Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,182)

Search Parameters:
Keywords = particle behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 2830 KB  
Systematic Review
Indoor Air Quality Assurance Influencing Factors Overlooked in Tropical Climates: A Systematic Review for Design-Informed Decisions in Residential Buildings
by María Cedeño-Quijada, Miguel Chen Austin, Thasnee Solano and Dafni Mora
Buildings 2025, 15(24), 4512; https://doi.org/10.3390/buildings15244512 (registering DOI) - 13 Dec 2025
Abstract
This systematic review assesses indoor air quality (IAQ) in tropical residences (Köppen Af/Am/Aw), explicitly linking IAQ to ventilation from in situ monitoring and, when relevant, occupant surveys (surveys synthesized qualitatively). This focus is warranted by the scarcity of tropical, housing-specific evidence. Searches were [...] Read more.
This systematic review assesses indoor air quality (IAQ) in tropical residences (Köppen Af/Am/Aw), explicitly linking IAQ to ventilation from in situ monitoring and, when relevant, occupant surveys (surveys synthesized qualitatively). This focus is warranted by the scarcity of tropical, housing-specific evidence. Searches were performed exclusively in Google Scholar (25 August 2024–5 August 2025; English/Spanish) under PRISMA, with documented queries/filters; eligible studies reported residential settings, tropical climate, and IAQ–ventilation linkage. Results show a regulatory mosaic with few binding residential limits and heterogeneous protocols that hinder comparison. Robust patterns include cooking-related particle peaks, penetration of traffic dust, humidity-driven VOC/formaldehyde emissions, and mold growth under deficient hygrothermal control. CO2 is a useful operational indicator of ventilation yet insufficient for risk assessment without PM and VOC monitoring. Evidence supports source control, cross-ventilation and/or on-demand extraction/outdoor-air supply, humidity management, and filtration/purification to avoid particle ingress during ventilation. Reporting of sensor performance (calibration, drift, RH/T effects) is inconsistent, and targeted evaluations of TVOC/formaldehyde and window screens (mesh) are scarce. We conclude that tropical residential IAQ management requires multi-parameter, continuous monitoring, standardized reporting, and trials integrating ventilation, dehumidification, and filtration under real occupancy, alongside adaptive regulation and passive tropical design augmented by light mechanical support and informed occupant behavior. Full article
19 pages, 8944 KB  
Article
Research on Integration Methods for Particle Position Updating in the Discrete Element Method
by Jun Liu, Pengbo Zhang and Yue Wang
Processes 2025, 13(12), 4024; https://doi.org/10.3390/pr13124024 - 12 Dec 2025
Abstract
The discrete element method (DEM) is widely used to simulate the mechanical behavior of granular materials. Particle motion is governed by Newton’s second law, and position updates rely on numerical integration, whose accuracy and efficiency directly influence both the simulation scale and result [...] Read more.
The discrete element method (DEM) is widely used to simulate the mechanical behavior of granular materials. Particle motion is governed by Newton’s second law, and position updates rely on numerical integration, whose accuracy and efficiency directly influence both the simulation scale and result reliability. In this study, three integration schemes—Verlet, central difference, and fourth-order Runge–Kutta—were implemented within an existing DEM framework to simulate the packing behavior of particles with varying shapes. Corresponding physical packing experiments were conducted, and numerical results were compared with experimental observations to evaluate differences in packing height, morphology, and process. Results show that the fourth-order Runge–Kutta scheme achieves the highest accuracy, with a packing height error of only 5.72% for spherical particles, albeit at a computational cost roughly 2–3 times that of the central difference scheme, making it suitable for high-precision, complex contact scenarios. In contrast, Verlet and central difference schemes are highly sensitive to particle shape, leading to considerable variation in simulation errors. The central difference approach is recommended for vertical displacement predictions in simple contact conditions, while Verlet is better suited for scenarios involving large instantaneous contact forces. Full article
(This article belongs to the Special Issue Simulation of Particle Flow and Discrete Element)
Show Figures

Figure 1

31 pages, 5141 KB  
Review
Effect of Drying Methods on the Physical and Surface Properties of Blueberry and Strawberry Fruit Powders: A Review
by V. Preciado Ocampo, A. L. Yepes Hernandez, R. Marratte, Y. Baena, G. F. Gutiérrez-López, K. Ambrose and M. T. Carvajal
Appl. Sci. 2025, 15(24), 13094; https://doi.org/10.3390/app152413094 - 12 Dec 2025
Abstract
Strawberries and blueberries are globally recognized for their dense nutritional profile, bioactive compounds, and health-promoting properties. Yet, their perishability and seasonality limit their availability, stability, and functionality in food and nutraceutical formulations. Drying technologies, particularly spray drying and freeze drying, are effective preservation [...] Read more.
Strawberries and blueberries are globally recognized for their dense nutritional profile, bioactive compounds, and health-promoting properties. Yet, their perishability and seasonality limit their availability, stability, and functionality in food and nutraceutical formulations. Drying technologies, particularly spray drying and freeze drying, are effective preservation strategies that convert fresh berries into stable, shelf-ready powders. However, the high sugar content, low glass transition temperature (Tg), and hygroscopic nature of berry matrices pose significant challenges in maintaining powder flowability, preventing caking, and ensuring structural integrity during processing, storage, and transportation. This review examines the physicochemical and surface properties of strawberry and blueberry powders as influenced by the drying method, environmental conditions, and carrier selection (e.g., maltodextrin, gum arabic, and whey proteins). Emphasis is placed on glass transition phenomena, moisture sorption behavior, and surface composition as determinants of physical stability and shelf life. The roles of water activity (aw), particle morphology, and interparticle interactions are analyzed in the context of formulation design and powder performance. Analytical techniques in characterizing bulk properties for the amorphous structure and sorption kinetics and probing surface properties of powders are crucial for understanding interactions with water, assessing flow, caking, sintering, and dissolution. By integrating insights from food physical chemistry and materials surface properties, this review provides a framework for the rational design of berry-based powders with improved handling, stability, and bio-functionality. The findings have direct implications for scalable production, global distribution, and the development of functional ingredients aligned with health and wellness priorities worldwide. Full article
Show Figures

Figure 1

15 pages, 5893 KB  
Article
Influence of the Ti2AlC Sintering Additive on the Behaviour of ZrB2-SiC Ultra-High Temperature Ceramic in a Subsonic CO2 Plasma Flow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Anton S. Lysenkov, Ilya A. Nagornov, Kirill A. Barsukovsky, Tatiana L. Simonenko, Artem S. Mokrushin, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
J. Compos. Sci. 2025, 9(12), 691; https://doi.org/10.3390/jcs9120691 - 12 Dec 2025
Abstract
The investigation of the behavior of ZrB2-SiC-based ultra-high temperature ceramic (UHTC) materials under high-velocity CO2 plasma flow is of significant importance and relevance for evaluating their prospective use in the exploration of planets such as Venus or Mars. Accordingly, the [...] Read more.
The investigation of the behavior of ZrB2-SiC-based ultra-high temperature ceramic (UHTC) materials under high-velocity CO2 plasma flow is of significant importance and relevance for evaluating their prospective use in the exploration of planets such as Venus or Mars. Accordingly, the degradation process of a ZrB2-30 vol.% SiC ceramic composite, fabricated by hot-pressing at 1700 °C with a 15 vol.% Ti2AlC sintering aid, was examined using a high-frequency induction plasmatron. It was found that the modification of the ceramic’s elemental and phase composition during consolidation, resulting from the interaction between ZrB2 and Ti2AlC, leads to the formation of an approximately 400 µm-thick multi-layered oxidation zone following 15 min stepwise thermochemical exposure at surface temperatures reaching up to 1970 °C. This area consists of a lower layer depleted of silicon carbide and an upper layer containing large pores (up to 160–200 µm), where ZrO2 particles are distributed within a silicate melt. SEM analysis revealed that introduction of more refractory titanium and aluminum oxides into the melt upon oxidation, along with liquation within the melt, prevents the complete removal of this sealing melt from the sample surface. This effect remains even after 8 min exposure at an average temperature of ~1960–1970 °C. Full article
Show Figures

Figure 1

27 pages, 3177 KB  
Article
A Modified Enzyme Action Optimizer-Based FOPID Controller for Temperature Regulation of a Nonlinear Continuous Stirred Tank Reactor
by Cebrail Turkeri, Serdar Ekinci, Gökhan Yüksek and Dacheng Li
Fractal Fract. 2025, 9(12), 811; https://doi.org/10.3390/fractalfract9120811 - 12 Dec 2025
Abstract
A modified Enzyme Action Optimizer (mEAO) is proposed to tune a Fractional-Order Proportional–Integral–Derivative (FOPID) controller for precise temperature regulation of a nonlinear continuous stirred tank reactor (CSTR). The nonlinear reactor model, adopted from a standard benchmark formulation widely used in CSTR control studies, [...] Read more.
A modified Enzyme Action Optimizer (mEAO) is proposed to tune a Fractional-Order Proportional–Integral–Derivative (FOPID) controller for precise temperature regulation of a nonlinear continuous stirred tank reactor (CSTR). The nonlinear reactor model, adopted from a standard benchmark formulation widely used in CSTR control studies, is employed as the simulation reference. The tuning framework operates in a simulation-based manner, as the optimizer relies solely on the time-domain responses to evaluate a composite cost function combining overshoot, settling time, rise time, and steady-state error. Comparative simulations involving EAO, Starfish Optimization Algorithm (SFOA), Success History-based Adaptive Differential Evolution with Linear population size reduction (L-SHADE), and Particle Swarm Optimization (PSO) demonstrate that the proposed mEAO achieves the lowest cost value, the fastest convergence, and superior transient performance. Further comparisons with classical tuning methods, Rovira 2DOF-PID, Ziegler–Nichols PID, and Cohen–Coon PI, confirm improved tracking accuracy and smoother actuator behavior. Robustness analyses under varying set-points, feed-temperature disturbances, and measurement noise confirm stable temperature regulation without retuning. These findings demonstrate that the mEAO-based FOPID controller provides an efficient and reliable optimization framework for a nonlinear thermal-process control, with strong potential for future real-time and multi-reactor applications. Full article
Show Figures

Figure 1

22 pages, 14721 KB  
Article
Effect of Steel Slag Coarse Aggregate Particle Size and Replacement Ratio on Concrete Mechanical Properties and Mesoscale Structure
by Xuanxuan Liu, Zhenhao Zhou, Jingwei Gong and Qiang Jin
Buildings 2025, 15(24), 4493; https://doi.org/10.3390/buildings15244493 - 12 Dec 2025
Abstract
This study investigates the impact of steel slag coarse aggregate (SSA) particle size on the macroscopic mechanical properties of concrete. Considering that the macroscopic behavior of concrete is significantly influenced by its mesoscale structural characteristics, and that coarse aggregate particle size is a [...] Read more.
This study investigates the impact of steel slag coarse aggregate (SSA) particle size on the macroscopic mechanical properties of concrete. Considering that the macroscopic behavior of concrete is significantly influenced by its mesoscale structural characteristics, and that coarse aggregate particle size is a key factor determining these features, uniaxial compression experiments together with mesoscale simulations were carried out to develop a model linking the mesoscale structure to the mechanical response of steel slag coarse aggregate concrete (SSAC). The results show that SSAC exhibits a failure pattern comparable to that of natural aggregate concrete (NAC), but its stress–strain curve exhibits a steeper ascending branch and higher peak stress. With the increasing SSA replacement ratio, the peak stress continuously increases; within the same particle size range, the elastic modulus shows an initial increase followed by a subsequent decrease, reaching its maximum at a 50% replacement ratio. Expanding the particle size range changes the peak strain response from approximately linear to rapidly increasing; smaller particle sizes result in a gentler post-peak drop, whereas higher replacement ratios produce a steeper decline. The mesoscale model further shows that for SSA particle sizes of 5–20 mm, 5–15 mm, and 5–10 mm, the cohesive strength of the interfacial transition zone (ITZ) increases by 75%, 106%, and 92%, respectively, compared with NAC. Increasing the coarse aggregate volume fraction further enhances the ITZ strength improvement. This study offers valuable insights for improving the mixture design and performance of SSAC. Full article
(This article belongs to the Special Issue Sustainable and Low-Carbon Building Materials in Special Areas)
Show Figures

Figure 1

14 pages, 1842 KB  
Article
Unlocking Soil Hydrological Connectivity: FFC-NMR Evidence of the Optimal Zeolite Concentration
by Alessio Nicosia, Calogero Librici, Pellegrino Conte and Vito Ferro
Water 2025, 17(24), 3511; https://doi.org/10.3390/w17243511 - 11 Dec 2025
Abstract
Zeolite is a popular soil amendment capable of improving physical and chemical properties of soils. This study investigates how zeolite concentration affects the hydrological connectivity of sandy loam soil. Soil samples with different zeolite concentrations Cz (0, 1, 1.5, 2.5, 5, 10, [...] Read more.
Zeolite is a popular soil amendment capable of improving physical and chemical properties of soils. This study investigates how zeolite concentration affects the hydrological connectivity of sandy loam soil. Soil samples with different zeolite concentrations Cz (0, 1, 1.5, 2.5, 5, 10, 15, and 30%) were analyzed for changes in water dynamics through Fast Field Cycling Nuclear Magnetic Resonance (FFC-NMR) relaxometry. FFC-NMR data revealed that the investigated zeolite can modify the pore size distribution in a wide range (1–15%) of Cz, as the zeolite particle size distribution has a percentage of coarse particles (56%) appreciably higher than that of the original soil (37%). Moreover, a concentration of 1% produces a more relevant increase in the soil’s meso- and macropores, while for Cz > 1.5%, the change in pore size distribution is damped by the increase in water retention that occurs upon increasing zeolite concentration. The analysis also demonstrated that Cz = 1% is sufficient to achieve the highest values of both structural and functional connectivity indexes. In conclusion, for sandy loam soil, adding a zeolite concentration of 1% is sufficient to improve the soil’s physical characteristics, with significant effects on soil hydrological behavior, and can be considered a valid practice to manage the addition of a water resource to the soil. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

17 pages, 2338 KB  
Article
Lignosulfonates as Surfactants to Stabilize Elemental Sulfur Dispersions
by Tatiana N. Lugovitskaya and Denis A. Rogozhnikov
Polymers 2025, 17(24), 3288; https://doi.org/10.3390/polym17243288 - 11 Dec 2025
Abstract
During sulfite delignification of wood, sulfo derivatives of lignin—lignosulfonates (LS)—are formed as a byproduct. Due to their amphiphilic nature, LS are used as plasticizers, dispersants, and stabilizers. The functions and performance characteristics of this surface-active polyelectrolyte are determined by its behavior in aqueous [...] Read more.
During sulfite delignification of wood, sulfo derivatives of lignin—lignosulfonates (LS)—are formed as a byproduct. Due to their amphiphilic nature, LS are used as plasticizers, dispersants, and stabilizers. The functions and performance characteristics of this surface-active polyelectrolyte are determined by its behavior in aqueous solution, at surfaces and interfaces, which, in turn, is determined by its chemical composition. This study investigated the effect of LS with various molecular weight compositions (Mw 9–50 kDa) on the behavior and aggregation stability of aqueous dispersions of elemental sulfur (S0) under conditions simulating hydrothermal leaching of sulfide ores. Using conductometry, potentiometry, tensiometry, and viscometry, a detailed study of the physicochemical properties of aqueous LS solutions (CLS 0.02–1.28 g/dm3) obtained from a few sources (Krasnokamsk, Solikamsk, and Norwegian Pulp and Paper Mills) was conducted. The composition, molecular weight, and concentration of LS were found to significantly affect their specific electrical conductivity, pH, intrinsic viscosity, and surface activity. LS introduction during the formation of sulfur sols is shown to promote their stabilization through electrostatic and steric mechanisms. Optimum dispersion stability (293 K, pH 4.5–5.5) was observed at moderate LS concentrations (0.02–0.32 g/dm3), when a stable adsorption layer forms on the surface of sulfur particles. High-molecular-weight LS samples provided more effective spatial stabilization of sulfur particles. It has been established that increasing temperature (293–333 K) and changing pH (1–7) significantly affect the aggregative stability of systems; specifically, the sol stability decreases with increasing temperature, and the stabilizing effect of different LS types reverses upon changing pH. The obtained results highlight the potential of using naturally occurring polymeric dispersants to control the aggregation stability of sulfur-containing heterophase systems and can be applied to the design of stable colloidal systems in chemical engineering and hydrometallurgy. Full article
(This article belongs to the Special Issue Advances in Applied Lignin Research)
Show Figures

Figure 1

14 pages, 2352 KB  
Article
Pre-Crosslinked Gel Particles Enhanced by Amphiphilic Nanocarbon Dots in Harsh Reservoirs: Synthesis and Deep Stimulation Mechanism
by Guorui Xu, Xiaoxiao Li, Jinzhou Yang, Chunyu Tong, Xiaolong Wang and Tengfei Wang
Processes 2025, 13(12), 3994; https://doi.org/10.3390/pr13123994 - 10 Dec 2025
Viewed by 77
Abstract
To address the issues of easy degradation, dehydration, and insufficient deep plugging strength of traditional pre-crosslinked gel particles (PPGs) in high-temperature and high-salinity reservoirs, this study innovatively introduced amphiphilic carbon dots (CDs) with both hydrophilic and hydrophobic structures as multifunctional modifiers. The carbon [...] Read more.
To address the issues of easy degradation, dehydration, and insufficient deep plugging strength of traditional pre-crosslinked gel particles (PPGs) in high-temperature and high-salinity reservoirs, this study innovatively introduced amphiphilic carbon dots (CDs) with both hydrophilic and hydrophobic structures as multifunctional modifiers. The carbon dot-reinforced PPGs (CD-PPGs) were successfully prepared through in situ polymerization. Through systematic characterization, microscopic visualization experiments, and macroscopic oil displacement evaluation, the performance enhancement mechanism and profile control behavior were deeply explored. The results show that the amphiphilic carbon dots significantly enhanced the material’s temperature resistance (up to 110 °C), salt resistance (up to 15 × 104 mg/L salinity), and mechanical properties by constructing a “hydrogen bond-hydrophobic association” dual crosslinking system within the PPG network. More importantly, it was found that CD-PPGs exhibit a unique “self-aggregation” ability in deep reservoirs, which enables the in situ formation of high-strength plugging micelles at the target location while ensuring excellent injectability. At a permeability range of 539.0–2988.6 mD, the sealing rate of 0.5 PV CD-PPGs was greater than 95%. With permeabilities of 490.1 mD and 3020.5 mD under heterogeneous reservoir simulation conditions, the total recovery degree after the CD-PPGs was 52.6%, which was 20.5% higher than that of single water flooding. This study not only developed a high-performance profile control nanomaterial but also elucidated its strengthening mechanism, providing new insights and a theoretical basis for advancing deep profile control technology. Full article
Show Figures

Figure 1

18 pages, 2023 KB  
Article
Development of Mono-Material Multilayer Light Barrier Films
by Rocío Ayelén Fuentes, Giacomo Foli, Roberta Di Carlo, Yanela Natalyn Alonso, Luciana Andrea Castillo and Matteo Minelli
Polymers 2025, 17(24), 3279; https://doi.org/10.3390/polym17243279 - 10 Dec 2025
Viewed by 173
Abstract
Mono-material multilayer polypropylene films were developed as light barrier structures through the incorporation of mineral-filled composite layers. Trilayer films with different layer arrangements were fabricated by thermocompression from polypropylene-based films containing 0, 1 and 5 wt.% of talc and kaolinite. A monolayer polypropylene [...] Read more.
Mono-material multilayer polypropylene films were developed as light barrier structures through the incorporation of mineral-filled composite layers. Trilayer films with different layer arrangements were fabricated by thermocompression from polypropylene-based films containing 0, 1 and 5 wt.% of talc and kaolinite. A monolayer polypropylene film of equivalent total thickness was used as a control. Structural, thermal, mechanical, optical, and gas barrier properties were evaluated for all films fabricated. A well-defined trilayer structure was confirmed by SEM. FTIR analysis demonstrated negligible thermo-oxidation, with no thermal-degradation during processing. Improved thermal stability and a slight modification in crystallinity were evidenced by TGA and DSC, respectively. XRD revealed the predominance of the α-form crystalline phase and a preferential polymer crystal orientation associated with the particle presence. Regarding mechanical behavior, enhanced stiffness and tensile strength without loss of sealability or puncture resistance were observed. Trilayer films exhibited significantly reduced UV and visible light transmittance, while maintaining adequate translucency, making them suitable for photosensitive packaging applications. Gas permeabilities remained nearly unchanged, confirming that the barrier performances were preserved. Overall, these mono-material multilayer composites films offer a promising and recyclable alternative to conventional multi-material light barrier packaging, combining improved UV protection, mechanical robustness, and environmental compatibility. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

27 pages, 10809 KB  
Article
A Focus on Thermal Durability and Oxidation Resistance and Morphology of Polymer Capped Copper Particles Through a Synthesis-Driven, Precursor-Influenced Approach
by A. R. Indhu, Manickam Minakshi, R. Sivasubramanian and Gnanaprakash Dharmalingam
Nanomaterials 2025, 15(24), 1852; https://doi.org/10.3390/nano15241852 - 10 Dec 2025
Viewed by 174
Abstract
Copper is a promising alternative to conventional plasmonic materials, though its practical use is hindered by a strong tendency to oxidize. Through systematic analysis of its vibrational, optical, morphological, structural, and surface potential properties, we confirmed the stability of copper (Cu) particles and [...] Read more.
Copper is a promising alternative to conventional plasmonic materials, though its practical use is hindered by a strong tendency to oxidize. Through systematic analysis of its vibrational, optical, morphological, structural, and surface potential properties, we confirmed the stability of copper (Cu) particles and highlighted the role of functional groups in modulating their oxidation susceptibility. Oxidation kinetics at 150 °C, in the presence of antioxidants and capping agents, as well as long-term colloidal stability, appear closely tied to the degradation of these stabilizers, which correlates with particle aggregation. Notably, precursor chemistry significantly affects oxidation behavior. Varying concentrations of polyvinylpyrrolidone (PVP) demonstrate a positive correlation with particle size control and thermal stability, indicating that PVP enhances oxidation resistance under the tested conditions. Our findings underscore most importantly the metallic phase’s stability after exposure to air at a temperature of 150 °C, drawing attention to a possible precursor and capping agent combination that can result in oxidation-stable Cu particles, positioning them as cost-effective candidates for replacing more expensive plasmonic metals across diverse applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

28 pages, 82749 KB  
Article
Degradation and Decay of Rocks: Linking Wetting–Drying and Slake Durability Tests for Climate-Sensitive Maintenance
by Markus Kaspar, Christine Latal, Gerhard Pittino and Volker Reinprecht
Geotechnics 2025, 5(4), 84; https://doi.org/10.3390/geotechnics5040084 - 10 Dec 2025
Viewed by 75
Abstract
Soft and weak rocks present challenges for construction activities in various environments. Their genetic origin, geological and tectonic evolution, and exposure to atmospheric conditions control their weathering and degradation over time. Therefore, a sound characterization of the associated rock parameters is essential. Numerous [...] Read more.
Soft and weak rocks present challenges for construction activities in various environments. Their genetic origin, geological and tectonic evolution, and exposure to atmospheric conditions control their weathering and degradation over time. Therefore, a sound characterization of the associated rock parameters is essential. Numerous tests have been developed and standardized or defined in recommendations to assess various geomechanical, petrological, and mineralogical parameters. However, these tests are still subject to modification or extension to address project-specific issues. Additionally, standardized tests do not consider regional climatic conditions that may affect weathering, meaning they do not reflect the degradation behavior that is observed in the field. The present study investigates the slaking resistance and degradability of a range of soft rocks. The workflow of widely used tests is employed to evaluate their representativeness for different rock types in practical applications. Depending on their genetic origin and mineral composition, fabric alterations affect the rate and style of rock disintegration differently. Soft sedimentary rocks react already to static slaking, i.e., water immersion, whereas crystalline and grain-bound rocks slake under dynamic action while undergoing attrition in a rotating slake durability drum. Zones of structural weakness, such as foliation planes, are responsible for material removal in the latter; sedimentary rocks, on the other hand, are subject to surface particle separation (suspension) and suction due to the presence of clay minerals. This study presents an approach that combines the results of several routine tests to help identify and refine the slaking susceptibility of different rock types. A routine for inspecting and documenting the evaluated slaking characteristics for infrastructure maintenance is proposed, and the wider implications in light of climate change are discussed. Some limitations of the transferability of laboratory values to field sites still have to be evaluated and validated in the future. Full article
Show Figures

Figure 1

11 pages, 1289 KB  
Article
Pasting and Gel Behavior of Durum Wheat Derivatives
by Diogo Salvati, Laura Moreno, Juan Manuel Antolín-Rodríguez and Manuel Gómez
Gels 2025, 11(12), 991; https://doi.org/10.3390/gels11120991 - 10 Dec 2025
Viewed by 103
Abstract
Durum wheat (Triticum durum) is one of the main raw materials in the food industry, used primarily in the production of pasta. During milling, semolina and flour are obtained with different size distributions, and different compositional and functional characteristics, which influence [...] Read more.
Durum wheat (Triticum durum) is one of the main raw materials in the food industry, used primarily in the production of pasta. During milling, semolina and flour are obtained with different size distributions, and different compositional and functional characteristics, which influence processes such as gelatinization, retrogradation and the final texture of the products. Understanding these changes is essential for optimizing the technological quality and shelf life of processed foods. The aim was to evaluate how particle size, composition, temperature, and treatment time affect gelatinization, retrogradation, and gel texture. Samples included common wheat flour (control), durum wheat semolina, durum wheat flour, and re-milled semolina (<180 μm). Hydrothermal tests were conducted at 95 °C with varying holding times, and at 140 °C with extended cooling to observe retrogradation. Composition and particle size were found to determine rheological behavior. Semolina showed higher retrogradation and produced firmer gels, while durum wheat flour, with higher protein and ash content, showed atypical profiles and less consistent gels. Increased temperature and time enhanced breakdown and reduced final viscosity, indicating starch thermal degradation. A correlation was observed between final viscosity and gel hardness. This study provides information useful for optimizing the milling, cooking, and development of durum wheat-based products with improved texture and shelf life. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

17 pages, 5286 KB  
Article
Sustainable Biomass Functional Monomer-Modified Polycarboxylate Superplasticizers Enable the Creation of High-Performance Cement Pastes
by Yu Yan, Qifei Du, Wanyue Diao, Chao Wang, Liyan Wang, Sa Lv, Lingwei Kong, Liping Zhang, Yuanzhang Xi and Huan Wang
Coatings 2025, 15(12), 1459; https://doi.org/10.3390/coatings15121459 - 10 Dec 2025
Viewed by 118
Abstract
In this work, a complex and eco-friendly biomass raffinose monomer-modified polycarboxylate superplasticizer (RAF-PCE) was designed and synthesized via the free radical polymerization technique to simultaneously improve paste fluidity and delay fluidity loss in concrete applications. The adsorption, fluidity, and early hydration behaviors of [...] Read more.
In this work, a complex and eco-friendly biomass raffinose monomer-modified polycarboxylate superplasticizer (RAF-PCE) was designed and synthesized via the free radical polymerization technique to simultaneously improve paste fluidity and delay fluidity loss in concrete applications. The adsorption, fluidity, and early hydration behaviors of cementitious systems after the introduction of RAF-PCE have been systematically investigated. Experimental results demonstrate that the hydroxy group in raffinose promotes the adsorption of RAF-PCE on the cement particles, thereby elevating the dispersion characteristic of cement paste through electrostatic repulsion, enabling excellent initial fluidity (310 mm). Additionally, its steric hindrance effect has also been identified to play a role in improving paste fluidity and reducing the slump loss of cement slurry. Detailed analyses unveil that RAF-PCE can reduce the concentration of free Ca2+ in the pore solution through complexation with Ca2+, which prevents the early precipitation of hydration products and realizes a delayed effect on cement hydration, ultimately evolving into a homogeneous and compact microstructure for superior compressive tensile strength of the cement mortar. The 28-day compressive strength of cement incorporating RAF-PCE reached 79.2 MPa, representing a 5.5% enhancement over conventional PCE systems. Our work provides novel insights into the promotion of innovative and green development in the concrete industry by utilizing renewable biomass resources for high-performance materials. Full article
Show Figures

Figure 1

25 pages, 7703 KB  
Article
Orientation and Influence of Anisotropic Nanoparticles in Electroconductive Thermoplastic Composites: A Micromechanical Approach
by Lisa Windisch, Björn Düsenberg, Maximilian Nowka, Karl Hilbig, Thomas Vietor and Carsten Schilde
Polymers 2025, 17(24), 3273; https://doi.org/10.3390/polym17243273 - 9 Dec 2025
Viewed by 260
Abstract
The integration of electrically conductive functionalities into polymer components via additive manufacturing has gained increasing relevance across fields such as sensing, energy storage, and structural electronics. Achieving reliable performance in such applications requires a deeper understanding of how processing conditions affect the internal [...] Read more.
The integration of electrically conductive functionalities into polymer components via additive manufacturing has gained increasing relevance across fields such as sensing, energy storage, and structural electronics. Achieving reliable performance in such applications requires a deeper understanding of how processing conditions affect the internal structure of conductive thermoplastic composites—particularly the orientation and distribution of anisotropic fillers. This study analyzes a PLA-based composite containing carbon nanotubes, carbon black, and graphite flakes to evaluate the influence of extrusion temperature on electrical resistivity and micromechanical properties. To complement scanning electron microscopy, a novel micromechanical mapping approach based on nanoindentation was applied, enabling spatially resolved analysis of local stiffness and hardness. Results show that increasing extrusion temperature improves filler dispersion and alignment, enhancing conductivity and mechanical homogeneity—up to a threshold of 210 °C. Even small temperature changes significantly affect particle orientation and distribution. Unlike global resistivity measurements, the combined use of nanoindentation and microscopic imaging reveals location-specific structural phenomena and filler behavior within the matrix. This newly established method provides high-resolution insight into internal composite architecture and offers a robust foundation for optimizing process-structure-property relationships in conductive polymer systems. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop