Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (394)

Search Parameters:
Keywords = paint industries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1077 KB  
Article
Synthesis of Acetylated Phenolic Compounds with Promising Antifouling Applications: An Approach to Marine and Freshwater Mussel Settlement Control
by Míriam C. Pérez, Mónica García, Gustavo Pasquale, María V. Laitano, Gustavo Romanelli and Guillermo Blustein
Compounds 2025, 5(4), 45; https://doi.org/10.3390/compounds5040045 - 24 Oct 2025
Viewed by 230
Abstract
Biofouling by mussels is responsible for serious economic losses worldwide. In Argentina, Limnoperna fortunei (Dunker, 1857) and Brachidontes rodriguezii (d’Orbigny, 1842) are common and abundant bivalve species of great interest, inhabiting freshwater and marine coasts, respectively. Both species are considered fouling pests for [...] Read more.
Biofouling by mussels is responsible for serious economic losses worldwide. In Argentina, Limnoperna fortunei (Dunker, 1857) and Brachidontes rodriguezii (d’Orbigny, 1842) are common and abundant bivalve species of great interest, inhabiting freshwater and marine coasts, respectively. Both species are considered fouling pests for coastal industrial facilities that use untreated water as part of their processes. To chemically control mussel biofouling, it is necessary to find efficient and environmentally friendly non-biocidal compounds. In this work, we report the antifouling activity of three phenolic compounds (hydroquinone, resorcinol, and catechol) and their respective acetylated derivatives against L. fortunei and B. rodriguezii mussels. Classic ecotoxicity tests with Artemia salina were also performed. Acetylated phenolic compounds were synthesized in the laboratory by sustainable chemistry procedures. Results revealed the importance of hydroquinone, resorcinol, and catechol and their diacetylated derivatives for preventing the settlement of both these mussels, in a non-biocide way. Ecotoxicity bioassays revealed that these compounds were not toxic, with the exception of resorcinol. We propose the incorporation of these compounds in solution into closed circuits and water sprinkler anti-fire systems to prevent the settlement of L. fortunei and their inclusion in antifouling paints to prevent the settlement of B. rodriguezii. These results highlight a new friendly alternative for controlling mussels. Full article
(This article belongs to the Special Issue Phenolic Compounds: Extraction, Chemical Profiles, and Bioactivity)
Show Figures

Figure 1

23 pages, 13741 KB  
Article
Experimental and Numerical Investigation of Electromagnetic Wave Propagation Through Conductive Multilayer Coatings
by Vanja Mandrić, Slavko Rupčić, Bogdan Pavković and Ismail Baxhaku
Appl. Sci. 2025, 15(20), 11201; https://doi.org/10.3390/app152011201 - 19 Oct 2025
Viewed by 465
Abstract
The proliferation of wireless networking solutions, which are omnipresent in our daily lives, has led to increased exposure to the energy of electromagnetic (EM) waves in the higher frequency range, raising concerns about their impact on human health. Investigating the propagation of EM [...] Read more.
The proliferation of wireless networking solutions, which are omnipresent in our daily lives, has led to increased exposure to the energy of electromagnetic (EM) waves in the higher frequency range, raising concerns about their impact on human health. Investigating the propagation of EM waves through multilayer structures can shed light on the future direction of effective protection and shielding solutions. The paper provides a comparative study that examines EM wave propagation through a multilayered composite structure. The structure combines Plexiglas plates (acrylic, polymethyl methacrylate), a dielectric material, with one or more layers of conductive YSHIELD HSF54 paint to reduce EM field intensity. The paint’s carbon-based particle composition promises effective field attenuation. Our side-by-side comparative real-world measurements and simulation results showcase correlation. We further demonstrated the benefits of applying a layer of conductive YSHIELD HSF54 paint over Plexiglass to form a composite structure, with the initial layer contributing to attenuation of approximately 20 dB. Finally, the results were validated by calculating Morozov’s first- and second-order analytical approximations for the transmission parameter S21—the calculated values accurately trace both the simulations and measurements. The research concludes that shielding, which is used as a method of protection against EM radiation in many industrial devices, can also be used in procedures to protect human habitats by selecting new, innovative, and affordable materials and structures. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

27 pages, 32087 KB  
Article
A Label-Free Panel Recognition Method Based on Close-Range Photogrammetry and Feature Fusion
by Enshun Lu, Zhe Guo, Xiaofeng Li, Daode Zhang and Rui Lu
Appl. Sci. 2025, 15(19), 10835; https://doi.org/10.3390/app151910835 - 9 Oct 2025
Viewed by 255
Abstract
In the interior decoration panel industry, automated production lines have become the standard configuration for large-scale enterprises. However, during the panel processing procedures such as sanding and painting, the loss of traditional identification markers like QR codes or barcodes is inevitable. This creates [...] Read more.
In the interior decoration panel industry, automated production lines have become the standard configuration for large-scale enterprises. However, during the panel processing procedures such as sanding and painting, the loss of traditional identification markers like QR codes or barcodes is inevitable. This creates a critical technical bottleneck in the assembly stage of customized or multi-model parallel production lines, where identifying individual panels significantly limits production efficiency. To address this issue, this paper proposes a high-precision measurement method based on close-range photogrammetry for capturing panel dimensions and hole position features, enabling accurate extraction of identification markers. Building on this foundation, an identity discrimination method that integrates weighted dimension and hole position IDs has been developed, making it feasible to efficiently and automatically identify panels without physical identification markers. Experimental results demonstrate that the proposed method exhibits significant advantages in both recognition accuracy and production adaptability, providing an effective solution for intelligent manufacturing in the home decoration panel industry. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

15 pages, 4479 KB  
Article
Modeling and Analysis of Corrosion of Aluminium Alloy 6060 Using Electrochemical Impedance Spectroscopy (EIS)
by Aikaterini Baxevani, Eleni Lamprou, Azarias Mavropoulos, Fani Stergioudi, Nikolaos Michailidis and Ioannis Tsoulfaidis
Alloys 2025, 4(3), 17; https://doi.org/10.3390/alloys4030017 - 29 Aug 2025
Viewed by 1177
Abstract
Aluminum is widely used in many industries like automotive, aerospace and construction because of its low weight, good mechanical strength and resistance to corrosion. This resistance comes mainly from a passive oxide layer that forms on its surface. However, when aluminum is exposed [...] Read more.
Aluminum is widely used in many industries like automotive, aerospace and construction because of its low weight, good mechanical strength and resistance to corrosion. This resistance comes mainly from a passive oxide layer that forms on its surface. However, when aluminum is exposed to harsh environments, especially those containing chloride ions in marine environments, this layer can break down and lead to localized corrosion, such as pitting. This study examined aluminum profiles at different processing stages, including homogenization and aging, anodizing and pre-anodizing followed by painting. Corrosion behavior of samples was studied using two electrochemical methods. Potentiodynamic polarization was used to measure corrosion rate and current density, while Electrochemical Impedance Spectroscopy (EIS) helped to understand the behavior of protective layers and corrosion progression. Tests were carried out in a 3.5% NaCl solution at room temperature. EIS results were analyzed using equivalent circuit models to better understand electrochemical processes. Overall, this study shows how surface treatment affects corrosion resistance and highlights advantages of EIS in studying corrosion behavior in a more reliable and repeatable way. Full article
Show Figures

Figure 1

24 pages, 5170 KB  
Article
EIM-YOLO: A Defect Detection Method for Metal-Painted Surfaces on Electrical Sealing Covers
by Zhanjun Wu and Likang Yang
Appl. Sci. 2025, 15(17), 9380; https://doi.org/10.3390/app15179380 - 26 Aug 2025
Viewed by 715
Abstract
Electrical sealing covers are widely used in various industrial equipment, where the quality of their metal-painted surfaces directly affects product appearance and long-term reliability. Micro-defects such as pores, particles, scratches, and uneven paint coatings can compromise protective performance during manufacturing. In the rapidly [...] Read more.
Electrical sealing covers are widely used in various industrial equipment, where the quality of their metal-painted surfaces directly affects product appearance and long-term reliability. Micro-defects such as pores, particles, scratches, and uneven paint coatings can compromise protective performance during manufacturing. In the rapidly growing new energy vehicle (NEV) industry, battery charging-port sealing covers are critical components, requiring precise defect detection due to exposure to harsh environments, like extreme weather and dust-laden conditions. Even minor defects can lead to water ingress or foreign matter accumulation, affecting vehicle performance and user safety. Conventional manual or rule-based inspection methods are inefficient, and the existing deep learning models struggle with detecting minor and subtle defects. To address these challenges, this study proposes EIM-YOLO, an improved object detection framework for the automated detection of metal-painted surface defects on electrical sealing covers. We propose a novel lightweight convolutional module named C3PUltraConv, which reduces model parameters by 3.1% while improving mAP50 by 1% and recall by 3.2%. The backbone integrates RFAConv for enhanced feature perception, and the neck architecture uses an optimized BiFPN-concat structure with adaptive weight learning for better multi-scale feature fusion. Experimental validation on a real-world industrial dataset collected using industrial cameras shows that EIM-YOLO achieves a precision of 71% (an improvement of 3.4%), with mAP50 reaching 64.8% (a growth of 2.6%), and mAP50–95 improving by 1.2%. Maintaining real-time detection capability, EIM-YOLO significantly outperforms the existing baseline models, offering a more accurate solution for automated quality control in NEV manufacturing. Full article
Show Figures

Figure 1

25 pages, 5802 KB  
Review
Recycling and Reuse of Grit Blasting Waste for Composite Materials: Directions, Properties and Physical Chemistry Approaches
by Konstantinos Kavalarakis, Evangelia C. Vouvoudi and Ioannis A. Kartsonakis
J. Compos. Sci. 2025, 9(8), 453; https://doi.org/10.3390/jcs9080453 - 21 Aug 2025
Viewed by 1578
Abstract
This study reviews the methods and materials used in industry and ship maintenance to remove rust, marine deposits and paint from ships. It also reviews how this waste is transferred and repurposed into useful materials. The notion of recycling in this field of [...] Read more.
This study reviews the methods and materials used in industry and ship maintenance to remove rust, marine deposits and paint from ships. It also reviews how this waste is transferred and repurposed into useful materials. The notion of recycling in this field of application represents the reuse of the waste blend of the abrasive grit material along with the mineral residues, antifouling agents and coatings removed in meaningful applications. They are used in building construction materials, road construction blends, insulation surfaces, renewed composites and coatings. The main concern of the experts is the presence of heavy metals that limit the applications of the waste mixes. Therefore, a thorough characterization of the waste stream is paramount to ensure its safety and suitability for repurposing. Furthermore, the study investigates the potential for upcycling these waste materials into higher-value products, moving beyond simple reuse to create new economic opportunities. Ultimately, the goal is to convert a former waste stream into a valuable resource, aligning with circular economic principles. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 2834 KB  
Article
LCA Views of Low-Carbon Strategy in Historic Shopping District Decoration—Case Study in Harbin
by Lin Geng, Jiayi Gao, Minghui Xue and Yuelin Yang
Buildings 2025, 15(16), 2944; https://doi.org/10.3390/buildings15162944 - 19 Aug 2025
Viewed by 638
Abstract
This study focuses on buildings in the Chinese–Baroque Historic Shopping District in Harbin. In view of global climate change and high carbon emissions from the construction industry, this study aims to quantify carbon emissions during the decoration process and explore low-carbon decoration strategies [...] Read more.
This study focuses on buildings in the Chinese–Baroque Historic Shopping District in Harbin. In view of global climate change and high carbon emissions from the construction industry, this study aims to quantify carbon emissions during the decoration process and explore low-carbon decoration strategies that suit the local characteristics. This research adopts a four-stage framework of “data collection–quantitative analysis–strategy design–verification and optimization” and integrates Life Cycle Assessment (LCA) and multi-objective optimization theory. Data are collected through questionnaires and field investigations, and simulations and analyses are carried out using Grasshopper and Honeybee. The results show that there are differences in carbon emissions between different decoration schemes. The chosen scheme of raw concrete and paint results in relatively low carbon emissions over the 10.12-year usage cycle. Based on this, design strategies such as extending the service life of decorations, rationally renovating windows, and preferentially selecting local low-carbon materials are proposed and applied to practical projects. This study not only fills a gap in the research on the low-carbon renovation of historical commercial blocks from the perspective of LCA but also provides practical solutions for the sustainable development of historical shopping blocks in Harbin and similar regions, promoting the low-carbon transformation of cities. Full article
(This article belongs to the Special Issue Architecture and Landscape Architecture)
Show Figures

Figure 1

20 pages, 7313 KB  
Article
Integrated Modeling of Composition-Resolved Source Apportionment and Dynamic Projection for Ozone Pollution in Datong
by Xiaofeng Yao, Tongshun Han, Zexuan Yang, Xiaohui Zhang and Liang Pei
Toxics 2025, 13(8), 666; https://doi.org/10.3390/toxics13080666 - 8 Aug 2025
Viewed by 743
Abstract
Growing ozone (O3) pollution in industrial cities urgently requires in-depth mechanistic research. This study utilized multi-year observational data from Datong City, China, from 2020 to 2024, integrating time trend diagnostics, correlation dynamics analysis, Environmental Protection Agency Positive Matrix Factorization 5.0 (EPA [...] Read more.
Growing ozone (O3) pollution in industrial cities urgently requires in-depth mechanistic research. This study utilized multi-year observational data from Datong City, China, from 2020 to 2024, integrating time trend diagnostics, correlation dynamics analysis, Environmental Protection Agency Positive Matrix Factorization 5.0 (EPA PMF 5.0) model simulations, and a grey prediction model (GM (1,1)) projection method to reveal the coupling mechanisms among O3 precursors. Key breakthroughs include the following: (1) A ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx) of 1.5 clearly distinguishes between NOx-constrained (winter) and VOC-sensitive (summer) modes, a conclusion validated by the strong negative correlation between O3 and NOx (r = −0.80, p < 0.01) and the dominant role of NO titration. (2) Aromatic compounds (toluene, xylene) used as solvents in industrial emissions, despite accounting for only 7.9% of VOC mass, drove 37.1% of ozone formation potential (OFP), while petrochemical and paint production (accounting for 12.2% of VOC mass) contributed only 0.3% of OFP. (3) Quantitative analysis of OFP using PMF identified natural gas/fuel gas use and leakage (accounting for 34.9% of OFP) and solvent use (accounting for 37.1% of OFP) as key control targets. (4) The GM (1,1) model predicts that, despite a decrease in VOC concentrations (−15.7%) and an increase in NOx concentrations (+2.4%), O3 concentrations will rise to 169.7 μg m−3 by 2025 (an increase of 7.4% compared to 2024), indicating an improvement in photochemical efficiency. We have established an activity-oriented prioritization framework targeting high-OFP species from key sources. This provides a scientific basis for precise O3 emission reductions consistent with China’s 15th Five-Year Plan for synergistic pollution/carbon governance. Full article
(This article belongs to the Special Issue Analysis of the Sources and Components of Aerosols in Air Pollution)
Show Figures

Graphical abstract

26 pages, 4899 KB  
Article
Material Perception in Virtual Environments: Impacts on Thermal Perception, Emotions, and Functionality in Industrial Renovation
by Long He, Minjia Wu, Yue Ma, Di Cui, Yongjiang Wu and Yang Wei
Buildings 2025, 15(15), 2698; https://doi.org/10.3390/buildings15152698 - 31 Jul 2025
Viewed by 999
Abstract
Industrial building renovation is a sustainable strategy to preserve urban heritage while meeting modern needs. However, how interior material scenes affect users’ emotions, thermal perception, and functional preferences remains underexplored in adaptive reuse contexts. This study used virtual reality (VR) to examine four [...] Read more.
Industrial building renovation is a sustainable strategy to preserve urban heritage while meeting modern needs. However, how interior material scenes affect users’ emotions, thermal perception, and functional preferences remains underexplored in adaptive reuse contexts. This study used virtual reality (VR) to examine four common material scenes—wood, concrete, red brick, and white-painted surfaces—within industrial renovation settings. A total of 159 participants experienced four Lumion-rendered VR environments and rated them on thermal perception (visual warmth, thermal sensation, comfort), emotional response (arousal, pleasure, restoration), and functional preference. Data were analyzed using repeated measures ANOVA and Pearson correlation. Wood and red brick scenes were associated with warm visuals; wood scenes received the highest ratings for thermal comfort and pleasure, white-painted scenes for restoration and arousal, and concrete scenes, the lowest scores overall. Functional preferences varied by space: white-painted and concrete scenes were most preferred in study/work settings, wood in social spaces, wood and red brick in rest areas, and concrete in exhibition spaces. By isolating material variables in VR, this study offers a novel empirical approach and practical guidance for material selection in adaptive reuse to enhance user comfort, emotional well-being, and spatial functionality in industrial heritage renovations. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 4166 KB  
Article
Power Consumption and Mixing Intensity of Jet Flow Mixer in Industrial Tank
by Julia Wilewska, Wojciech Orciuch, Adam Dudała, Pawel Gierycz and Łukasz Makowski
Energies 2025, 18(15), 3975; https://doi.org/10.3390/en18153975 - 25 Jul 2025
Viewed by 1136
Abstract
A jet flow mixer is a novel agitator type widely used in the industry. However, scientific research has yet to be conducted on this impeller type. In this study, six types of fluids with various properties widely used in the paint industry were [...] Read more.
A jet flow mixer is a novel agitator type widely used in the industry. However, scientific research has yet to be conducted on this impeller type. In this study, six types of fluids with various properties widely used in the paint industry were chosen to calculate the positioning of the jet flow mixer in the tank. Calculations were performed using computational fluid dynamics (CFD) software and validated using literature data. Simulations were conducted to consider the inside of the jet flow mixer and the inside of the tank. The initial calculations made for jet flow mixers allowed the determination of volume flow and power numbers for three types of mixers (propeller agitator and Pitched Blade Turbine with three and four blades). Those parameters were then used in subsequent calculations, obtaining the optimal inclination angle of the agitator and power consumption for each considered case. The jet flow mixer with a propeller impeller positioned at an angle of 45° proved to be the choice to achieve the best results. Full article
Show Figures

Figure 1

21 pages, 3652 KB  
Article
Mechanical Loading of Barite Rocks: A Nanoscale Perspective
by Hassan Abubakar Adamu, Seun Isaiah Olajuyi, Abdulhakeem Bello, Peter Azikiwe Onwualu, Olumide Samuel Oluwaseun Ogunmodimu and David Oluwasegun Afolayan
Minerals 2025, 15(8), 779; https://doi.org/10.3390/min15080779 - 24 Jul 2025
Viewed by 830
Abstract
Barite, a mineral composed of barium sulphate, holds global significance due to its wide range of industrial applications. It plays a crucial role as a weighting agent in drilling fluids for the oil and gas industry, in radiation shielding, and as a filler [...] Read more.
Barite, a mineral composed of barium sulphate, holds global significance due to its wide range of industrial applications. It plays a crucial role as a weighting agent in drilling fluids for the oil and gas industry, in radiation shielding, and as a filler in paints and plastics. Although there are significant deposits of the mineral in commercial quantities in Nigeria, the use of barite of Nigerian origin has been low in the industry due to challenges that require further research and development. This research employed nanoindentation experiments using a model Ti950 Tribo indenter instrument equipped with a diamond Berkovich tip. Using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), we gained information about the structure and elements in the samples. The load–displacement curves were examined to determine the hardness and reduced elastic modulus of the barite samples. The SEM images showed that barite grains have a typical grainy shape, with clear splitting lines and sizes. XRD and EDX analysis confirmed that the main components are chlorite, albite, barium, and oxygen, along with small impurities like silicon and calcium from quartz and calcite. The average hardness of the IB3 and IB4 samples was 1.88 GPa and 1.18 GPa, respectively, meaning that the IB3 sample will need more energy to crush because its hardness is within the usual barite hardness range of 1.7 GPa to 2.0 GPa. The findings suggest further beneficiation processes to enhance the material’s suitability for drilling and other applications. Full article
Show Figures

Figure 1

24 pages, 4099 KB  
Article
Dynamic Control of Coating Accumulation Model in Non-Stationary Environment Based on Visual Differential Feedback
by Chengzhi Su, Danyang Yu, Wenyu Song, Huilin Tian, Haifeng Bao, Enguo Wang and Mingzhen Li
Coatings 2025, 15(7), 852; https://doi.org/10.3390/coatings15070852 - 19 Jul 2025
Viewed by 491
Abstract
To address the issue of coating accumulation model failure in unstable environments, this paper proposes a dynamic control method based on visual differential feedback. An image difference model is constructed through online image data modeling and real-time reference image feedback, enabling real-time correction [...] Read more.
To address the issue of coating accumulation model failure in unstable environments, this paper proposes a dynamic control method based on visual differential feedback. An image difference model is constructed through online image data modeling and real-time reference image feedback, enabling real-time correction of the coating accumulation model. Firstly, by combining the Arrhenius equation and the Hagen–Poiseuille equation, it is demonstrated that pressure regulation and temperature changes are equivalent under dataset establishment conditions, thereby reducing data collection costs. Secondly, online paint mist image acquisition and processing technology enables real-time modeling, overcoming the limitations of traditional offline methods. This approach reduces modeling time to less than 4 min, enhancing real-time parameter adjustability. Thirdly, an image difference model employing a CNN + MLP structure, combined with feature fusion and optimization strategies, achieved high prediction accuracy: R2 > 0.999, RMSE < 0.79 kPa, and σe < 0.74 kPa on the test set for paint A; and R2 > 0.997, RMSE < 0.67 kPa, and σe < 0.66 kPa on the test set for aviation paint B. The results show that the model can achieve good dynamic regulation for both types of typical aviation paint used in the experiment: high-viscosity polyurethane enamel (paint A, viscosity 22 s at 25 °C) and epoxy polyamide primer (paint B, viscosity 18 s at 25 °C). In summary, the image difference model can achieve dynamic regulation of the coating accumulation model in unstable environments, ensuring the stability of the coating accumulation model. This technology can be widely applied in industrial spraying scenarios with high requirements for coating uniformity and stability, especially in occasions with significant fluctuations in environmental parameters or complex process conditions, and has important engineering application value. Full article
Show Figures

Figure 1

27 pages, 1803 KB  
Article
Mural Painting Across Eras: From Prehistoric Caves to Contemporary Street Art
by Anna Maria Martyka, Agata Rościecha-Kanownik and Ignacio Fernández Torres
Arts 2025, 14(4), 77; https://doi.org/10.3390/arts14040077 - 16 Jul 2025
Viewed by 2886
Abstract
This article traces the historical evolution of mural painting as a medium of cultural expression from prehistoric cave art to contemporary street interventions. Adopting a diachronic and interdisciplinary approach, it investigates how muralism has developed across civilizations in relation to techniques, symbolic systems, [...] Read more.
This article traces the historical evolution of mural painting as a medium of cultural expression from prehistoric cave art to contemporary street interventions. Adopting a diachronic and interdisciplinary approach, it investigates how muralism has developed across civilizations in relation to techniques, symbolic systems, social function, and its embeddedness in architectural and urban contexts. The analysis is structured around key historical periods using emblematic case studies to examine the interplay between materiality, iconography, and socio-political meaning. From sacred enclosures and civic monuments to post-industrial walls and digital projections, murals reflect shifting cultural paradigms and spatial dynamics. This study emphasizes how mural painting, once integrated into sacred and imperial architecture, has become a tool for public participation, protests, and urban storytelling. Particular attention is paid to the evolving relationship between wall painting and the spaces it inhabits, highlighting the transition from permanence to ephemerality and from monumentality to immediacy. This article contributes to mural studies by offering a comprehensive framework for understanding the technical and symbolic transformations of the medium while proposing new directions for research in the context of digital urbanism and cultural memory. Full article
(This article belongs to the Section Applied Arts)
Show Figures

Figure 1

18 pages, 1456 KB  
Review
Taxonomy, Phylogeny, Genomes, and Repeatomes in the Subgenera Salvia, Sclarea, and Glutinaria (Salvia, Lamiaceae)
by Julia V. Kalnyuk, Olga Yu. Yurkevich, Ekaterina D. Badaeva, Alexey R. Semenov, Svyatoslav A. Zoshchuk, Alexandra V. Amosova and Olga V. Muravenko
Int. J. Mol. Sci. 2025, 26(13), 6436; https://doi.org/10.3390/ijms26136436 - 4 Jul 2025
Cited by 1 | Viewed by 972
Abstract
The genus Salvia L. (Lamiaceae) is characterized by complex taxonomy and controversial phylogeny. This genus includes about a thousand species with worldwide distribution and high ecological, structural, functional and morphological diversity. Because of their high content of essential oils, various Salvia plants are [...] Read more.
The genus Salvia L. (Lamiaceae) is characterized by complex taxonomy and controversial phylogeny. This genus includes about a thousand species with worldwide distribution and high ecological, structural, functional and morphological diversity. Because of their high content of essential oils, various Salvia plants are widely used in medicine, as well as in the food, perfume, cosmetic, and paint industries; they also are valuable melliferous resources. The present study reviews the taxonomic history of the genus Salvia and the phylogenetic relationships between the taxa within the subgenera Salvia, Sclarea, and Glutinaria. Among the Salvia species, three basic chromosome numbers, x = 7, x = 8, and x = 11, were most common, although other basic chromosome numbers (x = 6–19) were determined, which was probably due to events of dysploidy, aneupoidy, and/or polyploidy occurring during speciation. Recent molecular cytogenetic studies based on Next Generation Sequencing technologies have clarified the chromosomal organization of several Salvia species. The patterns of chromosome distribution of 45S rDNA, 5S rDNA, and satellite DNAs made it possible to assess their intra- and interspecific chromosome diversity. However, further cytogenetic studies are needed to characterize the chromosomes in the genomes of other Salvia species and specify the genomic relationships among them. Full article
(This article belongs to the Special Issue Repetitive DNA)
Show Figures

Figure 1

35 pages, 1062 KB  
Review
Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review
by Anna Kochanek, Katarzyna Grąz, Halina Potok, Anna Gronba-Chyła, Justyna Kwaśny, Iwona Wiewiórska, Józef Ciuła, Emilia Basta and Jacek Łapiński
Toxics 2025, 13(7), 564; https://doi.org/10.3390/toxics13070564 - 2 Jul 2025
Cited by 8 | Viewed by 6429
Abstract
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary [...] Read more.
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary microplastics. Microplastics, or particles smaller than 5 mm, and nanoplastics, or particles smaller than 1 μm, are the products of degradation and, in particular, disintegration processes that occur in nature as a result of several physical, chemical, and biological variables. Polypropylene, polyethylene, polyvinyl chloride (PVC), polystyrene, polyurethane, and polyethylene terephthalate (PET) are among the chemicals included in this contamination in decreasing order of quantity. Micro- and nanoplastics have been detected in the air, water, and soil, confirming their ubiquitous presence in natural environments. Their widespread distribution poses significant threats to human health, including oxidative stress, inflammation, cellular damage, and potential carcinogenic effects. The aim of this article is to review the current literature on the occurrence of micro- and nanoplastics in various environmental compartments and to analyze the associated health consequences. The article also discusses existing legal regulations and highlights the urgent need for intensified research into the toxicological mechanisms of microplastics and the development of more effective strategies for their mitigation. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

Back to TopTop