Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (507)

Search Parameters:
Keywords = passive heating systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4509 KiB  
Article
Numerical Simulation and Analysis of Performance of Switchable Film-Insulated Photovoltaic–Thermal–Passive Cooling Module for Different Design Parameters
by Cong Jiao, Zeyu Li, Tiancheng Ju, Zihan Xu, Zhiqun Xu and Bin Sun
Processes 2025, 13(8), 2471; https://doi.org/10.3390/pr13082471 - 5 Aug 2025
Abstract
Photovoltaic–thermal (PVT) technology has attracted considerable attention for its ability to significantly improve solar energy conversion efficiency by simultaneously providing electricity and heat during the day. PVT technology serves a purpose in condensers and subcoolers for passive cooling in refrigeration systems at night. [...] Read more.
Photovoltaic–thermal (PVT) technology has attracted considerable attention for its ability to significantly improve solar energy conversion efficiency by simultaneously providing electricity and heat during the day. PVT technology serves a purpose in condensers and subcoolers for passive cooling in refrigeration systems at night. In our previous work, we proposed a switchable film-insulated photovoltaic–thermal–passive cooling (PVT-PC) module to address the structural incompatibility between diurnal and nocturnal modes. However, the performance of the proposed module strongly depends on two key design parameters: the structural height and the vacuum level of the air cushion. In this study, a numerical model of the proposed module is developed to examine the impact of design and meteorological parameters on its all-day performance. The results show that diurnal performance remains stable across different structural heights, while nocturnal passive cooling power shows strong dependence on vacuum level and structural height, achieving up to 103.73 W/m2 at 10 mm height and 1500 Pa vacuum, which is comparable to unglazed PVT modules. Convective heat transfer enhancement, induced by changes in air cushion shape, is identified as the primary contributor to improved nocturnal cooling performance. Wind speed has minimal impact on electrical output but significantly enhances thermal efficiency and nocturnal convective cooling power, with a passive cooling power increase of up to 31.61%. In contrast, higher sky temperatures degrade nocturnal cooling performance due to diminished radiative exchange, despite improving diurnal thermal efficiency. These findings provide fundamental insights for optimizing the structural design and operational strategies of PVT-PC systems under varying environmental conditions. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
Economic Dispatch Strategy for Power Grids Considering Waste Heat Utilization in High-Energy-Consuming Enterprises
by Lei Zhou, Ping He, Siru Wang, Cailian Ma, Yiming Zhou, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2450; https://doi.org/10.3390/pr13082450 - 2 Aug 2025
Viewed by 203
Abstract
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the [...] Read more.
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the economic and environmental benefits of regional power grids. Existing research often focuses on grid revenue, leaving high-energy-consuming enterprises in a passive regulatory position. To address this, this paper constructs an economic dispatch strategy for power grids that considers waste heat utilization in high-energy-consuming enterprises. A typical representative, electrolytic aluminum load and its waste heat utilization model, for the entire production process of high-energy-consuming loads, is established. Using a tiered carbon trading calculation formula, a low-carbon production scheme for high-energy-consuming enterprises is developed. On the grid side, considering local load levels, the uncertainty of wind power output, and the energy demands of aluminum production, a robust day-ahead economic dispatch model is established. Case analysis based on the modified IEEE-30 node system demonstrates that the proposed method balances economic efficiency and low-carbon performance while reducing the conservatism of traditional optimization approaches. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

31 pages, 4347 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 - 1 Aug 2025
Viewed by 113
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
Show Figures

Figure 1

17 pages, 3138 KiB  
Article
Addressing Energy Performance Challenges in a 24-h Fire Station Through Green Remodeling
by June Hae Lee, Jae-Sik Kang and Byonghu Sohn
Buildings 2025, 15(15), 2658; https://doi.org/10.3390/buildings15152658 - 28 Jul 2025
Viewed by 178
Abstract
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric [...] Read more.
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric heat pumps, energy recovery ventilation, and rooftop photovoltaic systems), while maintaining uninterrupted emergency operations. A detailed analysis of annual energy use before and after the remodeling shows a 44% reduction in total energy consumption, significantly exceeding the initial reduction target of 20%. While electricity use increased modestly during winter due to the electrification of heating systems, gas consumption dropped sharply by 63%, indicating a shift in energy source and improved efficiency. The building’s airtightness also improved significantly, with a reduction in the air change rate. The project further addressed unique challenges associated with continuously operated public facilities, such as insulating the fire apparatus garage and executing phased construction to avoid operational disruption. This study contributes valuable insights into green remodeling strategies for mission-critical public buildings, emphasizing the importance of integrating technical upgrades with operational constraints to achieve verified energy performance improvements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 2071 KiB  
Article
Thermal Performance and Energy Efficiency Evaluation of Building Envelopes Incorporating Trombe Walls, PCM, and Multi-Alveolar Structures in Tunisian Climate
by Nour Lajimi, Noureddine Boukadida, Chemseddine Maatki, Bilel Hadrich, Walid Hassen, Lioua Kolsi and Habib Ben Aissia
Buildings 2025, 15(14), 2575; https://doi.org/10.3390/buildings15142575 - 21 Jul 2025
Viewed by 268
Abstract
Solar energy is one of the most promising solutions for improving building energy efficiency. Among passive heating systems, the combination of a Trombe wall, phase change materials (PCM), and multi-alveolar structures (MAS) stands out. This configuration enhances the wall’s ability to absorb solar [...] Read more.
Solar energy is one of the most promising solutions for improving building energy efficiency. Among passive heating systems, the combination of a Trombe wall, phase change materials (PCM), and multi-alveolar structures (MAS) stands out. This configuration enhances the wall’s ability to absorb solar heat and distribute it evenly throughout the interior. This study evaluated thermal comfort by examining the effects of phase change materials and multi-alveolar structures combined with a Trombe wall on the thermal behavior of a building and improving the thermal inertia of brick walls. Numerical simulations using Visual FORTRAN were conducted to evaluate the thermal properties of different configurations under the climatic conditions recorded in Hammam Sousse, Tunisia. The results show that the integration of the Trombe wall and PCM has a significant impact on interior temperature stability, energy consumption, and overall thermal comfort. The combined effect of the MAS and PCM with the Trombe wall improved heat gain in winter and spring, reaching a low thermal damping factor of 40% in March, reducing heating power, and optimizing thermal comfort for occupants. Full article
Show Figures

Figure 1

35 pages, 2895 KiB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Viewed by 633
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

27 pages, 7643 KiB  
Article
Enhancing Thermal Comfort in Buildings: A Computational Fluid Dynamics Study of Multi-Layer Encapsulated Phase Change Materials–Integrated Bricks for Energy Management
by Farzad Ghafoorian, Mehdi Mehrpooya, Seyed Reza Mirmotahari and Mahmood Shafiee
Fluids 2025, 10(7), 181; https://doi.org/10.3390/fluids10070181 - 10 Jul 2025
Viewed by 363
Abstract
Thermal energy storage plays a vital role in enhancing the efficiency of energy systems, particularly in building applications. Phase change materials (PCMs) have gained significant attention as a passive solution for energy management within building envelopes. This study examines the thermal performance of [...] Read more.
Thermal energy storage plays a vital role in enhancing the efficiency of energy systems, particularly in building applications. Phase change materials (PCMs) have gained significant attention as a passive solution for energy management within building envelopes. This study examines the thermal performance of encapsulated PCMs integrated into bricks as a passive cooling method, taking into account the outdoor climate conditions to enhance indoor thermal comfort throughout summer and winter seasons. A computational fluid dynamics (CFDs) analysis is performed to compare three configurations: a conventional brick, a brick with a single PCM layer, and a brick with three PCM layers. Results indicate that the three-layer PCM configuration provides the most effective thermal regulation, reducing peak indoor temperature fluctuations by up to 4 °C in summer and stabilizing indoor temperature during winter. Also, the second and third PCM layers exhibit minimal latent heat absorption, with their liquid fractions indicating that melting does not occur. As a result, these layers primarily serve as thermal insulation—limiting heat ingress in summer and reducing heat loss in winter. During summer, the absence of the first PCM layer in the single-layer configuration leads to faster thermal penetration, causing the brick to reach peak temperatures approximately two hours earlier in the afternoon and increasing the temperature by about 5 °C. Full article
(This article belongs to the Special Issue Heat Transfer in the Industry)
Show Figures

Figure 1

15 pages, 2841 KiB  
Article
Evaluation of New Passive Heating Systems for Low-Cost Greenhouses in a Mild-Winter Area
by Santiago Bonachela, María Cruz Sánchez-Guerrero, Juan Carlos López, Evangelina Medrano and Joaquín Hernández
Horticulturae 2025, 11(7), 752; https://doi.org/10.3390/horticulturae11070752 - 1 Jul 2025
Viewed by 255
Abstract
The main objective of this work was to evaluate new variants of passive heating systems used for horticultural crop cycles planted in the cold period in low-cost greenhouses on the Mediterranean Spanish coast (a mild-winter area). The double low cover (DLC) is variant [...] Read more.
The main objective of this work was to evaluate new variants of passive heating systems used for horticultural crop cycles planted in the cold period in low-cost greenhouses on the Mediterranean Spanish coast (a mild-winter area). The double low cover (DLC) is variant of the conventional fixed plastic screen that reduces the air volume and increases the airtightness around crops. Three identical DLCs were installed inside a typical greenhouse, and the microclimate measured in the three DLCs was similar. The DLCs reduced the solar radiation transmissivity coefficient by around 0.05 but increased the mean daily substrate and air temperatures (up to 1.6 and 3.6 °C, respectively). They also modified the air humidity, although this can be modulated by opening the vertical sheets located on the greenhouse aisles (DLC vents). The black plastic mulch forming an air chamber around the substrate bags (BMC), a new mulch variant used in substrate-grown crops, increased the substrate temperature with respect to the conventional black mulch covering the entire ground surface. The combination of BMC plus DLC increased the mean daily substrate temperature by up to 2.9 °C, especially at night. Low tunnels covered with transparent film and with a spun-bonded fabric sheet were also compared, and both materials were efficient heating systems regarding substrate and air temperatures. Low tunnels combined with the DLC substantially increased air humidity, but this can be partially offset by opening the DLC vents. The combination of low tunnels and DLC does not seem recommendable for greenhouse crops planted in winter, since both systems reduce solar radiation transmissivity. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Graphical abstract

29 pages, 4054 KiB  
Article
Investigation of Convective and Radiative Heat Transfer of 21700 Lithium-Ion Battery Cells
by Gábor Kovács, Szabolcs Kocsis Szürke and Szabolcs Fischer
Batteries 2025, 11(7), 246; https://doi.org/10.3390/batteries11070246 - 26 Jun 2025
Viewed by 606
Abstract
Due to their high energy density and power potential, 21700 lithium-ion battery cells are a widely used technology in hybrid and electric vehicles. Efficient thermal management is essential for maximizing the performance and capacity of Li-ion cells in both low- and high-temperature operating [...] Read more.
Due to their high energy density and power potential, 21700 lithium-ion battery cells are a widely used technology in hybrid and electric vehicles. Efficient thermal management is essential for maximizing the performance and capacity of Li-ion cells in both low- and high-temperature operating conditions. Optimizing thermal management systems remains critical, particularly for long-range and weight-sensitive applications. In these contexts, passive heat dissipation emerges as an ideal solution, offering effective thermal regulation with minimal additional system weight. This study aims to deepen the understanding of passive heat dissipation in 21700 battery cells and optimize their performance. Special emphasis is placed on analyzing heat transfer and the relative contributions of convective and radiative mechanisms under varying temperature and discharge conditions. Laboratory experiments were conducted under controlled environmental conditions at various discharge rates, ranging from 0.5×C to 5×C. A 3D-printed polymer casing was applied to the cell to enhance thermal dissipation, designed specifically to increase radiative heat transfer while minimizing system weight and reliance on active cooling solutions. Additionally, a numerical model was developed and optimized using experimental data. This model simulates convective and radiative heat transfer mechanisms with minimal computational demand. The optimized numerical model is intended to facilitate further investigation of the cell envelope strategy at the module and battery pack levels in future studies. Full article
(This article belongs to the Special Issue Rechargeable Batteries)
Show Figures

Figure 1

26 pages, 5033 KiB  
Article
Laminar Natural Convection in a Square Cavity with a Horizontal Fin on the Heated Wall: A Numerical Study of Fin Position and Thermal Conductivity Effects
by Saleh A. Bawazeer
Energies 2025, 18(13), 3335; https://doi.org/10.3390/en18133335 - 25 Jun 2025
Viewed by 310
Abstract
This study numerically examines laminar natural convection within a square cavity that has a horizontally attached adiabatic fin on its heated vertical wall. The analysis employed the finite element method to investigate how fin position, length, thickness, and thermal conductivity affect heat transfer [...] Read more.
This study numerically examines laminar natural convection within a square cavity that has a horizontally attached adiabatic fin on its heated vertical wall. The analysis employed the finite element method to investigate how fin position, length, thickness, and thermal conductivity affect heat transfer behavior over a broad spectrum of Rayleigh numbers (Ra = 10 to 106) and Prandtl numbers (Pr = 0.1 to 10). The findings indicate that the geometric configuration and the properties of the fluid largely influence the thermal disturbances caused by the fin. At lower Ra values, conduction is the primary mechanism, resulting in minimal impact from the fin. However, as Ra rises, convection becomes increasingly significant, with the fin positioned at mid-height (Yfin = 0.5), significantly improving thermal mixing and flow symmetry, especially for high-Pr fluids. Extending the fin complicates vortex dynamics, whereas thickening the fin improves conductive heat transfer, thereby enhancing convection to the fluid. A new fluid-focused metric, the normalized Nusselt ratio (NNR), is introduced to evaluate the true thermal contribution of fin geometry beyond area-based scaling. It exhibits a non-monotonic response to geometric changes, with peak enhancement observed at high Ra and Pr. The findings provide practical guidance for designing passive thermal management systems in sealed enclosures, such as electronics housings, battery modules, and solar thermal collectors, where active cooling is infeasible. This study offers a scalable reference for optimizing natural convection performance in laminar regimes by characterizing the interplay between buoyancy, fluid properties, and fin geometry. Full article
Show Figures

Figure 1

29 pages, 6524 KiB  
Article
Efficiency of Positive Pressure Ventilation Compared to Organized Natural Ventilation in Fire Scenarios of a Multi-Story Building
by Dan-Adrian Ionescu, Vlad Iordache, Iulian-Cristian Ene and Ion Anghel
Appl. Sci. 2025, 15(12), 6934; https://doi.org/10.3390/app15126934 - 19 Jun 2025
Viewed by 488
Abstract
This paper presents a detailed analysis of the dynamics of indoor environmental parameters under three simulated fire scenarios in a multi-story building, using the PyroSim platform (based on the Fire Dynamics Simulator—FDS). The study compares two smoke control strategies, organized natural ventilation (a [...] Read more.
This paper presents a detailed analysis of the dynamics of indoor environmental parameters under three simulated fire scenarios in a multi-story building, using the PyroSim platform (based on the Fire Dynamics Simulator—FDS). The study compares two smoke control strategies, organized natural ventilation (a passive system) and mechanical pressurization (an active system), evaluating their influence on temperature, differential pressure, air velocity, heat release rate (HRR), and toxic gas distribution. The simulations revealed that passive systems, relying on the stack effect and vertical natural ventilation, do not ensure the effective control of smoke infiltration into evacuation routes, allowing significant heat accumulation and reduced visibility. The results highlight the superior effectiveness of unidirectional mechanical pressurization in maintaining a stable flow regime, functional visibility, and a safe evacuation environment. A key finding is the transition from static pressure control to velocity-based flow control at the moment of door opening toward the fire source. The results confirm that a dynamically adapted application of mechanical pressurization—synchronized with the opening of access pathways—not only reinforces existing principles for protecting egress routes, but also provides a precise operational approach for optimizing emergency responses in high-rise buildings. Full article
(This article belongs to the Special Issue Recent Advances and Emerging Trends in Computational Fluid Dynamics)
Show Figures

Figure 1

40 pages, 57486 KiB  
Review
Review of Automotive Thermoelectric Generator Structure Design and Optimization for Performance Enhancement
by Yue Wang, Ruochen Wang, Ruiqian Chai, Renkai Ding, Qing Ye, Zeyu Sun, Xiangpeng Meng and Dong Sun
Processes 2025, 13(6), 1931; https://doi.org/10.3390/pr13061931 - 18 Jun 2025
Viewed by 666
Abstract
Thermoelectric generator (TEG) has emerged as a critical technology for automotive exhaust energy recovery, yet there is still a lack of reviews analyzing automotive TEG structure design and optimization methods simultaneously. Therefore, this review consolidates structure design and methods for improving thermoelectric conversion [...] Read more.
Thermoelectric generator (TEG) has emerged as a critical technology for automotive exhaust energy recovery, yet there is still a lack of reviews analyzing automotive TEG structure design and optimization methods simultaneously. Therefore, this review consolidates structure design and methods for improving thermoelectric conversion efficiency, focusing on three core components: thermoelectric module (TEM), heat exchanger (HEX), and heat sink (HSK). For TEM, research and development efforts have primarily centered on material innovation and structural optimization, with segmented, non-segmented, and multi-stage configurations emerging as the three primary structural types. HEX development spans external geometries, including plate, polygonal, and annular designs, and internal enhancements such as fin, heat pipe, metal foam, and baffle to augment heat transfer. HSK leverages active, passive, or hybrid cooling systems, with water-cooling designs prevalent in automotive TEG for cold-side thermal management. Optimization methods encompass theoretical analysis, numerical simulation, experimental testing, and hybrid methods, with strategies devised to balance computational efficiency and accuracy based on system complexity and resource availability. This review provides a systematic framework to guide the design and optimization of automotive TEG. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

32 pages, 4015 KiB  
Article
Performance Enhancement of Photovoltaic Panels Using Natural Porous Media for Thermal Cooling Management
by Ismail Masalha, Omar Badran and Ali Alahmer
Sustainability 2025, 17(12), 5468; https://doi.org/10.3390/su17125468 - 13 Jun 2025
Viewed by 460
Abstract
This study investigates the potential of low-cost, naturally available porous materials (PoMs), gravel, marble, flint, and sandstone, as thermal management for photovoltaic (PV) panels. Experiments were conducted in a controlled environment at a solar energy laboratory, where variables such as solar irradiance, ambient [...] Read more.
This study investigates the potential of low-cost, naturally available porous materials (PoMs), gravel, marble, flint, and sandstone, as thermal management for photovoltaic (PV) panels. Experiments were conducted in a controlled environment at a solar energy laboratory, where variables such as solar irradiance, ambient temperature, air velocity, and water flow were carefully regulated. A solar simulator delivering a constant irradiance of 1250 W/m2 was used to replicate solar conditions throughout each 3 h trial. The test setup involved polycrystalline PV panels (30 W rated) fitted with cooling channels filled with PoMs of varying porosities (0.35–0.48), evaluated across water flow rates ranging from 1 to 4 L/min. Experimental results showed that PoM cooling significantly outperformed both water-only and passive cooling. Among all the materials tested, sandstone with a porosity of 0.35 and a flow rate of 2.0 L/min demonstrated the highest cooling performance, reducing the panel surface temperature by 58.08% (from 87.7 °C to 36.77 °C), enhancing electrical efficiency by 57.87% (from 4.13% to 6.52%), and increasing power output by 57.81% (from 12.42 W to 19.6 W) compared to the uncooled panel. The enhanced heat transfer (HT) was attributed to improved conductive and convective interactions facilitated by lower porosity and optimal fluid velocity. Furthermore, the cooling system improved I–V characteristics by stabilizing short-circuit current and enhancing open-circuit voltage. Comparative analysis revealed material-dependent efficacy—sandstone > flint > marble > gravel—attributed to thermal conductivity gradients (sandstone: 5 W/m·K vs. gravel: 1.19 W/m·K). The configuration with 0.35 porosity and a 2.0 L/min flow rate proved to be the most effective, offering an optimal balance between thermal performance and resource usage, with an 8–10% efficiency gain over standard water cooling. This study highlights 2.0 L/min as the ideal flow rate, as higher rates lead to increased water usage without significant cooling improvements. Additionally, lower porosity (0.35) enhances convective heat transfer, contributing to improved thermal performance while maintaining energy efficiency. Full article
Show Figures

Figure 1

19 pages, 2789 KiB  
Article
The Effect of Low-Carbon Technology on Carbon Emissions Reduction in the Building Sector: A Case Study of Xi’an, China
by Dongyi Zhang, Lu Sun, Yifan Zhang, Tianye Liu, Lu Gao, Fufu Wang, Xinting Qiao, Yuqi Liu, Jian Zuo and Yupeng Wang
Buildings 2025, 15(12), 1989; https://doi.org/10.3390/buildings15121989 - 10 Jun 2025
Viewed by 472
Abstract
Efficient carbon reduction pathways in the building sector are critical for urban decarbonization. This study predicts urban carbon emissions and establishes models to evaluate the carbon emission reduction potential of applying building low-carbon technologies (LCTs) at the urban scale. The models under consideration [...] Read more.
Efficient carbon reduction pathways in the building sector are critical for urban decarbonization. This study predicts urban carbon emissions and establishes models to evaluate the carbon emission reduction potential of applying building low-carbon technologies (LCTs) at the urban scale. The models under consideration encompass a spectrum of active strategies, specifically heat pump (HP), rooftop photovoltaic (PV) systems, and smart heating, ventilation, and air conditioning (HVAC) systems, alongside passive strategies encompassing advanced building materials and building envelopes. The predictive calculations consider building typologies, technological evolution, adoption rates, and local policy constraints. Results indicate that by 2030, the building sector in Xi’an will account for over 30% of the city’s total carbon emissions. The integrated emission reduction effect of LCTs reaches 25.8%, with building materials contributing the most significantly at 9%. Notably, rooftop PV systems demonstrate the highest carbon reduction potential among active strategies, while HP exhibits the fastest annual growth rate in mitigation. Furthermore, the study evaluates the feasibility of these LCTs to accelerate progress toward carbon reduction goals in the building sector. Full article
Show Figures

Figure 1

16 pages, 6482 KiB  
Article
Passive Heat Stimuli as a Systemic Training in Elite Endurance Athletes: A New Strategy to Promote Greater Metabolic Flexibility
by Sergi Cinca-Morros, Martin Burtscher, Fernando Benito-Lopez and Jesús Álvarez-Herms
J. Funct. Morphol. Kinesiol. 2025, 10(2), 220; https://doi.org/10.3390/jfmk10020220 - 7 Jun 2025
Viewed by 1326
Abstract
Objectives: The ability to efficiently regulate body temperature is crucial during endurance activities such as trail running, especially during competitive events in hot conditions. Over the past decade, passive hyperthermia exposure has grown significantly in popularity as a means of improving acclimatization and [...] Read more.
Objectives: The ability to efficiently regulate body temperature is crucial during endurance activities such as trail running, especially during competitive events in hot conditions. Over the past decade, passive hyperthermia exposure has grown significantly in popularity as a means of improving acclimatization and performance in hot environments. The present study aims to compare the physiological changes that occur in a group of professional athletes due to passive sauna exposure (80–90 °C) and their own response to maximal aerobic performance. Methods: Twelve professional trail runners (eight men and four women) were tested in three conditions: (i) baseline; (ii) before; and (iii) after (a) passive dry sauna exposure and (b) a maximal endurance test. In both cases, physiological parameters such as heart rate, tympanic temperature, arterial and muscle oxygen saturation, and blood concentrations of glucose, total cholesterol, high-density lipoprotein (HDL) and hemoglobin were measured. Results: Sauna exposure produced similar trends in cardiovascular and metabolic responses to those occurring during exercise, but at a much lower physiological level. Glucose and HDL levels were both significantly elevated (or tended to be so) after sauna and exercise (p < 0.03 and p < 0.01, respectively). Athletes who mobilized the sum of substrates (glucose and HDL) performed the exercise test faster (r = −0.76; p < 0.004). The response of arterial oxygen saturation (decreased) was similar during sauna and exercise, but opposite at the muscular level (increased during sauna and decreased during exercise). Additionally, inter-individual variability in responses was noted for most of the other parameters, suggesting the existence of ‘responders’ and ‘non-responders’ to thermal stimuli. Conclusions: The physiological responses of trained endurance athletes are moderately impacted by passive sauna use. However, individual changes could be correlated with endurance performance and optimizing individualization. Heat stimuli promote different physiological responses in terms of cardiac function, oxygen kinetics and substrate mobilization, albeit to a lesser extent than exercise. Greater substrate mobilization during maximal endurance exercise was found to be correlated with better performance. Further studies are needed to explore the concepts of metabolic flexibility, as described here, and how heat exposure may improve systemic health and performance. Full article
Show Figures

Figure 1

Back to TopTop