.; et al. Development of advanced anodes for solid-state lithium batteries. Mater. Today 2025, 88, 1005–1027. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zeng, L.X.; Ding, Z.H.; Wu, W.; Deng, L.B.; Yao, L. Stable electrode/electrolyte interfaces regulated by dual-salt and localized high-concentration strategies for high-voltage lithium metal batteries. Chem. Commun. 2023, 59, 12593–12596. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ling, C.; Yang, J.; Zhu, A.; Naren, T.; Chen, Y.; Chen, Y.; Wei, W.; Ji, X.; Li, C.; et al. Self-Healing fluorinated polymer deep eutectic electrolytes for stable lithium metal batteries. Chem. Eng. J. 2024, 498, 155376. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Wang, Z.; Long, K.; Yang, J.; Huang, S.; Wu, Z.; Mei, L.; Chen, L. Engineering the solid electrolyte interphase for enhancing high-rate cycling and temperature adaptability of lithium-ion batteries. Chem. Sci. 2025, 16, 3571–3579. [Google Scholar] [CrossRef]
- Fenton, D.E.; Parker, J.M.; Wright, P.V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589. [Google Scholar] [CrossRef]
- Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.B.; Chabagno, J.M.; Rigaud, P. Polymer solid electrolytes—An overview. Solid State Ion. 1983, 1, 91–95. [Google Scholar] [CrossRef]
- Huang, B.; Li, Z.H.; Zhu, Y.M.; Che, Y.; Wang, C.A. Tailored lithium metal/polymer electrolyte interface with LiTa2PO8 fillers in PEO-based composite electrolyte. Rare Met. 2022, 41, 2826–2833. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, X.; Chen, R.; Li, Q.; Wang, Y.; Chen, P.; Gan, L.; Lee, S.-J.; Nordlund, D.; Liu, Y.; et al. Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv. Funct. Mater. 2020, 22, 1909392. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Chen, X.; Cheng, X.-B.; Li, B.-Q.; Shen, X.; Yan, C.; Huang, J.-Q.; Zhang, Q. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes. Angew. Chem. Int. Ed. 2018, 19, 5301–5305. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Zhang, J.; Du, A.; Chen, B.; Chai, J.; Xue, N.; Wang, L.; Qiao, L.; Wang, C.; Zang, X.; et al. Multifunctional Sandwich-Structured Electrolyte for High-Performance Lithium–Sulfur Batteries. Adv. Sci. 2018, 3, 1700503. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Wang, L.; Hu, Z.; Cui, Z.; Li, J.; Dong, S.; Zhou, X.; Cui, G. Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery. Adv. Sci. 2019, 6, 1901036. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; He, P.; Hu, J.; Jiang, J.; Fan, L.-Z. Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries. Chem. Eng. J. 2020, 393, 124705. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Liang, Z.; Lee, H.-W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632. [Google Scholar] [CrossRef]
- Liu, S.; Xia, X.; Zhong, Y.; Deng, S.; Yao, Z.; Zhang, L.; Cheng, X.-B.; Wang, X.; Zhang, Q.; Tu, J. 3D TiC/C Core/Shell Nanowire Skeleton for Dendrite-Free and Long-Life Lithium Metal Anode. Adv. Energy Mater. 2018, 8, 1702322. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, X.-B.; Zhao, C.-Z.; Peng, H.-J.; Shi, J.-L.; Huang, J.-Q.; Wang, J.; Wei, F.; Zhang, Q. Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. Adv. Mater. 2016, 11, 2155–2162. [Google Scholar] [CrossRef]
- Deng, K.; Han, D.; Ren, S.; Wang, S.; Xiao, M.; Meng, Y. Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. J. Mater. Chem. A 2019, 7, 13113–13119. [Google Scholar] [CrossRef]
- Duan, H.; Yin, Y.-X.; Shi, Y.; Wang, P.-F.; Zhang, X.-D.; Yang, C.-P.; Shi, J.-L.; Wen, R.; Guo, Y.-G.; Wan, L.-J. Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. J. Am. Chem. Soc. 2018, 140, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Xu, M.; Gu, L.H.; Lan, C.F.; Chen, M.F.; Lu, J.J.; Sheng, B.F.; Wang, P.; Chen, S.Y.; Chen, J.Z. Monothetic and conductive network and mechanical stress releasing layer on micron-silicon anode enabling high-energy solid-state battery. Rare Met. 2024, 43, 1017–1029. [Google Scholar] [CrossRef]
- Hooper, R.; Lyons, L.J.; Moline, D.A.; West, R. A Highly Conductive Solid-State Polymer Electrolyte Based on a Double-Comb Polysiloxane Polymer with Oligo(ethylene oxide) Side Chains. Organometallics 1999, 18, 3249–3251. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Li, S.; Wang, S.; Li, Y.; Mi, H.; Sun, L.; Ren, X.; Zhang, P. A lithium carboxylate grafted dendrite-free polymer electrolyte for an all-solid-state lithium-ion battery. J. Mater. Chem. A 2019, 7, 25818–25823. [Google Scholar] [CrossRef]
- Qiao, J.; Chen, Y.; Baker, G.L. Polymer Electrolytes Based on Unsaturated Ethylene Oxide-Segmented Polymers. Chem. Mater. 1999, 11, 2542–2547. [Google Scholar] [CrossRef]
- Takagishi, T.; Okuda, S.; Kuroki, N.; Kozuka, H. Binding of cupric ion by crosslinked polyethylenimine. J. Polym. Sci. Polym. Chem. Ed. 1985, 23, 2875–2878. [Google Scholar] [CrossRef]
- Wu, J.C.; Gao, S.B.; Li, X.W.; Zhou, H.T.; Gao, H.Q.; Hu, J.L.; Fan, Z.H.; Liu, Y.J. Rigid-flexible coupling network solid polymer electrolytes for all-solid-state lithium metal batteries. J. Colloid Interface Sci. 2024, 661, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Hawker, C.J.; Chu, F.; Pomery, P.J.; Hill, D.J.T. Hyperbranched Poly(ethylene glycol)s: A New Class of Ion-Conducting Materials. Macromolecules 1996, 29, 3831–3838. [Google Scholar] [CrossRef]
- Zhang, Z.; Sherlock, D.; West, R.; Amine, K.; Lyons, L.J. Cross-Linked Network Polymer Electrolytes Based on a Polysiloxane Backbone with Oligo(oxyethylene) Side Chains: Synthesis and Conductivity. Macromolecules 2003, 36, 9176–9180. [Google Scholar] [CrossRef]
- Nishimoto, A.; Agehara, K.; Furuya, N.; Watanabe, T.; Watanabe, M. High Ionic Conductivity of Polyether-Based Network Polymer Electrolytes with Hyperbranched Side Chains. Macromolecules 1999, 32, 1541–1548. [Google Scholar] [CrossRef]
- Khurana, R.; Schaefer, J.L.; Archer, L.A.; Coates, G.W. Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries. J. Am. Chem. Soc. 2014, 136, 7395–7402. [Google Scholar] [CrossRef]
- Kurono, R.; Mehta, M.A.; Inoue, T.; Fujinami, T. Preparation and characterization of lithium ion conducting borosiloxane polymer electrolytes. Electrochimica Acta 2001, 47, 483–487. [Google Scholar] [CrossRef]
- Li, Q.; Cao, D.X.; Naik, M.T.; Pu, Y.Q.; Sun, X.; Luan, P.C.; Ragauskas, A.J.; Ji, T.T.; Zhao, Y.Y.; Chen, F.Q.; et al. Molecular Engineering of Biorefining Lignin Waste for Solid-State Electrolyte. ACS Sustain. Chem. Eng. 2022, 10, 8704–8714. [Google Scholar] [CrossRef]
- Li, Y.X.; Yang, J.; Zhang, X.Z.; Cui, X.M.; Pan, Q.M. Enhancing Li ion conduction through polyethylene glycol brushes towards long-life solid-state lithium metal batteries. J. Mater. Chem. A 2023, 11, 9029–9038. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, X.; Xu, Z.; Guan, T.; Mo, D.; Deng, K. Rapid self-healing, highly conductive and near-single-ion conducting gel polymer electrolytes based on dynamic boronic ester bonds for high-safety lithium metal batteries. J. Energy Storage 2024, 75, 109712. [Google Scholar] [CrossRef]
- Kamiyama, Y.; Shibata, M.; Kanzaki, R.; Fujii, K. Lithium-ion coordination-induced conformational change of PEG chains in ionic-liquid-based electrolytes. Phys. Chem. Chem. Phys. 2020, 22, 5561–5567. [Google Scholar] [CrossRef]
- Delley, B. From Molecules to Solids with the DMol3 Approach. J. Chem. Phys. 2000, 18, 7756–7764. [Google Scholar] [CrossRef]
- Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 15, 155125. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 18, 3865–3868. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Huang, W.; Zhao, G.; Zhang, B.; Li, T.; Zhang, H.; Wang, J.; Zhao, X.; Hu, X.; Xu, Y. Recent Advances for Cation-Anion Aggregates in Solid Polymer Electrolytes: Mechanism, Strategies, and Applications. Small Methods 2025, 9, e2401998. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Y.; Liu, J.; Zhang, Y.; Yang, Z.; Shen, H.; Li, J.; Zeng, G.; Zhang, K.; Cui, D.; et al. High-Entropy Solid-State Electrolytes for Rechargeable Batteries: Mechanism, Structural Designs, Characterizations, and Applications. Small 2025, 21, e2505434. [Google Scholar] [CrossRef]
- Nederstedt, H.; Jannasch, P. Single-ion conducting polymer electrolytes with alternating ionic mesogen-like moieties interconnected by poly(ethylene oxide) segments. Polymer 2019, 177, 231–240. [Google Scholar] [CrossRef]
- Chatt, J.; Duncanson, L.A. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: Attempted preparation of acetylene complexes. J. Chem. Soc. (Resumed) 1953, 2939–2947. [Google Scholar] [CrossRef]
- Bistoni, G.; Rampino, S.; Scafuri, N.; Ciancaleoni, G.; Zuccaccia, D.; Belpassi, L.; Tarantelli, F. How π back-donation quantitatively controls the CO stretching response in classical and non-classical metal carbonyl complexes. Chem. Sci. 2016, 7, 1174–1184. [Google Scholar] [CrossRef]
- Gillespie, R.J. The electron-pair repulsion model for molecular geometry. J. Chem. Educ. 1970, 47, 18. [Google Scholar] [CrossRef]
- Porcarelli, L.; Manojkumar, K.; Sardon, H.; Llorente, O.; Shaplov, A.S.; Vijayakrishna, K.; Gerbaldi, C.; Mecerreyes, D. Single Ion Conducting Polymer Electrolytes Based on Versatile Polyurethanes. Electrochim. Acta 2017, 241, 526–534. [Google Scholar] [CrossRef]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef]
- Mukai, T.; Yoshio, M.; Kato, T.; Ohno, H. Effect of Methyl Groups onto Imidazolium Cation Ring on Liquid Crystallinity and Ionic Conductivity of Amphiphilic Ionic Liquids. Chem. Lett. 2004, 33, 1630–1631. [Google Scholar] [CrossRef]
- Das, D.; Chandrasekaran, A.; Venkatram, S.; Ramprasad, R. Effect of Crystallinity on Li Adsorption in Polyethylene Oxide. Chem. Mater. 2018, 30, 8804–8810. [Google Scholar] [CrossRef]
- Qiu, F.; Li, X.; Deng, H.; Wang, D.; Mu, X.; He, P.; Zhou, H. A Concentrated Ternary-Salts Electrolyte for High Reversible Li Metal Battery with Slight Excess Li. Adv. Energy Mater. 2019, 9, 1803372. [Google Scholar] [CrossRef]
- Mindemark, J.; Lacey, M.J.; Bowden, T.; Brandell, D. Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114–143. [Google Scholar] [CrossRef]
- Li, H.; Liu, W.; Yang, X.; Xiao, J.; Li, Y.; Sun, L.; Ren, X.; Zhang, P.; Mi, H. Fluoroethylene carbonate-Li-ion enabling composite solid-state electrolyte and lithium metal interface self-healing for dendrite-free lithium deposition. Chem. Eng. J. 2021, 408, 127254. [Google Scholar] [CrossRef]
- Xiao, L.; Zeng, Z.; Liu, X.; Fang, Y.; Jiang, X.; Shao, Y.; Zhuang, L.; Ai, X.; Yang, H.; Cao, Y.; et al. Stable Li Metal Anode with “Ion–Solvent-Coordinated” Nonflammable Electrolyte for Safe Li Metal Batteries. ACS Energy Lett. 2019, 4, 483–488. [Google Scholar] [CrossRef]
- Basile, A.; Bhatt, A.I.; O’MullanS1e, A.P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 2016, 7, 11794. [Google Scholar] [CrossRef]
- Chang, Z.; Qiao, Y.; Yang, H.; Deng, H.; Zhu, X.; He, P.; Zhou, H. Beyond the concentrated electrolyte: Further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries. Energy Environ. Sci. 2020, 13, 4122–4131. [Google Scholar] [CrossRef]
- Shim, J.; Kim, D.G.; Kim, H.J.; Lee, J.H.; Lee, J.C. Polymer Composite Electrolytes Having Core–Shell Silica Fillers with Anion-Trapping Boron Moiety in the Shell Layer for All-Solid-State Lithium-Ion Batteries ACS Appl. Mater. Interfaces. 2015, 7, 7690–7701. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, C.; Hou, H.; Li, X.; Chen, L.; Ivey, D.G.; Wei, W. A star-shaped solid composite electrolyte containing multifunctional moieties with enhanced electrochemical properties for all solid-state lithium batteries. J. Membr. Sci. 2018, 552, 107–114. [Google Scholar] [CrossRef]
- Chen, H.; Adekoya, D.; Hencz, L.; Ma, J.; Chen, S.; Yan, C.; Zhao, H.J.; Cui, G.L.; Zhang, S.Q. Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca-CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery. Adv. Energy Mater. 2020, 10, 2000049. [Google Scholar] [CrossRef]
- Li, Z.; Li, A.; Zhang, H.; Lin, R.; Jin, T.; Cheng, Q.; Xiao, X.H.; Lee, W.-K.; Ge, M.Y.; Zhang, H.J.; et al. Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy 2020, 72, 104655. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Kou, W.; Yang, Z.; Zhai, P.; Liu, Y.; Wu, W.; Wang, J. A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries. Chem. Eng. J. 2021, 404, 126517. [Google Scholar] [CrossRef]
- Cheng, S.H.S.; Liu, C.; Zhu, F.; Zhao, L.; Fan, R.; Chung, C.Y.; Tang, J.N.; Zeng, X.R.; He, Y.B. (Oxalato)borate: The key ingredient for polyethylene oxide based composite electrolyte to achieve ultra-stable performance of high voltage solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal battery. Nano Energy 2021, 80, 105562. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A.S.; Belharouak, I.; Cao, P.-F. Single-ion conducting polymer electrolytes for solid-state lithium–metal batteries: Design, performance, and challenges. Adv. Energy Mater. 2021, 11, 2003836. [Google Scholar] [CrossRef]
- Rong, Z.; Sun, Y.; Yang, M.; Cheng, F.; Zhang, W.; Chen, J. How the PEG terminals affect the electrochemical properties of polymer electrolytes in lithium metal batteries. Energy Storage Mater. 2023, 63, 103066. [Google Scholar] [CrossRef]
- Zhu, X.; Fang, Z.; Deng, Q.; Zhou, Y.; Fu, X.; Wu, L.; Yan, W.; Yang, Y. Poly(ionic liquid) @PEGMA Block Polymer Initiated Microphase Separation Architecture in Poly (ethylene oxide)-Based Solid-State Polymer Electrolyte for Flexible and Self- Healing Lithium Batteries. ACS Sustain. Chem. Eng. 2022, 10, 4173–4185. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Zhang, Y.; Zhao, Z.; Lin, Y.; Li, Y.; Ren, X.; Zhang, P.; Sun, L. Polyethylene Glycol-Based Solid Polymer Electrolyte with Disordered Structure Design for All-Solid-State Lithium-Ion Batteries. Micromachines 2025, 16, 1123. https://doi.org/10.3390/mi16101123
Wu W, Zhang Y, Zhao Z, Lin Y, Li Y, Ren X, Zhang P, Sun L. Polyethylene Glycol-Based Solid Polymer Electrolyte with Disordered Structure Design for All-Solid-State Lithium-Ion Batteries. Micromachines. 2025; 16(10):1123. https://doi.org/10.3390/mi16101123
Chicago/Turabian StyleWu, Wanlin, Yingmeng Zhang, Zhongke Zhao, Yihan Lin, Yongliang Li, Xiangzhong Ren, Peixin Zhang, and Lingna Sun. 2025. "Polyethylene Glycol-Based Solid Polymer Electrolyte with Disordered Structure Design for All-Solid-State Lithium-Ion Batteries" Micromachines 16, no. 10: 1123. https://doi.org/10.3390/mi16101123
APA StyleWu, W., Zhang, Y., Zhao, Z., Lin, Y., Li, Y., Ren, X., Zhang, P., & Sun, L. (2025). Polyethylene Glycol-Based Solid Polymer Electrolyte with Disordered Structure Design for All-Solid-State Lithium-Ion Batteries. Micromachines, 16(10), 1123. https://doi.org/10.3390/mi16101123