Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = parity–time (PT) symmetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1361 KiB  
Article
A Versatile Electronic Dimer Exhibiting PT and Anti-PT Symmetry
by Ruiqi Li and Jiayang Gu
Symmetry 2025, 17(2), 205; https://doi.org/10.3390/sym17020205 - 28 Jan 2025
Viewed by 705
Abstract
We propose a versatile electronic dimer cooperatively coupled by means of mutual induction, capacitance, and resistance. In a lot of related works, the electronic dimer is inductively coupled, with one resonator characterized by positive resistance (dissipation) and the other by negative resistance (amplification). [...] Read more.
We propose a versatile electronic dimer cooperatively coupled by means of mutual induction, capacitance, and resistance. In a lot of related works, the electronic dimer is inductively coupled, with one resonator characterized by positive resistance (dissipation) and the other by negative resistance (amplification). We go beyond this picture by considering capacitive and resistive coupling, and by exploring cases where both resistances are positive, as well as a case where the resonant frequencies of the individual resonators are different. Based on analytical derivation and numerical calculations, we obtain and observe the properties of parity-time (PT), quasi-PT (QPT) and quasi-anti-PT (QAPT) symmetry by adjusting the constitutive parameters of the system. This study provides a versatile and feasible platform for observing PT/anti-PT (APT) symmetry-based phenomena and provides a foundation for further studies on finding PT/APT symmetry in more sophisticated circuits. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

32 pages, 15959 KiB  
Article
A Quasi-Uniform Magnetic Coupling Array for a Multiload Wireless Power Transfer System with Flexible Configuration Strategies
by Dong Liu, Jin Yang, Yuntao Yue, Ruofan Li and Xinwei Song
Electronics 2025, 14(3), 463; https://doi.org/10.3390/electronics14030463 - 23 Jan 2025
Viewed by 938
Abstract
The coupling problem between the transmitter coils (Tx) and receiving coils (Rx) is influenced by the transmission power and efficiency for a multiload wireless power transfer (WPT) system. In order to solve this problem, a novel array WPT system with quasi-uniform coupling (QC) [...] Read more.
The coupling problem between the transmitter coils (Tx) and receiving coils (Rx) is influenced by the transmission power and efficiency for a multiload wireless power transfer (WPT) system. In order to solve this problem, a novel array WPT system with quasi-uniform coupling (QC) is proposed in this paper. Owing to the comprehensive design of the Tx and its mutual positional relationship, the proposed system supports simultaneous activation of multiple and even adjacent Tx while maintaining QC. In addition, the structure of Tx is simple and can be obtained with a low-cost optimization procedure, and the compact Rx coil provides sufficient misalignment transmission tolerance for one or two Rx within the Tx and overlapping areas. Furthermore, a parity-time (PT) symmetry-based Rx position detection method is adopted to support flexible unit operation strategies without additional communication procedures. Each Tx unit is equipped with an ingenious dynamic compensation circuit to solve the frequency detuning problem caused by adjacent Tx cross-coupling. Finally, the effectiveness of the design is proved by the prototype; the Tx can provide a QC area that is 1.44 times or 4.44 times the Rx coil area for each receiver in independent and composite modes, and it can match the operation strategy to achieve optimal configuration of the charging area. Full article
Show Figures

Figure 1

10 pages, 384 KiB  
Article
Analysis of the Parity-Time Symmetry Model in the Receiver-Based Wireless Power Transfer
by Xiaoxi Yan and Wen Yan
Energies 2024, 17(23), 6103; https://doi.org/10.3390/en17236103 - 4 Dec 2024
Viewed by 1011
Abstract
Parity-time (PT) symmetry has made encouraging progress in wireless power transmission (WPT), exhibiting significant advantages in terms of system robustness and transmission efficiency. However, there are still challenges that need to be addressed, particularly when classical schemes operate at a fixed frequency in [...] Read more.
Parity-time (PT) symmetry has made encouraging progress in wireless power transmission (WPT), exhibiting significant advantages in terms of system robustness and transmission efficiency. However, there are still challenges that need to be addressed, particularly when classical schemes operate at a fixed frequency in the weak coupling region, where even minor changes in coupling strength can result in excessive current surges. This paper introduced a novel PT-symmetric WPT system featuring negative resistance constructed on the receiver side. We first established a theoretical framework for the classical two-coil PT-symmetric magnetically coupled resonant WPT system and subsequently extended it to incorporate the PT-symmetric WPT system with negative resistance on the receiver. This topological coil configuration facilitated stable power delivery over a broader range, with the capability of self-tuning frequency without requiring additional frequency modulation. This adaptability enabled the system to cater to diverse scenarios and opens up a novel avenue for practical applications of PT symmetry in WPT. Finally, we designed a 10 W prototype to demonstrate the effectiveness of our topology, and the experimental results aligned with our theoretical calculations, validating the feasibility and potential of our PT-symmetric WPT system. Full article
Show Figures

Figure 1

14 pages, 5948 KiB  
Article
Extended-Distance Capacitive Wireless Power Transfer System Based on Generalized Parity–Time Symmetry
by Xujian Shu, Riming Ou, Guoxin Wu, Jingjing Yang and Yanwei Jiang
Electronics 2024, 13(23), 4731; https://doi.org/10.3390/electronics13234731 - 29 Nov 2024
Cited by 1 | Viewed by 912
Abstract
A capacitive wireless power transfer (CPT) system based on parity–time (PT) symmetry achieves constant output characteristics under distance variation without additionally increasing the system complexity of the control strategy, where the concept of PT symmetry is derived from quantum mechanics, and the systems [...] Read more.
A capacitive wireless power transfer (CPT) system based on parity–time (PT) symmetry achieves constant output characteristics under distance variation without additionally increasing the system complexity of the control strategy, where the concept of PT symmetry is derived from quantum mechanics, and the systems satisfying PT symmetry are invariant under space and time inversion. However, the exact PT-symmetric region (i.e., strong coupling region) of the general system is limited by the symmetry of the structure and parameters. To overcome this limitation, a novel generalized parity–time (GPT)-symmetric CPT system is proposed in this article. According to the equivalent circuit method, the circuit model of the proposed system is built, and the transfer characteristics are analyzed. Furthermore, a prototype is implemented to verify the feasibility of the proposed CPT system. The results show that the PT-symmetric region is extended by 169.23% compared with the traditional PT-based CPT system, and a constant output power of 21.5 W is transferred with a constant transfer efficiency of 90%. Full article
Show Figures

Figure 1

14 pages, 6993 KiB  
Article
Strain-Induced Frequency Splitting in PT Symmetric Coupled Silicon Resonators
by Lifeng Wang, Shangyang Zhang and Qunce Yuan
Micromachines 2024, 15(10), 1278; https://doi.org/10.3390/mi15101278 - 21 Oct 2024
Cited by 1 | Viewed by 1262
Abstract
When two resonators of coupled silicon resonators are identical and the gain on one side is equal to the loss on the other side, a parity-time (PT) symmetric-coupled silicon resonator is formed. As non-Hermitian systems, the PT-symmetric systems have exhibited many special properties [...] Read more.
When two resonators of coupled silicon resonators are identical and the gain on one side is equal to the loss on the other side, a parity-time (PT) symmetric-coupled silicon resonator is formed. As non-Hermitian systems, the PT-symmetric systems have exhibited many special properties and interesting phenomena. This paper proposes the strain-induced frequency splitting in PT symmetry-coupled silicon resonators. The frequency splitting of the PT system caused by strain perturbations is derived and simulated. Theory and simulation both indicate that the PT system is more sensitive to strain perturbation near the exceptional point (EP) point. Then, a feedback circuit is designed to achieve the negative damping required for PT symmetry. Based on a simple silicon-on-insulator (SOI) process, the silicon resonator chip is successfully fabricated. After that, the PT-symmetric-coupled silicon resonators are successfully constructed, and the frequency splitting phenomenon caused by strain is observed experimentally. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 2nd Edition)
Show Figures

Figure 1

12 pages, 5721 KiB  
Article
Realizing Multi-Parameter Measurement Using PT-Symmetric LC Sensors
by Bin-Bin Zhou, Dan Chen, Chi Zhang and Lei Dong
Sensors 2024, 24(20), 6570; https://doi.org/10.3390/s24206570 - 12 Oct 2024
Viewed by 1163
Abstract
With the rapid development in sensor network technology, the complexity and diversity of application scenarios have put forward more and more new requirements for inductor–capacitor (LC) sensors, for instance, multi-parameter simultaneous monitoring. Here, the parity–time (PT) symmetry concept in quantum mechanics [...] Read more.
With the rapid development in sensor network technology, the complexity and diversity of application scenarios have put forward more and more new requirements for inductor–capacitor (LC) sensors, for instance, multi-parameter simultaneous monitoring. Here, the parity–time (PT) symmetry concept in quantum mechanics is applied to LC passive wireless sensing. Two or even three parameters can be monitored simultaneously by observing the frequency response of the reflection coefficient at the end of the readout circuit. In particular, for three-parameter detection, a novel detection method is studied to extract the three resonant frequencies of the system through the phase–frequency characteristics of the reflection coefficient, which has never appeared in the previous literature on PT symmetry. The changes in three resonant frequencies are in response to changes in the three parameters in the environment. We show theoretically and demonstrate experimentally that the PT-symmetric LC sensor can realize multi-parameter measurement using a series LCR circuit as the sensor and a symmetric adjustable LCR circuit as the readout circuit. Our work paves the way for applying PT symmetry in multi-parameter detection. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 29393 KiB  
Article
Switchable Dual-Wavelength Fiber Laser with Narrow-Linewidth Output Based on Parity-Time Symmetry System and the Cascaded FBG
by Kaiwen Wang, Bin Yin, Chao Lv, Yanzhi Lv, Yiming Wang, Hao Liang, Qun Wang, Shiyang Wang, Fengjie Yu, Zhong Zhang, Ziwang Li and Songhua Wu
Photonics 2024, 11(10), 946; https://doi.org/10.3390/photonics11100946 - 8 Oct 2024
Cited by 2 | Viewed by 2164
Abstract
In this paper, a dual-wavelength narrow-linewidth fiber laser based on parity-time (PT) symmetry theory is proposed and experimentally demonstrated. The PT-symmetric filter system consists of two optical couplers (OCs), four polarization controllers (PCs), a polarization beam splitter (PBS), and cascaded fiber Bragg gratings [...] Read more.
In this paper, a dual-wavelength narrow-linewidth fiber laser based on parity-time (PT) symmetry theory is proposed and experimentally demonstrated. The PT-symmetric filter system consists of two optical couplers (OCs), four polarization controllers (PCs), a polarization beam splitter (PBS), and cascaded fiber Bragg gratings (FBGs), enabling stable switchable dual-wavelength output and single longitudinal-mode (SLM) operation. The realization of single-frequency oscillation requires precise tuning of the PCs to match gain, loss, and coupling coefficients to ensure that the PT-broken phase occurs. During single-wavelength operation at 1548.71 nm (λ1) over a 60-min period, power and wavelength fluctuations were observed to be 0.94 dB and 0.01 nm, respectively, while for the other wavelength at 1550.91 nm (λ2), fluctuations were measured at 0.76 dB and 0.01 nm. The linewidths of each wavelength were 1.01 kHz and 0.89 kHz, with a relative intensity noise (RIN) lower than −117 dB/Hz. Under dual-wavelength operation, the maximum wavelength fluctuations for λ1 and λ2 were 0.03 nm and 0.01 nm, respectively, with maximum power fluctuations of 3.23 dB and 2.38 dB. The SLM laser source is suitable for applications in long-distance fiber-optic sensing and coherent LiDAR detection. Full article
(This article belongs to the Special Issue Single Frequency Fiber Lasers and Their Applications)
Show Figures

Figure 1

14 pages, 3394 KiB  
Article
High-Performance Fiber Ring Laser Based on Polarization Space Parity-Time Symmetry Breaking
by Fengling Zhang, Zhengmao Wu, Xin Tong and Guangqiong Xia
Photonics 2024, 11(6), 501; https://doi.org/10.3390/photonics11060501 - 25 May 2024
Cited by 1 | Viewed by 1880
Abstract
This work proposes and experimentally demonstrates a high-performance polarization space parity-time (PT) symmetric fiber ring laser to achieve a low-noise, narrow-linewidth, and highly stable single-longitudinal-mode output. The gain/loss and coupling coefficients are regulated by adjusting a polarization controller (PC) and the pumping current [...] Read more.
This work proposes and experimentally demonstrates a high-performance polarization space parity-time (PT) symmetric fiber ring laser to achieve a low-noise, narrow-linewidth, and highly stable single-longitudinal-mode output. The gain/loss and coupling coefficients are regulated by adjusting a polarization controller (PC) and the pumping current of an erbium-doped fiber amplifier (EDFA) within the ring cavity. The results show that the single longitudinal mode oscillation of the laser can be implemented by PT symmetry breaking. The frequency noise spectral density and the linewidth characteristics of the laser are evaluated by the short-delay self-heterodyne method. The results reveal that excellent low-frequency noise (181 Hz2/Hz at a 10 kHz offset frequency) and narrow fundamental linewidth (68 Hz) can be achieved. Additionally, the laser exhibits outstanding stability with only 0.64 pm wavelength drift over 30 min. By tuning an optical tunable filter (OTF), the wavelength tunable range of the laser can cover the entire C-band. Furthermore, the impacts of different fiber length on the frequency noise spectral density and the filter bandwidth on stability are analyzed, offering guidance for component selection in such laser systems. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

25 pages, 4495 KiB  
Review
Advances in Semiconductor Lasers Based on Parity–Time Symmetry
by Hongbo Sha, Yue Song, Yongyi Chen, Jishun Liu, Mengjie Shi, Zibo Wu, Hao Zhang, Li Qin, Lei Liang, Peng Jia, Cheng Qiu, Yuxin Lei, Yubing Wang, Yongqiang Ning, Guoqing Miao, Jinlong Zhang and Lijun Wang
Nanomaterials 2024, 14(7), 571; https://doi.org/10.3390/nano14070571 - 26 Mar 2024
Cited by 6 | Viewed by 2909
Abstract
Semiconductor lasers, characterized by their high efficiency, small size, low weight, rich wavelength options, and direct electrical drive, have found widespread application in many fields, including military defense, medical aesthetics, industrial processing, and aerospace. The mode characteristics of lasers directly affect their output [...] Read more.
Semiconductor lasers, characterized by their high efficiency, small size, low weight, rich wavelength options, and direct electrical drive, have found widespread application in many fields, including military defense, medical aesthetics, industrial processing, and aerospace. The mode characteristics of lasers directly affect their output performance, including output power, beam quality, and spectral linewidth. Therefore, semiconductor lasers with high output power and beam quality are at the forefront of international research in semiconductor laser science. The novel parity–time (PT) symmetry mode-control method provides the ability to selectively modulate longitudinal modes to improve the spectral characteristics of lasers. Recently, it has gathered much attention for transverse modulation, enabling the output of fundamental transverse modes and improving the beam quality of lasers. This study begins with the basic principles of PT symmetry and provides a detailed introduction to the technical solutions and recent developments in single-mode semiconductor lasers based on PT symmetry. We categorize the different modulation methods, analyze their structures, and highlight their performance characteristics. Finally, this paper summarizes the research progress in PT-symmetric lasers and provides prospects for future development. Full article
Show Figures

Figure 1

16 pages, 3586 KiB  
Article
Planar Bilayer PT-Symmetric Systems and Resonance Energy Transfer
by Aliaksandr Arlouski and Andrey Novitsky
Photonics 2024, 11(2), 169; https://doi.org/10.3390/photonics11020169 - 10 Feb 2024
Viewed by 1671
Abstract
Parity-time (PT) symmetry provides an outstanding improvement of photonic devices’ performance due to the remarkable physics behind it. Resonance energy transfer (RET) as an important characteristic mediating the molecules that can be tailored in the PT-symmetric environment, too. We study how planar bilayer [...] Read more.
Parity-time (PT) symmetry provides an outstanding improvement of photonic devices’ performance due to the remarkable physics behind it. Resonance energy transfer (RET) as an important characteristic mediating the molecules that can be tailored in the PT-symmetric environment, too. We study how planar bilayer PT-symmetric systems affect the process of resonance energy transfer occurring in the vicinity thereof. First, we investigate the reflectance and transmittance spectra of such systems by calculating reflection and transmission coefficients as well as total radiation amplification as functions of medium parameters. We obtain that reflectance and total amplification are greatest near the exceptional points of the PT-symmetric system. Then, we perform numerical calculations of the RET rate and investigate its dependence on the complex permittivity of the PT-symmetric medium, dipole orientation, frequency of radiation and layer thickness. Optically thick PT-symmetric systems may operate at lower gain at the expense of the appearance of chaotic-like behaviors. These appear owing to the dense oscillations in the reflectance and transmittance spectra and vividly manifest themselves as stochastic-like positions of the exceptional points for PT-symmetric bilayers. The RET rate, being a result of the field interference, can be significantly amplified and suppressed near exceptional points exhibiting a Fano-like lineshape. Full article
Show Figures

Figure 1

14 pages, 3269 KiB  
Article
A Flexible Wireless Sacral Nerve Stimulator Based on Parity–Time Symmetry Condition
by Yue Ying, Yanlan Yu, Shurong Dong, Guoqing Ding, Weipeng Xuan, Feng Gao, Hao Jin and Jikui Luo
Electronics 2024, 13(2), 292; https://doi.org/10.3390/electronics13020292 - 9 Jan 2024
Cited by 2 | Viewed by 1482
Abstract
Lower urinary tract dysfunction (LUTD) has a great effect on patients’ daily life and mental health. Currently, the most mature invasive treatment is sacral neuromodulation (SNM) that needs to be implanted into buttocks and work for 1–2 years. However, most existing SNM stimulators [...] Read more.
Lower urinary tract dysfunction (LUTD) has a great effect on patients’ daily life and mental health. Currently, the most mature invasive treatment is sacral neuromodulation (SNM) that needs to be implanted into buttocks and work for 1–2 years. However, most existing SNM stimulators use disposable batteries with a limited lifespan. And existing stimulators are rigid and lack biomechanical compatibility. To address the above problems, wireless power transferring (WPT) is proposed for SNM based on parity–time (PT) symmetry principle to meet buttocks application requirements, where has thick fat and skin tissue. The receiver coil in the SNM stimulator is designed to be as small and flexible as possible to fit implantation. PT technology allows for efficient and stable wireless power transmission without being significantly affected by the misalignment and bending caused by body movement and can penetrate 15 mm fat–skin tissue and achieve 78% transmission efficiency. Furthermore, the flexible wireless sacral nerve stimulator is developed, and the effectiveness of the system is verified. The system could potentially reduce patient discomfort because the implanted device is flexible and can output a stable voltage stimulation signal. Full article
Show Figures

Figure 1

18 pages, 10869 KiB  
Article
A Three-Coil Constant Output Wireless Power Transfer System Based on Parity–Time Symmetry Theory
by Yuntao Yue, Jiahui Yang and Ruofan Li
Appl. Sci. 2023, 13(22), 12188; https://doi.org/10.3390/app132212188 - 9 Nov 2023
Cited by 3 | Viewed by 1868
Abstract
In a three-coil wireless power transfer system with relay coils, the transmission efficiency and output power of the system decreases with changes in the adjacent coupling coefficients. Controlling the power of three-coil wireless power transfer systems is also a significant challenge. To solve [...] Read more.
In a three-coil wireless power transfer system with relay coils, the transmission efficiency and output power of the system decreases with changes in the adjacent coupling coefficients. Controlling the power of three-coil wireless power transfer systems is also a significant challenge. To solve these issues, a three-coil wireless power transfer system based on parity–time symmetry is proposed in this paper. First, a three-coil parity–time wireless power transfer system was modeled based on a circuit model. Then, the transmission and gain characteristics of the three-coil parity–time wireless power transfer system were analyzed. It was found that when the system is in a parity–time-exact region, it can maintain a constant transmission efficiency and output power, and its output power is independent of the coupling coefficient. In addition, based on the output characteristics of the three-coil parity–time wireless power transfer system, a power control method and a working range detection method were proposed to attain a constant power output. Finally, a three-coil parity–time wireless power transfer system was experimentally tested. Full article
(This article belongs to the Special Issue Wireless Power Transfer Systems)
Show Figures

Figure 1

11 pages, 549 KiB  
Article
Parity-Time Symmetric Holographic Principle
by Xingrui Song and Kater Murch
Entropy 2023, 25(11), 1523; https://doi.org/10.3390/e25111523 - 7 Nov 2023
Viewed by 1997
Abstract
Originating from the Hamiltonian of a single qubit system, the phenomenon of the avoided level crossing is ubiquitous in multiple branches of physics, including the Landau–Zener transition in atomic, molecular, and optical physics, the band structure of condensed matter physics and the dispersion [...] Read more.
Originating from the Hamiltonian of a single qubit system, the phenomenon of the avoided level crossing is ubiquitous in multiple branches of physics, including the Landau–Zener transition in atomic, molecular, and optical physics, the band structure of condensed matter physics and the dispersion relation of relativistic quantum physics. We revisit this fundamental phenomenon in the simple example of a spinless relativistic quantum particle traveling in (1+1)-dimensional space-time and establish its relation to a spin-1/2 system evolving under a PT-symmetric Hamiltonian. This relation allows us to simulate 1-dimensional eigenvalue problems with a single qubit. Generalizing this relation to the eigenenergy problem of a bulk system with N spatial dimensions reveals that its eigenvalue problem can be mapped onto the time evolution of the edge state with (N1) spatial dimensions governed by a non-Hermitian Hamiltonian. In other words, the bulk eigenenergy state is encoded in the edge state as a hologram, which can be decoded by the propagation of the edge state in the temporal dimension. We argue that the evolution will be PT-symmetric as long as the bulk system admits parity symmetry. Our work finds the application of PT-symmetric and non-Hermitian physics in quantum simulation and provides insights into the fundamental symmetries. Full article
(This article belongs to the Special Issue Quantum Dynamics with Non-hermitian Hamiltonians II)
Show Figures

Figure 1

11 pages, 1828 KiB  
Communication
A Symmetric Parity–Time Coupled Optoelectronic Oscillator Using a Polarization–Dependent Spatial Structure
by Fengling Zhang, Xiaodong Lin, Zhengmao Wu and Guangqiong Xia
Photonics 2023, 10(11), 1236; https://doi.org/10.3390/photonics10111236 - 6 Nov 2023
Cited by 2 | Viewed by 1739
Abstract
We propose and experimentally investigate a symmetric parity-time (PT) coupled optoelectronic oscillator (COEO) based on a polarization-dependent spatial structure. In such a COEO system, the gain/loss and coupling coefficients of two orthogonal polarization optical waves can be controlled by adjusting the polarization controller [...] Read more.
We propose and experimentally investigate a symmetric parity-time (PT) coupled optoelectronic oscillator (COEO) based on a polarization-dependent spatial structure. In such a COEO system, the gain/loss and coupling coefficients of two orthogonal polarization optical waves can be controlled by adjusting the polarization controller (PC) and the bias voltage of a Mach-Zehnder modulator (MZM). The single-mode selection of a microwave signal can be implemented by the PT symmetry breaking of a special mode. The performance of the proposed COEO is experimentally examined, and a 10.0 GHz microwave signal with a phase noise of −109.1 dBc/Hz @ 10 kHz and a side mode suppression ratio of 51.4 dB is generated. Moreover, an optical frequency comb with a comb tooth spacing of 10.0 GHz and a bandwidth of 100 GHz within a 10 dB amplitude variation can be simultaneously generated. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Photonics)
Show Figures

Figure 1

13 pages, 1073 KiB  
Article
Ultra-Narrow Bandwidth Microwave Photonic Filter Implemented by Single Longitudinal Mode Parity Time Symmetry Brillouin Fiber Laser
by Jiaxin Hou, Yajun You, Yuan Liu, Kai Jiang, Xuefeng Han, Wenjun He, Wenping Geng, Yi Liu and Xiujian Chou
Micromachines 2023, 14(7), 1322; https://doi.org/10.3390/mi14071322 - 27 Jun 2023
Cited by 5 | Viewed by 2676
Abstract
In this paper, a novel microwave photonic filter (MPF) based on a single longitudinal mode Brillouin laser achieved by parity time (PT) symmetry mode selection is proposed, and its unparalleled ultra-narrow bandwidth as low as to sub-kHz together with simple and agile tuning [...] Read more.
In this paper, a novel microwave photonic filter (MPF) based on a single longitudinal mode Brillouin laser achieved by parity time (PT) symmetry mode selection is proposed, and its unparalleled ultra-narrow bandwidth as low as to sub-kHz together with simple and agile tuning performance is experimentally verified. The Brillouin fiber laser ring resonator is cascaded with a PT symmetric system to achieve this MPF. Wherein, the Brillouin laser resonator is excited by a 5 km single mode fiber to generate Brillouin gain, and the PT symmetric system is configured with Polarization Beam Splitter (PBS) and polarization controller (PC) to achieve PT symmetry. Thanks to the significant enhancement of the gain difference between the main mode and the edge mode when the polarization state PT symmetry system breaks, a single mode oscillating Brillouin laser is generated. Through the selective amplification of sideband modulated signals by ultra-narrow linewidth Brillouin single mode laser gain, the MPF with ultra-narrow single passband performance is obtained. By simply tuning the central wavelength of the stimulated Brillouin scattering (SBS) pumped laser to adjust the Brillouin oscillation frequency, the gain position of the Brillouin laser can be shifted, thereby achieving flexible tunability. The experimental results indicate that the MPF proposed in this paper achieves a single pass band narrow to 72 Hz and the side mode rejection ratio of more than 18 dB, with a center frequency tuning range of 0–20 GHz in the testing range of vector network analysis, which means that the MPF possesses ultra high spectral resolution and enormous potential application value in the domain of ultra fine microwave spectrum filtering such as radar imaging and electronic countermeasures. Full article
(This article belongs to the Special Issue Progress and Application of Ultra-Precision Laser Interferometry)
Show Figures

Figure 1

Back to TopTop