Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review
Abstract
1. Introduction
2. Types of Microplastics (MPs) and Nanoplastics (NPs) and Their Sources
3. Micro- and Nanoplastic (MNP) Contaminations in the Environment
3.1. Presence of Micro- and Nanoplastics in Water
3.1.1. The Scale of Microplastics Pollution in the Water Environment
3.1.2. Impact of Micro- and Nanoplastics on Aquatic Organisms and Human Health
3.1.3. Migration Pathways of Microplastics into the Aquatic Environment
3.2. Presence of Micro- and Nanoplastics in Soil
3.2.1. The Scale of Microplastic Pollution in the Soil Environment
3.2.2. Properties of Microplastics in Soil and Their Impact on Soil Processes
Physicochemical Properties of Microplastics and Their Interactions with Soil
Influence of Microplastics on Soil Fertility and Structure
Microplastics in Coastal Ecosystems and Vegetation-Based Capture
Wastewater Sludge as a Source of Microplastics in Agricultural Soils
3.2.3. Microplastic Toxicity and Their Impact on Soil-Water Organisms
3.3. Presence of Micro- and Nanoplastics in the Air
3.3.1. Scale of Air Pollution by MNP
3.3.2. Sources of MNP in the Air
3.3.3. The Impact of Airborne Microplastics on Human Health
4. The Effects of Test Particles on Human Health
5. Regulating Nano- and Microplastics
6. Conclusions and Directions for Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACR | Acrylic polymer/poliakrylan |
BPA | Bisphenol A |
BPS | Bisphenol S |
CV | Viscose |
DOC | Dissolved Organic Carbon |
EC | Environmental Index |
EI | European Commission |
EVA | Ethylene-Vinyl Acetate |
EU | European Union |
HDPE | High-Density Polyethylene |
INC | Inter-governmental Negotiating Committee |
LDPE | Low-Density Polyethylene |
MP | Microplastics |
MNP | Micro- and Nanoplastics |
NP | Nanoplastics |
MPC | Microplastic Carbon concentration |
OECD | Organisation for Economic Co-operation and Development |
PA | Polyamide |
PAHs | Polycyclic Aromatic Hydrocarbons |
PAN | Polyacrylonitrile |
PBAT | Poly(butylene adipate-co-terephthalate) |
PBBs | Polybrominated Biphenyls |
PES | Polyester |
PET | Polyethylene Terephthalate |
PFOS | Perfluorooctane Sulfonate |
PFOA | Perfluorooctanoic Acid |
PHB | Poly(3-hydroxybutyrate) |
PLA | Polylactic Acid |
PP | Polystyrene |
PVC | Polyvinyl Chloride |
REACH | Registration, Evaluation, Authorisation and Restriction of Chemicals |
UV | Ultraviolet |
UN | United Nations |
UNEA | United Nations Environment Assembly |
References
- Kochanek, A.; Janczura, J.; Jurkowski, S.; Zacłona, T.; Gronba-Chyła, A.; Kwaśnicki, P. The Analysis of Exhaust Composition Serves as the Foundation of Sustainable Road Transport Development in the Context of Meeting Emission Standards. Sustainability 2025, 17, 3420. [Google Scholar] [CrossRef]
- Gronba-Chyła, A.; Generowicz, A. Municipal waste fraction below 10 mm and possibility of its use in ceramic building materials. Przem. Chem. 2020, 99, 1000–1003. [Google Scholar] [CrossRef]
- Gronba-Chyła, A.; Generowicz, A.; Kwaśnicki, P.; Kochanek, A. Recovery and Recycling of Selected Waste Fractions with a Grain Size Below 10 mm. Sustainability 2025, 17, 1612. [Google Scholar] [CrossRef]
- Ghosh, S.; Dey, S.; Mandal, A.H.; Sadhu, A.; Saha, N.C.; Barceló, D.; Pastorino, P.; Saha, S. Exploring the ecotoxicological impacts of microplastics on freshwater fish: A critical review. J. Contam. Hydrol. 2025, 269, 104514. [Google Scholar] [CrossRef] [PubMed]
- Yushchishina, A.; Pohrebennyk, V.; Mitryasova, O.; Pasichnyk, M.; Kochanek, A. Aggregative Stability and Bactericidal Effect of Nanosilver Colloid Solutions in the Presence of Surface-Active Substances of Different Chemical Nature. In Proceedings of the 19th International Multidisciplinary Scientific GeoConference SGEM 2019, Albena, Bulgaria, 30 June–6 July 2019; STEF92 Technology Ltd.: Sofia, Bulgaria, 2019; Volume 19, pp. 11–18. [Google Scholar] [CrossRef]
- Inamdar, A.; Cherukattu, J.; Anand, A.; Kandasubramanian, B. Thermoplastic-Toughened High-Temperature Cyanate Esters and Their Application in Advanced Composites. Ind. Eng. Chem. Res. 2018, 57, 4479–4504. [Google Scholar] [CrossRef]
- Gore, P.; Khraisheh, M.; Kandasubramanian, B. Nanofibers of Resorcinol–Formaldehyde for Effective Adsorption of As(III) Ions from Mimicked Effluents. Environ. Sci. Pollut. Res. 2018, 25, 11729–11745. [Google Scholar] [CrossRef] [PubMed]
- Jayalakshmi, C.G.; Inamdar, A.; Anand, A.; Kandasubramanian, B. Polymer Matrix Composites as Broadband Radar-Absorbing Structures for Stealth Aircrafts. J. Appl. Polym. Sci. 2018, 135, 47241. [Google Scholar] [CrossRef]
- Kumar, P.; Gore, P.M.; Magisetty, R.; Magisetty, R.P.; Kandasubramanian, B.; Shunmugam, R. Poly(1,6-Heptadiyne)/ABS Functionalized Microfibers for Hydrophobic Applications. J. Polym. Res. 2020, 27, 14. [Google Scholar] [CrossRef]
- Gopinathapanicker, J.C.; Inamdar, A.; Anand, A.; Joshi, M.; Kandasubramanian, B. Radar Transparent, Impact-Resistant, and High-Temperature Capable Radome Composites Using Polyetherimide-Toughened Cyanate Ester Resins for High-Speed Aircrafts through Resin Film Infusion. Ind. Eng. Chem. Res. 2020, 59, 5602–5613. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Nagalakshmaiah, M.; Afrin, S.; Malladi, R.P.; Elkoun, S.; Robert, M.; Ansari, M.; Svedberg, A.; Karim, Z. Biocomposites: Present Trends and Challenges for the Future. In Green Composites for Automotive Applications; Koronis, G., Silva, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 197–215. [Google Scholar] [CrossRef]
- Leng, Z.; Padhan, R.K.; Sreeram, A. Production of a Sustainable Paving Material through Chemical Recycling of Waste PET into Crumb Rubber Modified Asphalt. J. Clean. Prod. 2018, 180, 682–688. [Google Scholar] [CrossRef]
- United Nations Environment Programme; Secretariat of the Basel, Rotterdam and Stockholm Conventions. Chemicals in Plastics: A Technical Report; UNEP: Nairobi, Kenya, 2023; Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/42366/Chemicals-in-Plastics.pdf?sequence=1&isAllowed=y (accessed on 1 April 2025).
- Phuong, N.N.; Zalouk-Vergnoux, A.; Poirier, L.; Kamari, A.; Châtel, A.; Mouneyrac, C.; Lagarde, F. Is There Any Consistency Between the Microplastics Found in the Field and Those Used in Laboratory Experiments? Environ. Pollut. 2016, 211, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Smelik, A. Polyester: A Cultural History. Fash. Pract. 2023, 15, 279–299. [Google Scholar] [CrossRef]
- Mamdouh, F.; Hassaboorcid, A.G.; Othman, H. Improving the performance properties of polyester fabrics through treatments with natural polymers. J. Text. 2025, 22, 219–231. [Google Scholar] [CrossRef]
- Kotowicz, J.; Niesporek, K.; Baczeńska, O.; Brzęczek, M. Production of alternative fuels and valuable chemicals from plastic waste. Rynek Energii 2025, 1, 64–70. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-afa57053-17bf-46e3-b6bb-6762212d2472/ (accessed on 1 April 2025).
- Alsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Mater. Proc. 2022, 56, 2245–2251. [Google Scholar] [CrossRef]
- Jakubas, M.; Kiszka, J. Myths about plastic. Analit 2022, 11, 22–24. Available online: http://analit.agh.edu.pl/ (accessed on 1 April 2025).
- Reyes Forsberg, D.C.; Bengtsson, J.; Hollinger, N.; Kaldéus, T. Towards Sustainable Viscose-to-Viscose Production: Strategies for Recycling of Viscose Fibres. Sustainability 2024, 16, 4127. [Google Scholar] [CrossRef]
- Conk, R.J.; Hanna, S.; Shi, J.X.; Yang, J.; Ciccia, N.R.; Qi, L.; Bloomer, B.J.; Heuvel, S.; Wills, T.; Su, J.; et al. Catalytic Deconstruction of Waste Polyethylene with Ethylene to Form Propylene. Science 2022, 377, 1561–1566. [Google Scholar] [CrossRef]
- Bi, M.; Liu, W.; Luan, X.; Li, M.; Liu, M.; Liu, W.; Cui, Z. Production, Use, and Fate of Phthalic Acid Esters for Polyvinyl Chloride Products in China. Environ. Sci. Technol. 2021, 55, 13980–13989. [Google Scholar] [CrossRef]
- Samaro, A.; Shaqour, B.; Goudarzi, N.M.; Ghijs, M.; Cardon, L.; Boone, M.N.; Verleije, B.; Beyers, K.; Vanhoorne, V.; Cos, P.; et al. Can Filaments, Pellets and Powder Be Used as Feedstock to Produce Highly Drug-Loaded Ethylene-Vinyl Acetate 3D Printed Tablets Using Extrusion-Based Additive Manufacturing? Int. J. Pharm. 2021, 607, 120922. [Google Scholar] [CrossRef] [PubMed]
- Avio, C.G.; Gorbi, S.; Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 2017, 128, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, J.Y. Emerging Concerns about Microplastic Pollution on Groundwater in South Korea. Sustainability 2020, 12, 5275. [Google Scholar] [CrossRef]
- Lebreton, L.C.M.; Van Der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nature Communications 2017, 8, 15611. [Google Scholar] [CrossRef] [PubMed]
- Ašmonaitė, G. Microplastics in the Aquatic Environment Insights into Biological Fate and Effects in Fish. 2017. Available online: https://www.researchgate.net/publication/349290763_Microplastics_in_the_Aquatic_Environment_Insights_into_Biological_Fate_and_Effects_in_Fish/ (accessed on 1 April 2025).
- Bunge, A.; Lugert, V.; McClure, M.; Kammann, U.; Hanel, R.; Scharsack, J.P. Less impact than suspected: Dietary exposure of three-spined sticklebacks to microplastic fibers does not affect their body condition and immune parameters. Sci. Total Environ. 2022, 819, 153077. [Google Scholar] [CrossRef]
- Yokota, K.; Waterfield, H.; Hastings, C.; Davidson, E.; Kwietniewski, E.; Wells, B. Finding the missing piece of the aquatic plastic pollution puzzle: Interaction between primary producers and microplastics. Limnol. Oceanogr. Lett. 2017, 2, 91–104. [Google Scholar] [CrossRef]
- Kalčíková, G.; Skalar, T.; Marolt, G.; Kokalj, A.J. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Res. 2020, 175, 115644. [Google Scholar] [CrossRef]
- Kesy, K.; Labrenz, M.; Scales, B.S.; Kreikemeyer, B.; Oberbeckmann, S. Vibrio Colonization Is Highly Dynamic in Early Microplastic-Associated Biofilms as Well as on Field-Collected Microplastics. Microorganisms 2020, 9, 76. [Google Scholar] [CrossRef]
- Issac, M.N.; Kandasubramanian, B. Effect of microplastics in water and aquatic systems. Environ. Sci. Pollut. Res. 2021, 28, 19544–19562. [Google Scholar] [CrossRef]
- Sahetya, T.J.; Dixit, F.; Balasubramanian, K. Waste citrus fruit peels for removal of Hg(II) ions. Desalin. Water Treat. 2015, 53, 1404–1416. Available online: https://www.researchgate.net/publication/279292081_Waste_citrus_fruit_peels_for_removal_of_HgII_ions/ (accessed on 1 April 2025).
- Sharma, S.; Balasubramanian, K. Molecularly imprinted and nanoengineered camphor soot functionalized PAN-nanofibers for effluent treatment. RSC Adv. 2015, 5, 31732–31741. [Google Scholar] [CrossRef]
- Gupta, P.; Lapalikar, V.; Kundu, R.; Balasubramanian, K. Recent advances in membrane based waste water treatment technology: A review. Energy Environ. Focus 2016, 5, 241–267. [Google Scholar] [CrossRef]
- Gupta, P.; Kandasubramanian, B. Directional fluid gating by janus membranes with heterogeneous wetting properties for selective oil-water separation. ACS Appl. Mater. Interfaces 2017, 9, 19102–19113. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, S.; Kandasubramanian, B. Application of electrospun materials in water treatment. In Electrospun Materials and Their Allied Applications, 1st ed.; Inamuddin, Boddula, R., Ahamed, M.I., Asiri, A.M., Eds.; Wiley: Hoboke, NJ, USA, 2020; pp. 151–183. [Google Scholar]
- Espinosa, C.; Esteban, M.Á.; Cuesta, A. Microplastics in aquatic environments and their toxicological implications for fish. In Toxicology-New Aspects to This Scientific Conundrum; IntechOpen: London, UK, 2016; p. 113. [Google Scholar] [CrossRef]
- Weber, A.; Scherer, C.; Brennholt, N.; Reifferscheid, G.; Wagner, M. PET microplastics do not negatively affect the survival, development, metabolism and feeding activity of the freshwater invertebrate Gammarus pulex. Environ. Pollut. 2018, 234, 181–189. [Google Scholar] [CrossRef]
- Piccardo, M.; Provenza, F.; Grazioli, E.; Cavallo, A.; Terlizzi, A.; Renzi, M. PET microplastics toxicity on marine key species is influenced by pH, particle size and food variations. Sci. Total Environ. 2020, 715, 136947. [Google Scholar] [CrossRef]
- Yang, P.; Rei Yamashita, R.; Ogawa, H.; Sheveleva, N.G.; Penkova, O.G.; Yamamuro, M.; Moore, M.V. Microplastics in freshwater copepods of Lake Baikal. J. Great Lakes Res. 2025, 51, 102495. [Google Scholar] [CrossRef]
- Rodrigues, J.P.; Duarte, A.C.; Santos-Echeandía, J.; Rocha-Santos, T. Significance of interactions between microplastics and POPs in the marine environment: A critical overview. TrAC Trends Anal. Chem. 2019, 111, 252–260. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, W.; Zhang, Z.; Grossart, H.-P.; Gadd, G.M. Microplastics provide new microbial niches in aquatic environments. Appl. Microbiol. Biotechnol. 2020, 104, 6501–6511. [Google Scholar] [CrossRef]
- Gonte, R.R.; Balasubramanian, K. Chemically modified polymer beads for sorption of gold from waste gold solution. J. Hazard. Mater. 2012, 217–218, 447–451. [Google Scholar] [CrossRef]
- Gore, P.M.; Gawali, P.; Naebe, M.; Wang, X.; Kandasubramanian, B. Polycarbonate and activated charcoal-engineered electrospun nanofibers for selective recovery of oil/solvent from oily wastewater. SN Appl. Sci. 2020, 2, 1786. [Google Scholar] [CrossRef]
- Thakur, K.; Kandasubramanian, B. Graphene and graphene oxide-based composites for removal of organic pollutants: A review. J. Chem. Eng. Data 2019, 64, 833–867. [Google Scholar] [CrossRef]
- Rajhans, A.; Gore, P.M.; Siddique, S.K.; Kandasubramanian, B. Ion-imprinted nanofibers of PVDF/1-butyl-3-methylimidazolium tetrafluoroborate for dynamic recovery of europium (III) ions from mimicked effluent. J. Environ. Chem. Eng. 2019, 7, 103068. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Savino, I. A detailed review study on potential effects of microplastics and additives of concern on human health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef] [PubMed]
- Law, K.L.; Thompson, R.C. Microplastics in the seas. Science 2014, 345, 144–145. [Google Scholar] [CrossRef]
- Cozar, A.; Echevarria, F.; Gonzalez-Gordillo, J.I.; Duarte, D.M. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef] [PubMed]
- Marn, N.; Jusup, M.; Kooijman, S.; Klanjscek, T. Quantifying impacts of plastic debris on marine wildlife identifies ecological breakpoints. Ecol. Lett. 2020, 23, 1479–1487. [Google Scholar] [CrossRef]
- Pabortsava, K.; Lampitt, R.S. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat. Commun. 2020, 11, 4073. [Google Scholar] [CrossRef]
- Udayakumar, K.V.; Gore, P.M.; Kandasubramanian, B. Foamed Materials for Oil-Water Separation. Chem. Eng. J. Adv. 2021, 5, 100076. [Google Scholar] [CrossRef]
- Gore, P.M.; Dhanshetty, M.; Balasubramanian, K. Bionic creation of nano-engineered Janus fabric for selective oil/organic solvent absorption. RSC Adv. 2016, 6, 111250–111260. [Google Scholar] [CrossRef]
- Gore, P.M.; Khurana, L.; Siddique, S.; Panicker, A.; Kandasubramanian, B. Ion-imprinted electrospun nanofibers of chitosan/1-butyl-3-methylimidazolium tetrafluoroborate for the dynamic expulsion of thorium (IV) ions from mimicked effluents. Environ. Sci. Pollut. Res. 2018, 25, 3320–3334. [Google Scholar] [CrossRef]
- Gharde, S.; Kandasubramanian, B. Mechanothermal and chemical recycling methodologies for the Fibre Reinforced Plastic (FRP). Environ. Technol. Innov. 2019, 14, 100311. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kang, J.-C.; Kim, J.-H. Toxic effects of microplastic (Polyethylene) on fish: Accumulation, hematological parameters and antioxidant responses in Korean Bullhead, Pseudobagrus fulvidraco. Sci. Total Environ. 2023, 877, 162874. [Google Scholar] [CrossRef]
- Zhang, B.; Tu, X.; Gu, Z. Henneguyosis: A novel threat to the exotic channel catfish Ictalurus punctatus cultivated in China. Aquaculture 2023, 576, 739831. [Google Scholar] [CrossRef]
- Yedier, S.; Yalçınkaya, S.K.; Bostanci, D. Exposure to polypropylene microplastics via diet and water induces oxidative stress in Cyprinus carpio. Aquat. Toxicol. 2023, 259, 106540. [Google Scholar] [CrossRef]
- Procházková, P.; Kalčíkováb, G.; Maršálková, E.; Brtnický, M.; Zlámalová Gargošová, H.; Kučerík, J. Assessing the ecological consequences of biodegradable plastics: Acute, chronic and multigenerational impacts of poly-3-hydroxybutyrate microplastics on freshwater invertebrate Daphnia magna. Heliyon 2024, 10, 36302. [Google Scholar] [CrossRef]
- Romdhani, I.; Venditti, M.; Gallo, A.; Abelouah, M.R.; Gaaied, S.; Boni, R.; Alla, A.A.; Minucci, S.; Banni, M. Environmental microplastics compromise reproduction of the marine invertebrate Mytilus galloprovincialis: A holistic approach. J. Hazard. Mater. 2024, 480, 136219. [Google Scholar] [CrossRef]
- Firmino, V.C.; Martins, R.T.; Brasil, L.S.; Cunha, E.J.; Pinedo-Garcia, R.B.; Hamada, N.; Juen, L. Do microplastics and climate change negatively affect shredder invertebrates from an amazon stream? An ecosystem functioning perspective. Environ. Pollut. 2023, 321, 121184. [Google Scholar] [CrossRef] [PubMed]
- Quaiser, N.; Sidra, S.; Javid, A.; Iqbal, A.; Amjad, M.; Azmat, H.; Arooj, F.; Farooq, K.; Nimra, A.; Ali, Z. Microplastics abundance in abiotic and biotic components along aquatic food chain in two freshwater ecosystems of Pakistan. Chemosphere 2023, 313, 137177. [Google Scholar] [CrossRef]
- Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 2016, 178, 189–195. [Google Scholar] [CrossRef]
- Benhadji, N.; Kurniawan, S.B.; Imron, M.F. Review of mayflies (Insecta Ephemeroptera) as a bioindicator of heavy metals and microplastics in freshwater. Sci. Total Environ. 2025, 958, 178057. [Google Scholar] [CrossRef]
- Park, H.; Park, B.S. Review of microplastic distribution, toxicity, analysis methods, and removal technologies. Water 2021, 13, 2736. [Google Scholar] [CrossRef]
- Castro-Castellon, A.T.; Horton, A.A.; Hughes, J.M.R.; Rampley, C.; Jeffers, E.S.; Bussi, G.; Whitehead, P. Ecotoxicity of microplastics to freshwater biota: Considering exposure and hazard across trophic levels. Sci. Total Environ. 2022, 816, 151638. [Google Scholar] [CrossRef]
- Ma, H.; Pu, S.; Liu, S.; Bai, Y.; Mandal, S.; Xing, B. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environ. Pollut. 2020, 261, 114089. [Google Scholar] [CrossRef]
- Thushari, G.G.N.; Senevirathna, J.D.M. Plastic pollution in the marine environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef] [PubMed]
- Ayalew, A.; Gonte, R.R.; Balasubramanian, K. Development of polymer composite beads for dye adsorption. Int. J. Green Nanotechnol. 2012, 4, 440–454. [Google Scholar] [CrossRef]
- Singh, N.; Balasubramanian, K. An effective technique for removal and recovery of uranium (ᴠɪ) from aqueous solution using cellulose–camphor soot nanofibers. RSC Adv. 2014, 4, 27691–27701. [Google Scholar] [CrossRef]
- Gonte, R.R.; Shelar, G.; Balasubramanian, K. Polymer–agro-waste composites for removal of Congo red dye from wastewater: Adsorption isotherms and kinetics. Desalination Water Treat. 2014, 52, 7797–7811. [Google Scholar] [CrossRef]
- Boyle, K.; Örmeci, B. Microplastics and Nanoplastics in the Freshwater and Terrestrial Environment: A Review. Water 2020, 12, 2633. [Google Scholar] [CrossRef]
- Anbumani, S.; Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 2018, 25, 14373–14396. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Sheng, Y.; Xiang, Q.; Zhou, Y.; Cizdziel, J.V. Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil. Environ. Pollut. 2020, 260, 113988. [Google Scholar] [CrossRef] [PubMed]
- Accinelli, C.; Abbas, H.K.; Bruno, V.; Khambhati, V.H.; Little, N.S.; Bellaloui, N.; Shier, W.T. Field studies on the deterioration of microplastic films from ultra-thin compostable bags in soil. JEM 2022, 305, 114407. [Google Scholar] [CrossRef] [PubMed]
- Scopetani, C.; Chelazzi, D.; Cincinelli, A.; Martellini, T.; Leiniö, V.; Pellinen, J. Hazardous contaminants in plastics contained in compost and agricultural soil. Chemosphere 2022, 293, 133645. [Google Scholar] [CrossRef]
- El Hayany, B.; El Fels, L.; Quénéa, K.; Dignac, M.F.; Rumpel, C.; Gupta, V.K.; Hafidi, M. Microplastics from lagooning sludge to composts as revealed by fluorescent staining- image analysis, Raman spectroscopy and pyrolysis-GC/MS. JEM 2020, 275, 111249. [Google Scholar] [CrossRef]
- Sajjad, M.; Huang, Q.; Khan, S.; Khan, M.A.; Liu, Y.; Wang, J.; Lian, F.; Wang, Q.; Guo, G. Microplastics in the soil environment: A critical review. Environ. Technol. Innov. 2022, 27, 102408. [Google Scholar] [CrossRef]
- En-Nejmy, K.; Hayany, B.E.; Al-Alawi, M.; Jemo, M.; Hafidi, M.; El Fels, L. Microplastics in soil: A comprehensive review of occurrence, sources, fate analytical techniques and potential impacts. Ecotoxicol. Environ. Saf. 2024, 288, 117332. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska, K.; Ormaniec, P. Microbial Succession on Microplastics in Wastewater Treatment Plants: Exploring the Complexities of Microplastic-Microbiome Interactions. Microb. Ecol. 2024, 87, 105. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- O’Connor, D.; Pan, S.Z.; Shen, Z.T.; Song, Y.N.; Jin, Y.L.; Wu, W.M.; Hou, D. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environ. Pollut. 2019, 249, 527–534. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Zhou, X.; Ding, W.; Wang, X.; Zhao, M.; Li, H.; Zou, G.; Chen, Y. Long-term application of organic compost is the primary contributor to microplastic pollution of soils in a wheat–maize rotation. Sci. Total Environ. 2023, 866, 161123. [Google Scholar] [CrossRef]
- Wen, X.; Yin, L.; Zhou, Z.; Kang, Z.; Sun, Q.; Zhang, Y.; Long, Y.; Nie, X.; Wu, Z.; Jiang, C. Microplastics can affect soil properties and chemical speciation of metals in yellow-brown soil. Ecotoxicol. Environ. Saf. 2022, 243, 113958. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Xu, J.; Fu, B.; Wu, Y.; Zhang, K.; Han, J.; Kong, J.; Ma, Y. Microplastic accumulation and transport in agricultural soils with long-term sewage sludge amendments. J. Hazard. Mater. 2024, 480, 136263. [Google Scholar] [CrossRef]
- Ormaniec, P.; Baczyński, T. Hidden contaminants: Unveiling the content of microplastics in municipal sewage sludge that may affect soil ecosystems. Desalin. Water Treat. 2025, 322, 101132. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Wei, F.; Dai, Z.; Zhang, M. Transport behavior of microplastics in soil-water environments and its dependence on soil components. Environ. Pollut. 2024, 346, 123542. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Gilfedder, B.S.; Peng, H.; Niu, G.; Frei, S. Effects of clay minerals on the transport of nanoplastics through water-saturated porous media. Sci. Total Environ. 2021, 796, 148982. [Google Scholar] [CrossRef]
- Ren, Z.; Gui, X.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Microplastics in the soil- groundwater environment: Aging, migration, and co-transport of contaminants—A critical review. J. Hazard. Mater. 2021, 419, 126455. [Google Scholar] [CrossRef] [PubMed]
- Godoy, V.; Blazquez, G.; Quesada, L.; Martin-Lara, M.A. The potential of microplastics as carriers of metals. Environ. Pollut. 2019, 255, 113363. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460. [Google Scholar] [CrossRef]
- Kwiatkowska, K.; Ormaniec, P. Analysis of the potential role of microplastics as transporters of microorganisms in activated sludge. Desalin. Water Treat. 2025, 322, 101124. [Google Scholar] [CrossRef]
- Munoz, M.; Ortiz, D.; Nieto-Sandoval, J.; de Pedro, Z.M.; Casas, J.A. Adsorption of micropollutants onto realistic microplastics: Role of microplastic nature, size, age, and NOM fouling. Chemosphere 2021, 238, 131085. [Google Scholar] [CrossRef]
- Vithanage, M.; Ramanayaka, S.; Hasinthara, S.; Navaratne, A. Compost as a carrier for microplastics and plastic-bound toxic metals into agroecosystems. Envir. Sci. Health 2021, 24, 100297. [Google Scholar] [CrossRef]
- Zhang, H.; Nie, Y.; Zhao, S.; Wu, L.; Xi, X.; Xu, L.; Fang, Y.; Long, X.; Liu, X. Distribution characteristics and transport pathways of soil microplastics in coral reef islands with different developmental stages and human activities. Mar. Pollut. Bull. 2025, 215, 117848. [Google Scholar] [CrossRef]
- Wu, X.; Feng, J.; Chen, X.; Li, C.; Zhang, S. Exploring carbon content variation in microplastics sequestrated from seawater to sediment in the Haima cold seep area. J. Hazard. Mater. 2024, 462, 132742. [Google Scholar] [CrossRef] [PubMed]
- Connors, K.A.; Dyer, S.D.; Belanger, S.E. Advancing the quality of environmental microplastic research. Environ. Toxicol. Chem. 2017, 36, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, Q.; Sun, Y.; Zhang, S.; Wang, F. Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn contaminated soil. J. Hazard. Mater. 2022, 424, 127364. [Google Scholar] [CrossRef]
- Silvia, I.; Saiful, S.; Ichwana, I. Microplastics in Landfill Environments: Distribution, Characteristics, and Risks from Gampong Jawa, Indonesia. Aceh Int. J. Sci. Technol. 2024, 13, 131–148. [Google Scholar] [CrossRef]
- Arab, M.; Yu, J.; Nayebi, B. Microplastics in sludges and soils: A comprehensive review on distribution, characteristics, and effects. ChemEngineering 2024, 8, 86. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, F.; Li, X. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Sci. Total Environ. 2019, 670, 1–7. [Google Scholar] [CrossRef]
- Saha, A.; Baruah, P.; Handique, S. Assessment of microplastic pollution on soil health and crop responses: Insights from dose-dependent pot experiments. Appl. Soil Ecol. 2024, 203, 105648. [Google Scholar] [CrossRef]
- Wang, K.; Flury, M.; Sun, S.; Cai, J.; Zhang, A.; Li, Q.; Jiang, R. In-field degradation of polybutylene adipate-co-terephthalate (PBAT) films, microplastic formation, and impacts on soil health. Environ. Res. 2025, 272, 121086. [Google Scholar] [CrossRef]
- Lin, J.; Zhao, Y.M.; Zhan, Z.; Zheng, J.; Zhou, Q.; Peng, J.; Li, Y.; Xiao, X.; Wang, J.H. Microplastics in remote coral reef environments of the Xisha Islands in the South China Sea: Source, accumulation and potential risk. J. Hazard. Mater. 2024, 469, 133872. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Wang, Y.; Yu, K.; Li, R. The spatial distribution of microplastic in the sands of a coral reef island in the South China Sea: Comparisons of the fringing reef and atoll. Sci. Total Environ. 2019, 688, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xiao, X.; Effiong, K.; Xu, C.; Su, Z.; Hu, J.; Jiao, S.; Holmer, M. New insights into the microplastic enrichment in the blue carbon ecosystem: Evidence from seagrass meadows and mangrove forests in coastal South China Sea. Environ. Sci. Technol. 2021, 55, 4804–4812. [Google Scholar] [CrossRef]
- Cesarini, G.; Scalici, M. Riparian vegetation as a trap for plastic liter. Environ. Pollut. 2022, 292, 118410. [Google Scholar] [CrossRef] [PubMed]
- Lofty, J.; Muhawenimana, V.; Wilson, C.; Ouro, P. Microplastics removal from a primary settler tank in a wastewater treatment plant and estimations of contamination onto European agricultural land via sewage sludge recycling. Environ. Pollut. 2022, 304, 119198. [Google Scholar] [CrossRef] [PubMed]
- Huygens, D.; Garcia-Gutierrez, P.; Orveillon, G.; Schillaci, C.; Delre, A.; Orgiazzi, A.; Wojda, P.; Tonini, D.; Egle, L.; Jones, A.; et al. Screening Risk Assessment of Organic Pollutants and Environmental Impacts from Sewage Sludge Management; EUR 31238 EN, JRC129690; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-76-57322-7. [Google Scholar] [CrossRef]
- Magnusson, K.; Norén, F. Screening of Microplastic Particles in and Down-Stream a Wastewater Treatment Plant, C 55, Stockholm. 2014. Available online: https://api.semanticscholar.org/CorpusID:138940240 (accessed on 1 April 2025).
- Nizzetto, L.; Futter, M.; Langaas, S. Are agricultural soils dumps for microplastics of urban origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef] [PubMed]
- Edo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut. 2020, 259, 113837. [Google Scholar] [CrossRef]
- Ramage, S.J.; Coull, M.; Cooper, P.; Campbell, C.D.; Prabhu, R.; Yates, K.; Dawson, L.A.; Devalla, S.; Pagaling, E. Microplastics in agricultural soils following sewage sludge applications: Evidence from a 25-year study. Chemosphere 2025, 376, 144277. [Google Scholar] [CrossRef]
- Hatinoğlu, M.D.; Sanin, F.D. Sewage sludge as a source of microplastics in the environment: A review of occurrence and fate during sludge treatment. J. Environ. Manag. 2021, 295, 113028. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- O’Kelly, B. Microplastics in soils: An environmental geotechnics perspective. Environ. Geotech. 2021, 8, 331–335. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Klimach, M.; Grobelak, A. Mikroplastik w środowisku–jego pochodzenie, klasyfikacja, drogi migracji i wpływ na organizmy. In Inżynieria Środowiska–Wyzwania i Nowe Technologie; Rosińska, A., Karwowska, B., Madeła, M., Eds.; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2022; Chapter 9; pp. 151–164. [Google Scholar]
- Yang, T.; Yuan, R.; Zou, X.; Dai, M.; Dong, X.; Chen, H.; Guo, Z.; Jiao, H.; Yang, Y. Indole-mediated reconfiguration of soil microbial consortia in response to microplastic pollution. J. Environ. Chem. 2025, 13, 115961. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; Mcgonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Khudzari, J.M.; Kurian, J.; Tartakovsky, B.; Raghavan, G.S.V. Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochem. Eng. J. 2018, 136, 51–60. [Google Scholar] [CrossRef]
- van den Berg, P.; Huerta-Lwanga, E.; Corradini, F.; Geissen, V. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soil. Environ. Pollut. 2020, 261, 11–18. [Google Scholar] [CrossRef]
- Shah, T.; Ali, A.; Haider, G.; Asad, M.; Munsif, F. Microplastics alter soil enzyme activities and microbial community structure without negatively affecting plant growth in an agroecosystem. Chemosphere 2023, 322, 10–17. [Google Scholar] [CrossRef]
- Omidoyin, K.; Jho, E. Effect of microplastics on soil microbial community and microbial degradation of microplastics in soil: A review. Environ. Eng. Res. 2023, 28, 10–25. [Google Scholar] [CrossRef]
- Zajączkowska, A.; Bortniak, M. Soil contamination by microplastics and its effects on plants. Prog. Plant Prot. 2025, 65, 1. [Google Scholar] [CrossRef]
- Giorgetti, L.; Spanò, C.; Muccifora, S.; Bottega, S.; Barbieri, F.; Bellani, L.; Castiglione, M.R. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. PPB 2020, 149, 170–177. [Google Scholar] [CrossRef]
- Wu, J.; Liu, W.; Zeb, A.; Lian, J.; Sun, Y.; Sun, H. Polystyrene microplastic interaction with Oryza sativa: Toxicity and metabolic mechanism. Environ. Sci. Nano 2021, 8, 3699–3710. [Google Scholar] [CrossRef]
- Wang, J.; Coffin, S.; Sun, C.; Schlenk, D.; Gan, J. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environ. Pollut. 2019, 249, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Poblete, A.; Retamal-Salgado, J.; Zapata, N.; Sierra-Almeida, A.; Schoebitz, M. Impact of polyethylene microplastics and copper nanoparticles: Responses of soil microbiological properties and strawberry growth. Appl. Soil Ecol. 2023, 184, 104773. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Wang, X.; Zeb, A.; Wang, Q.; Mo, F.; Shi, R.; Liu, J.; Yu, M.; Li, J.; et al. Assessing stress responses in potherb mustard (Brassica juncea var. multiceps) exposed to a synergy of microplastics and cadmium: Insights from physiology, oxidative damage, and metabolomics. Sci. Total Environ. 2024, 907, 167920. [Google Scholar] [CrossRef]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Li, Y.; Xu, J.; Worthy, F.R.; Gui, H.; Faraj, T.K.; Jones, D.L.; Bu, D. Smallest microplastics intensify maize yield decline, soil processes and consequent global warming potential. J. Hazard. Mater. 2025, 486, 136993. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Cheng, T.; Fu, K.; Qin, Z.; Feng, K. Biofilm structural and functional features on microplastic surfaces in greenhouse agricultural soil. Sustainability 2022, 14, 7024. [Google Scholar] [CrossRef]
- Zhao, H.; Hong, X.; Chai, J.; Wan, B.; Zhao, K.; Han, C.; Zhang, W.; Hang, H. Interaction between microplastics and pathogens in subsurface system: What we know so far. Water 2024, 16, 499. [Google Scholar] [CrossRef]
- Sobhani, Z.; Fang, C.; Naidu, R.; Megharaj, M. Microplastics as a vector of toxic chemicals in soil: Enhanced uptake of perfluorooctane sulfonate and perfluorooctanoic acid by earthworms through sorption and reproductive toxicity. Environ. Technol. Innov. 2021, 22, 101476. [Google Scholar] [CrossRef]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut. 2017, 220, 523–531. [Google Scholar] [CrossRef]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salanki, T.; Van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 2016, 50, 2685–2691. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.N.; Leng, Y.F.; Wang, J. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils. Ecotoxicol. Environ. Saf. 2020, 187, 109788. [Google Scholar] [CrossRef]
- Kim, S.W.; An, Y.-J. Soil microplastics inhibit the movement of springtail species. Environ. Int. 2019, 126, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Baeza, C.; Cifuentes, C.; González, P.; Araneda, A.; Barra, R. Experimental exposure of lumbricus terrestris to microplastics. Water Air Soil Pollut. 2020, 231, 308. [Google Scholar] [CrossRef]
- Cao, D.; Wang, X.; Luo, X.; Liu, G.; Zheng, H. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. IOP Conf. Ser. Earth Environ. 2017, 61, 012148. [Google Scholar] [CrossRef]
- Liu, X.; Cui, H.; Xia, W.; Liu, Z.; Jiang, X.; Liu, X.; Wang, Y.; Chen, S.; Xiao, S. Impact of microplastic concentration on soil nematode communities on the Qinghai-Tibet Plateau: Evidence from a field-based microcosms experiment. J. Hazard. Mater. 2025, 490, 137856. [Google Scholar] [CrossRef] [PubMed]
- Schöpfer, L.; Menzel, R.; Schnepf, U.; Ruess, L.; Marhan, S.; Brümmer, F.; Pagel, H.; Kandeler, E. Microplastics Effects on Reproduction and Body Length of the Soil-Dwelling Nematode Caenorhabditis elegans. Front. Environ. Sci. 2020, 8, 41. [Google Scholar] [CrossRef]
- Wang, Y.; Xv, X.; Shao, T.; He, Q.; Guo, Z.; Wang, Y.; Guo, Q.; Xing, B. A case on source to soil to solutions: Distribution characteristics of microplastics in farmland soil of the largest vegetable base in Northwest China. Sci. Total Environ. 2024, 907, 167910. [Google Scholar] [CrossRef]
- Xu, G.; Feng, W.; Yang, Y.; Xu, Z.; Liu, Y.; Li, H. Occurrence, sources, and risks of microplastics in agricultural soils of Weishan Irrigation District in the lower reaches of the Yellow River, China. J. Hazard. Mater. 2025, 491, 137849. [Google Scholar] [CrossRef]
- Parolini, M.; De Felice, B.; Gazzotti, S.; Sugni, M.; Ortenzi, M. Comparison of the potential toxicity induced by microplastics made of polyethylene terephthalate (PET) and polylactic acid (PLA) on the earthworm Eisenia foetida. Environ. Pollut. 2024, 348, 123868. [Google Scholar] [CrossRef]
- Song, Y.; Cao, C.; Qiu, R.; Hu, J.; Liu, M.; Lu, S.; Shi, H.; Raley-Susman, K.M.; He, D. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environ. Pollut. 2019, 250, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Bi, Q.F.; Xiang, Q.; Chen, Q.L.; Christie, P.; Ke, X.; Wu, L.H.; Zhu, Y.G. Trophic predator- prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environ. Pollut. 2018, 235, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, R.M.; Jovanović, B. From nanoplastic to microplastic: A bibliometric analysis on the presence of plastic particles in the environment. Mar. Pollut. Bull. 2021, 163, 111926. [Google Scholar] [CrossRef]
- Jones, N.R.; de Jersey, A.M.; Lavers, J.L.; Rodemann, T.; Rivers-Auty, J. Identifying laboratory sources of microplastic and nanoplastic contamination from the air, water, and consumables. J. Hazard. Mater. 2024, 465, 133276. [Google Scholar] [CrossRef]
- Le, V.G.; Nguyen, M.K.; Nguyen, H.L.; Lin, C.; Hadi, M.; Quang Hung, N.T.; Hoang, H.N.; Nguyen, K.N.; Tran, H.T.; Hou, D.; et al. A comprehensive review of micro- and nano-plastics in the atmosphere: Occurrence, fate, toxicity, and strategies for risk reduction. Sci. Total Environ. 2023, 904, 166649. [Google Scholar] [CrossRef]
- Abbasi, S. Routes of human exposure to micro(nano)plastics. Curr. Opin. Toxicol. 2021, 27, 41–46. [Google Scholar] [CrossRef]
- Gigault, J.; ter Halle, A.; Baudrimont, M.; Pascal, P.Y.; Gauffre, F.; Phi, T.L.; Hadri, H.E.; Grassl, B.; Reynaud, S. Current opinion: What is a nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef]
- Gigault, J.; El Hadri, H.; Nguyen, B.; Grassl, B.; Rowenczyk, L.; Tufenkji, N.; Feng, S.; Wiesner, M. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 2021, 16, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human consumption of microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef]
- Catarino, A.I.; Macchia, V.; Sanderson, W.G.; Thompson, R.C.; Henry, T.B. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ. Pollut. 2018, 237, 675–684. [Google Scholar] [CrossRef]
- Cabrera, M.; Valencia, B.G.; Lucas-Solis, O.; Calero, J.L.; Maisincho, L.; Conicelli, B.; Massaine Moulatlet, G.; Capparelli, M.V. A new method for microplastic sampling and isolation in mountain glaciers: A case study of one antisana glacier. Case Stud. Chem. Environ. Eng. 2020, 2, 100051. [Google Scholar] [CrossRef]
- Kelly, A.; Lannuzel, D.; Rodemann, T.; Meiners, K.M.; Auman, H.J. Microplastic contamination in east Antarctic sea ice. Mar. Pollut. Bull. 2020, 154, 111130. [Google Scholar] [CrossRef] [PubMed]
- Carraci, E.; Vega-Herrera, A.; Dachs, J.; Berrojalbiz, N.; Buonanno, G.; Abad, E.; Llorca, M.; Llorca, M.; Farré, M. Micro(nano)plastics in the atmosphere of the Atlantic Ocean. J. Hazard. Mater. 2023, 450, 131036. [Google Scholar] [CrossRef]
- Allen, D.; Allen, S.; Abbasi, S.; Baker, A.; Bergmann, M.; Brahney, J.; Butler, T.; Duce, R.A.; Eckhardt, S.; Evangeliou, N.; et al. Microplastics and nanoplastics in the marine-atmosphere environment. Nat. Rev. Earth Environ. 2022, 3, 393–405. [Google Scholar] [CrossRef]
- Allen, S.; Materić, D.; Allen, D.; MacDonald, A.; Holzinger, R.; Le Roux, G.; R Phoenix, V. An early comparison of nano to microplastic mass in a remote catchment’s atmospheric deposition. J. Hazard. Mater. Adv. 2022, 7, 100104. [Google Scholar] [CrossRef]
- Niu, C.G.; Faggio, C.; Sivanesan, S.; Ogunkanmi, A.L.; Krishnamurthi, K. Micro(nano)-plastics in the environment and risk of carcinogenesis: Insight into possible mechanisms. J. Hazard. Mater. 2021, 416, 126143. [Google Scholar] [CrossRef]
- Kjærgaard, E.R.; Hasager, F.; Petters, S.S.; Glasius, M.; Bilde, M. Bubble-mediated generation of airborne nanoplastic particles. Environ. Sci. Process. Impacts 2024, 26, 11. [Google Scholar] [CrossRef] [PubMed]
- Zha, H.; Han, S.; Tang, R.; Cao, D.; Chang, K.; Li, L. Polylactic acid micro/nanoplastic-induced hepatotoxicity: Investigating food and air sources via multi-omics. Environ. Sci. Ecotechnology 2024, 21, 100428. [Google Scholar] [CrossRef]
- Zheng, H.; Yao, K.; Guo, H. Characterization and sources of indoor and outdoor microplastics and PM2.5: Possible relationships. Air Qual. Atmos. Health 2024, 18, 645–656. [Google Scholar] [CrossRef]
- Niu, S.; Liu, R.; Zhao, Q.; Gagan, S.; Dodero, A.; Ying, Q.; Ma, X.; Cheng, Z.; China, S.; Canagaratna, M.; et al. Quantifying the Chemical Composition and Real-Time Mass Loading of Nanoplastic Particles in the Atmosphere Using Aerosol Mass Spectrometry. Environ. Sci. Technol. 2024, 58, 3363–3374. [Google Scholar] [CrossRef]
- Xu, S.; Halimu, G.; Zhang, Q.; Song, Y.; Fu, X.; Li, Y.; Zhang, H. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci. Total Environ. 2019, 694, 133794. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, P.A. Microplastic and nanoplastic transfer, accumulation, and toxicity in humans. Curr. Opin. Toxicol. 2021, 28, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, Y.; Li, S.; Zhang, X.; Feng, H.; Dai, Y.; Zhao, J.; Yue, T. Molecular modeling of nanoplastic transformations in alveolar fluid and impacts on the lung surfactant film. J. Hazard. Mater. 2022, 427, 127872. [Google Scholar] [CrossRef]
- Bhat, M.A.; Gaga, E.O. Unveiling the invisible: First discovery of micro- and nanoplastic size segregation in indoor commercial markets using a cascade impactor. Air Qual. Atmos. Health 2024, 18, 1–13. [Google Scholar] [CrossRef]
- Kirchsteiger, B.; Materić, D.; Happenhofer, F.; Holzinger, R.; Kasper-Giebl, A. Fine micro- and nanoplastics particles (PM2.5) in urban air and their relation to polycyclic aromatic hydrocarbons. Atmos. Environ. 2023, 301, 119670. [Google Scholar] [CrossRef]
- Eberhard, T.; Casillas, G.; Zarus, G.M.; Barr, D.B. Systematic review of microplastics and nanoplastics in indoor and outdoor air: Identifying a framework and data needs for quantifying human inhalation exposures. J. Expo. Sci. Environ. Epidemiol. 2024, 34, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Falsini, S.; Colzi, I.; Chelazzi, D.; Dainelii, M.; Schiff, S.; Papini, A.; Gonnelli, C.; Ristori, S. Plastic is in the air: Impact of micro-nanoplastics from airborne pollution on Tillandsia usneoides (L.) L. (Bromeliaceae) as a possible green sensor. J. Hazard. Mater. 2022, 437, 129314. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, H.; Wang, C.; Su, X.L.; Song, Y.; Wu, P.; Yang, Z.; Wong, M.H.; Cai, Z.; Zheng, C. Metabolomics Reveal Nanoplastic-Induced Mitochondrial Damage in Human Liver and Lung Cells. Environ. Sci. Technol. 2022, 56, 12483–12493. [Google Scholar] [CrossRef]
- Zhang, Z.; Meng, J.; Tian, J.; Li, N.; Chen, Z.; Yun, X.; Song, D.; Li, F.; Duan, S.; Zhang, L. Reproductive and developmental implications of micro- and nanoplastic internalization: Recent advances and perspectives. Ecotoxicol. Environ. Saf. 2024, 286, 117245. [Google Scholar] [CrossRef]
- Shao, L.; Li, Y.; Jones, T.; Santosh, M.; Liu, P.; Zhang, M.; Xu, L.; Li, W.; Lu, J.; Yang, C.-X.; et al. Airborne microplastics: A review of current perspectives and environmental implications. J. Clean. Prod. 2022, 347, 131048. [Google Scholar] [CrossRef]
- Praetorius, A.; Seijo, M.; Whelan, M.; Gouin, T. A Mechanistic Approach to Evaluating Atmospheric Deposition of Micro- and Nanoplastic Particles. 2025. Available online: https://www.researchsquare.com/article/rs-5672180/v1 (accessed on 1 April 2025). [CrossRef]
- Meng, Y.; Liu, G.; Huang, X.; Chai, G. Probabilistic Estimation of Airborne Micro- and Nanoplastic Intake in Humans. Environ. Sci. Technol. 2024, 58, 21. [Google Scholar] [CrossRef]
- Ramsperger, A.; Narayana, V.K.B.; Gross, W.; Mohanraj, J.; Thelakkat, M.; Greiner, A.; Schmalz, H.; Kress, H.; Laforsch, C. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 2020, 6, eabd1211. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Cai, Z. Getting Health Hazards of Inhaled Nano/Microplastics into Focus: Expectations and Challenges. Environ. Sci. Technol. 2023, 57, 3461–3463. [Google Scholar] [CrossRef] [PubMed]
- Senathirajah, K.; Attwood, S.; Bhagwat, G.; Carbery, M.; Wilson, S.; Palanisami, T. Estimation of the Mass of Microplastics Ingested—A Pivotal First Step towards Human Health Risk Assessment. J. Hazard. Mater. 2021, 404, 124004. [Google Scholar] [CrossRef]
- Vethaak, A.D.; Legler, J. Microplastics and Human Health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef]
- Hussain, N.; Jaitley, V.; Florence, A.T. Recent Advances in the Understanding of Uptake of Microparticulates across the Gastrointestinal Lymphatics. Adv. Drug Deliv. Rev. 2001, 50, 107–142. [Google Scholar] [CrossRef]
- Yang, X.; Man, Y.B.; Wong, M.H.; Owen, R.B.; Chow, K.L. Environmental Health Impacts of Microplastics Exposure on Structural Organization Levels in the Human Body. Sci. Total Environ. 2022, 825, 154025. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Abbasi, S.; Pashaei, R.; Bogusz, A.; Oleszczuk, P. Investigating Impact of Physicochemical Properties of Microplastics on Human Health: A Short Bibliometric Analysis and Review. Chemosphere 2022, 289, 133146. [Google Scholar] [CrossRef]
- Barceló, D.; Picó, Y.; Alfarhan, A.H. Microplastics: Detection in Human Samples, Cell Line Studies, and Health Impacts. Environ. Toxicol. Pharmacol. 2023, 101, 104204. [Google Scholar] [CrossRef]
- Zurub, R.E.; Cariaco, Y.; Wade, M.G.; Bainbridge, S.A. Microplastics Exposure: Implications for Human Fertility, Pregnancy and Child Health. Front. Endocrinol. 2024, 14, 1330396. [Google Scholar] [CrossRef]
- Fan, F.; Fate, C. Fate and Impacts of Microplastics in the Environment: Hydrosphere, Pedosphere, and Atmosphere. Environments 2023, 10, 70. [Google Scholar] [CrossRef]
- Tourinho, P.S.; Kočí, V.; Loureiro, S.; van Gestel, C.A.M. Partitioning of Chemical Contaminants to Microplastics: Sorption Mechanisms, Environmental Distribution and Effects on Toxicity and Bioaccumulation. Environ. Pollut. 2019, 252, 1246–1256. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.H.; Kim, J.W.; Pham, T.D.; Tarafdar, A.; Hong, S.; Chun, S.H.; Lee, S.H.; Kang, D.Y.; Kim, J.Y.; Kim, S.B.; et al. Microplastics in Food: A Review on Analytical Methods and Challenges. Int. J. Environ. Res. Public Health 2020, 17, 6710. [Google Scholar] [CrossRef]
- Kinigopoulou, V.; Pashalidis, I.; Kalderis, D.; Anastopoulos, I. Microplastics as Carriers of Inorganic and Organic Contaminants in the Environment: A Review of Recent Progress. J. Mol. Liq. 2022, 350, 118580. [Google Scholar] [CrossRef]
- Wu, X.; Pan, J.; Li, M.; Li, Y.; Bartlam, M.; Wang, Y. Selective Enrichment of Bacterial Pathogens by Microplastic Biofilm. Water Res. 2019, 165, 114979. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Knez, E.; Grembecka, M. Wpływ Żywności Zanieczyszczonej Mikroplastikiem na Układ Pokarmowy. Bromatol. Chem. Toksykol. 2021, 54, 92–104. [Google Scholar]
- Kadac-Czapska, K.; Knez, E.; Grembecka, M. Food and Human Safety: The Impact of Microplastics. Crit. Rev. Food Sci. Nutr. 2024, 64, 3502–3521. [Google Scholar] [CrossRef]
- Altunısık, A. Prevalence of Microplastics in Commercially Sold Soft Drinks and Human Risk Assessment. J. Environ. Manag. 2023, 336, 117720. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.T. Microplastics: A Real Global Threat for Environment and Food Safety—A State of the Art Review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef]
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of Microplastic Debris throughout the Marine Ecosystem. Nat. Ecol. Evol. 2017, 1, 116. [Google Scholar] [CrossRef]
- McGivney, E.; Cederholm, L.; Barth, A.; Hakkarainen, M.; Hamacher-Barth, E.; Ogonowski, M.; Gorokhova, E. Rapid Physicochemical Changes in Microplastic Induced by Biofilm Formation. Front. Bioeng. Biotechnol. 2020, 8, 205. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.B.; He, H.R.; Zhang, J.F.; Ma, G.S. You Are What You Eat: Microplastics in the Feces of Young Men Living in Beijing. Sci. Total Environ. 2021, 767, 144345. [Google Scholar] [CrossRef] [PubMed]
- Jenner, L.C.; Rotchell, J.M.; Bennett, R.; Cowen, M.; Tentzeris, V.; Sadofsky, L.R. Detection of Microplastics in Human Lung Tissue Using μFTIR Spectroscopy. Sci. Total Environ. 2022, 831, 154907. [Google Scholar] [CrossRef] [PubMed]
- Sorci, G.; Loiseau, C. Should We Worry about the Accumulation of Microplastics in Human Organs? EBioMedicine 2022, 82, 104191. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue Accumulation of Microplastics in Mice and Biomarker Responses Suggest Widespread Health Risks of Exposure. Sci. Rep. 2017, 7, 46687. [Google Scholar] [CrossRef]
- Bogdanowicz, A. Mikroplastiki–Czy Są dla Nas Szkodliwe? Gaz Woda Tech. Sanit. 2022, 96, 12–15. [Google Scholar] [CrossRef]
- Harrison, J.P.; Schratzberger, M.; Sapp, M.; Osborn, A.M. Rapid Bacterial Colonization of Low-Density Polyethylene Microplastics in Coastal Sediment Microcosms. BMC Microbiol. 2014, 14, 232. [Google Scholar] [CrossRef]
- Shruti, V.C.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Kutralam-Muniasamy, G. First Study of Its Kind on the Microplastic Contamination of Soft Drinks, Cold Tea and Energy Drinks—Future Research and Environmental Considerations. Sci. Total Environ. 2020, 726, 138580. [Google Scholar] [CrossRef]
- Gautam, R.; Jo, J.H.; Acharya, M.; Maharjan, A.; Lee, D.E.; Pramod, P.B.; Kim, C.Y.; Kim, K.S.; Kim, H.A.; Heo, Y. Evaluation of Potential Toxicity of Polyethylene Microplastics on Human-Derived Cell Lines. Sci. Total Environ. 2022, 838, 156089. [Google Scholar] [CrossRef]
- Qiao, R.; Sheng, C.; Lu, Y.; Zhang, Y.; Ren, H.; Lemos, B. Microplastics Induce Intestinal Inflammation, Oxidative Stress, and Disorders of Metabolome and Microbiome in Zebrafish. Sci. Total Environ. 2019, 662, 246–253. [Google Scholar] [CrossRef]
- Du, J.; Xu, S.; Zhou, Q.; Li, H.; Fu, L.; Tang, J.; Wang, Y.; Peng, X.; Xu, Y.; Du, X. A Review of Microplastics in the Aquatic Environment: Distribution, Transport, Ecotoxicology and Toxicological Mechanisms. Environ. Sci. Pollut. Res. 2020, 27, 11494–11505. [Google Scholar] [CrossRef]
- Yee, M.S.; Hii, L.W.; Looi, C.K.; Lim, W.M.; Wong, S.F.; Kok, Y.Y.; Tan, B.K.; Wong, C.Y.; Leong, C.O. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Tagorti, G.; Kaya, B. Genotoxic Effect of Microplastics and COVID-19: The Hidden Threat. Chemosphere 2022, 286, 131898. [Google Scholar] [CrossRef] [PubMed]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N. Engl. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef]
- Rawle, D.J.; Dumenil, T.; Tang, B.; Bishop, C.R.; Yan, K.; Le, T.T.; Suhrbier, A. Microplastic Consumption Induces Inflammatory Signatures in the Colon and Prolongs a Viral Arthritis. Sci. Total Environ. 2022, 809, 152212. [Google Scholar] [CrossRef]
- Chen, L.; Tang, Z. Microplastics Aggravate Rheumatoid Arthritis by Affecting the Proliferation, Migration and Inflammation of Fibroblast-Like Synovial Cells via Mitochondrial Homeostasis. Int. Immunopharmacol. 2023, 120, 110268. [Google Scholar] [CrossRef]
- Krajewska-Włodarczyk, M.; Szeląg, M.; Batko, B.; Żuber, Z.; Orleański, M.; Podwójcic, K.; Sowiński, J.; Jopek, J.; Świderek, M.; Maluchnik, M.; et al. Rheumatoid Arthritis Epidemiology: A Nationwide Study in Poland. Rheumatol. Int. 2024, 44, 1155–1163. [Google Scholar] [CrossRef]
- Juda, P.; Kaczmarska, A.; Nowak, M.; Kłaptocz, P.; Łukoś-Karcz, K.; Wójcik, Ł.; Pajor, D.; Mycyk, M.; Bańkowski, D. Effects of Plastics on Inflammatory Bowel Disease and Arthritis—Implication for Sport and Recreation: A Review. Medsportpress 2024, 40, 145–154. [Google Scholar] [CrossRef]
- Sun, H.; Chen, N.; Yang, X.; Xia, Y.; Wu, D. Effects Induced by Polyethylene Microplastics Oral Exposure on Colon Mucin Release, Inflammation, Gut Microflora Composition and Metabolism in Mice. Ecotoxicol. Environ. Saf. 2021, 220, 112340. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First Evidence of Microplastics in Human Placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Jung, Y.S.; Sampath, V.; Prunicki, M.; Aguilera, J.; Allen, H.; LaBeaud, D.; Veidis, E.; Barry, M.; Erny, B.; Patel, L.; et al. Characterization and Regulation of Microplastic Pollution for Protecting Planetary and Human Health. Environ. Pollut. 2022, 315, 120442. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.; Ehrlich, L.; Henrich, W.; Koeppel, S.; Lomako, I.; Schwabl, P.; Liebmann, B. Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting. Pharmaceutics 2021, 13, 921. [Google Scholar] [CrossRef] [PubMed]
- Denuzière, A.; Ghersi-Egea, J.F. Cerebral Concentration and Toxicity of Endocrine-Disrupting Chemicals: The Implication of Blood–Brain Interfaces. Neurotoxicology 2022, 91, 100–118. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Raps, H.; Cropper, M.; Bald, C.; Brunner, M.; Canonizado, E.M.; Charles, D.; Chiles, T.C.; Donohue, M.J.; Enck, J.; et al. The Minderoo-Monaco Commission on Plastics and Human Health. Ann. Glob. Health 2023, 89, 23. [Google Scholar] [CrossRef]
- Angelo, D.S.; Meccariello, R. Microplastics: A Threat for Male Fertility. Int. J. Environ. Res. Public Health 2021, 18, 2392. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Chatterjee, S. Microplastic Pollution, a Threat to Marine Ecosystem and Human Health: A Short Review. Environ. Sci. Pollut. Res. 2017, 24, 21530–21547. [Google Scholar] [CrossRef]
- Sharma, M.D.; Elanjickal, A.I.; Mankar, J.S.; Krupadam, R.J. Assessment of Cancer Risk of Microplastics Enriched with Polycyclic Aromatic Hydrocarbons. J. Hazard. Mater. 2020, 398, 122994. [Google Scholar] [CrossRef]
- Caporossi, L.; Alteri, A.; Campo, G.; Paci, E.; Tranfo, G.; Capanna, S.; Papaleo, E.; Pigini, D.; Viganò, P.; Papaleo, B. Cross-Sectional Study on Exposure to BPA and Phthalates and Semen Parameters in Men Attending a Fertility Center. Int. J. Environ. Res. Public Health 2020, 17, 489. [Google Scholar] [CrossRef]
- Bhagat, J.; Zang, L.; Nishimura, N.; Shimada, Y. Zebrafish: An Emerging Model to Study Microplastic and Nanoplastic Toxicity. Sci. Total Environ. 2020, 728, 138707. [Google Scholar] [CrossRef]
- Coffin, S.; Wyer, H.; Leapman, J. Addressing the Environmental and Health Impacts of Microplastics Requires Open Collaboration between Diverse Sectors. PLoS Biol. 2021, 19, e3000932. [Google Scholar] [CrossRef]
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine-Disrupting Chemicals: Exposure, Effects on Human Health, Mechanism of Action, Models for Testing and Strategies for Prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef] [PubMed]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.U.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Yamashita, R. Transport and Release of Chemicals from Plastics to the Environment and to Wildlife. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef] [PubMed]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution adopted by the General Assembly on 25 September 2015; A/RES/70/1; pp. 1–13. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 28 May 2024).
- United Nations Environment Programme (UNEP). United Nations Environment Programme: Nairobi/Lisbon. Available online: https://www.unep.org/news-and-stories/press-release/committing-end-plastic-pollution-us-and-european-commission-join (accessed on 28 May 2024).
- Organisation for Economic Co-Operation and Development. Policies to Reduce Microplastics Pollution in Water: Focus on Textiles and Tyres; OECD Publishing: Paris, France, 2021. [Google Scholar]
- European Commission. A European Strategy for Plastics in a Circular Economy. 2021. Available online: https://environment.ec.europa.eu/strategy/plastics-strategy_en (accessed on 28 April 2024). [CrossRef]
- European Union. Commission Delegated Decision (EU) 2024/1441 of 11 March 2024 Supplementing Directive (EU) 2020/2184 of the European Parliament and of the Council by Establishing a Methodology to Measure Microplastics in Water Intended for Human Consumption. Available online: https://eur-lex.europa.eu/eli/dec_del/2024/1441/oj (accessed on 28 April 2024).
- European Union. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency. Off. J. Eur. Union 2006, L 396, 1–849. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006R1907 (accessed on 31 May 2025).
- European Union. Commission Regulation (EU) 2023/2055 of 25 September 2023 on restrictions on the use of synthetic polymer microparticles under Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council. Off. J. Eur. Union 2023, L 239, 67–106. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023R2055 (accessed on 31 May 2025).
- European Union. Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment. Off. J. Eur. Union 2019, L 155, 1–19. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019L0904 (accessed on 31 May 2025).
- European Parliament and Council of the European Union. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Off. J. Eur. Union 2008, L 312, 3–30. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008L0098 (accessed on 31 May 2025).
- European Commission. Regulation (EU) 2020/2081 of 14 December 2020 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Microplastics. Off. J. Eur. Union 2020, L 423, 57–60. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32020R2081 (accessed on 31 May 2025).
- European Parliament and Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities 2000, L 327, 1–73. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060 (accessed on 31 May 2025).
- European Parliament and Council of the European Union. Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse. Off. J. Eur. Union 2020, L 177, 32–55. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32020R0741 (accessed on 31 May 2025).
- European Parliament and Council of the European Union. Directive (EU) 2019/883 of the European Parliament and of the Council of 17 April 2019 on Port Reception Facilities for the Delivery of Waste from Ships, Amending Directive 2010/65/EU and Repealing Directive 2000/59/EC. Off. J. Eur. Union 2019, L 151, 116–142. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019L0883 (accessed on 31 May 2025).
- European Parliament and Council of the European Union. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Off. J. Eur. Union 2008, L 152, 1–44. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0050 (accessed on 31 May 2025).
- European Parliament and Council of the European Union. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Off. J. Eur. Union 2013, L 226, 1–17. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013L0039 (accessed on 31 May 2025).
- Halfar, J.; Brožová, K.; Čabanová, K.; Heviánková, S.; Kašpárková, A.; Olšovská, E. Discrepancies in Methods Used to Detect Microplastics in the Aquatic Environment: A Review of Legislation, Sampling, and Instrumental Analysis. Int. J. Environ. Res. Public Health 2021, 18, 7608. [Google Scholar] [CrossRef] [PubMed]
- Bikiaris, D.N.; Nikolaidis, N.F.; Barmpalexis, P. Microplastics (MPs) in Cosmetics: A Review of Their Presence in Personal Care, Cosmetic and Cleaning Products (PCCPs) and Sustainable Alternatives of Bio-Based and Biodegradable Polymers. Cosmetics 2024, 11, 145. [Google Scholar] [CrossRef]
- Giustra, M.; Sinesi, J.; Spena, F.; De Santes, B.; Morelli, Ł.; Barbieri, L.; Garbujo, S.; Galli, P.; Prosperi, D.; Colombo, M. Microplastics in Cosmetics: Open Questions and Sustainable Opportunities. ChemSusChem 2024, 17, e202401065. [Google Scholar] [CrossRef] [PubMed]
- California State Legislature. Senate Bill No. 270—Single-Use Carry-Out Bags: Reusable Bags and Recycled Paper Bags. Statutes of California 2014, Chapter 850. Available online: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201320140SB270 (accessed on 31 May 2025).
- United Kingdom Government. The Single Use Carrier Bags Charges (England) Order 2015 (S.I. 2015/776). Statutory Instruments 2015, No. 776. Available online: https://www.legislation.gov.uk/uksi/2015/776/contents (accessed on 31 May 2025).
- Kish, R.J. The Use of Legislation to Curb Single-Use Plastic Bags. Econ. Aff. 2018, 38, 224–239. [Google Scholar] [CrossRef]
- Republic of Cameroon. Joint Ministerial Order No. 004/MINEPDED/MINCOMMERCE of 24 October 2012 on the Ban of Non-Biodegradable Plastic Packaging. Official Gazette of Cameroon 2012. Available online: https://faolex.fao.org/docs/pdf/cmr199954.pdf (accessed on 31 May 2025).
- Kingdom of Morocco. Law No. 77-15 of 7 December 2015 (the “Zero Mika” Law) Prohibiting the Manufacture, Import, Export, Marketing and Use of Single-Use Plastic Bags; In Force Since 1 July 2016. Official Bulletin of the Kingdom of Morocco 2016, No. 6480. Available online: https://archive.gazettes.africa/archive/ma/2016/ma-bulletin-officiel-dated-2016-07-07-no-6480.pdf (accessed on 31 May 2025).
- Republic of Kenya. Environmental Management and Co-ordination Act—Legal Notice No. 2356 of 2017: Plastic Carrier Bags and Plastic Flat Bags Ban. Kenya Gaz. 2017, 118, 270. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC165294 (accessed on 31 May 2025).
- People’s Republic of China; National Development and Reform Commission; Ministry of Ecology and Environment. Notice on Further Strengthening Plastic Pollution Control (NDRC [2020] No. 80); IPIF: Beijing, China, 2020. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/tz/202001/t20200119_1219275.html (accessed on 31 May 2025).
- Environmental Protection Administration, Executive Yuan (Taiwan). Comprehensive Strategy for Restriction of Single-Use Plastics (Phased Ban 2025–2030); Environmental Protection Administration, Executive Yuan (Taiwan): Taipei, Taiwan, 2018; Available online: https://www.no-burn.org/taiwan-soon-to-be-plastic-free (accessed on 31 May 2025).
- Ministry of Energy, Science, Technology, Environment and Climate Change (Malaysia). Roadmap Towards Zero Single-Use Plastics 2018–2030; Ministry of Energy, Science, Technology, Environment and Climate Change (Malaysia): Putrajaya, Malaysia, 2018. Available online: https://www.malaysia.gov.my/portal/content/30918 (accessed on 31 May 2025).
- French Republic. Decree No. 2016-379 of 30 March 2016 on the prohibition of lightweight plastic carrier bags. J. Off. De La République Française 2016, 0077, 6076–6078. Available online: https://www.novamont.com/eng/leggi_news.php?id_news=40 (accessed on 20 May 2025).
- Italian Republic. Law No. 244 of 24 December 2007 (Finance Law 2008), Art. 1 § 1130 ff.—Nation-Wide ban on non-Biodegradable Plastic Shopping Bags Effective 1 January 2011. Gazzetta Ufficiale della Repubblica Italiana 2007, No. 300. Available online: https://www.asser.nl/media/2288/plasticseurope.pdf (accessed on 20 May 2025).
- Omondi, I.; Asari, M. A Study on Consumer Consciousness and Behavior to the Plastic Bag Ban in Kenya. J. Mater. Cycles Waste Manag. 2021, 23, 425–435. [Google Scholar] [CrossRef]
- Behuria, P. Ban the (Plastic) Bag? Explaining Variation in the Implementation of Plastic Bag Bans in Rwanda, Kenya and Uganda. Environ. Plan. C Politics Space 2021, 39, 1791–1808. [Google Scholar] [CrossRef]
- Wahinya, M.K.P.; Mironga, J.M. Effectiveness of the Implementation of Plastic Bags Ban: Empirical Evidence from Kenya. IOSR-JESTFT 2020, 14, 53–61. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). How Smuggling Threatens to Undermine Kenya’s Plastic Bag Ban. 2018. Available online: https://www.unep.org/news-and-stories/story/how-smuggling-threatens-undermine-kenyas-plastic-bag-ban (accessed on 20 May 2025).
- Saha, M.; Naik, A.; Desai, A.; Nanajkar, M.; Rathore, C.; Kumar, M.; Gupta, P. Microplastics in Seafood as an Emerging Threat to Marine Environment: A Case Study in Goa, West Coast of India. Chemosphere 2021, 270, 129359. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Isobe, A.; Uchiyama-Matsumoto, K.; Uchida, K.; Tokai, T. Microplastics in the Southern Ocean. Mar. Pollut. Bull. 2017, 114, 623–626. [Google Scholar] [CrossRef]
- Moore, C.J.; Moore, S.L.; Weisberg, S.B.; Lattin, G.L.; Zellers, A.F. A Comparison of Neustonic Plastic and Zooplankton Abundance in Southern California’s Coastal Waters. Mar. Pollut. Bull. 2002, 44, 1035–1038. [Google Scholar] [CrossRef]
- European Commission, Directorate-General Environment. Plastic Waste: Ecological and Human Health Impacts; Science for Environmental Policy In-Depth Report 15; European Commission: Brussels, Belgium, 2011; Available online: https://environment.ec.europa.eu/ (accessed on 20 May 2025).
- Kowalski, Z.; Makara, A.; Kulczycka, J.; Generowicz, A.; Kwaśnicki, P.; Ciuła, J.; Gronba-Chyła, A. Conversion of Sewage Sludge into Biofuels via Different Pathways and Their Use in Agriculture: A Comprehensive Review. Energies 2024, 17, 1383. [Google Scholar] [CrossRef]
- Ciuła, J. Modeling the migration of anthropogenic pollution from active municipal landfill in groundwaters. Archit. Civ. Eng. Environ. 2021, 14, 81–90. [Google Scholar] [CrossRef]
- Balcerzak, W.; Generowicz, A.; Mucha, Z. Application of a Multi-Criteria Analysis for Selection of a Method of Reclamation Method of a Hazardous Waste Landfill. Pol. J. Environ. Stud. 2014, 23, 983–987. [Google Scholar]
- Ciuła, J.; Generowicz, A.; Gaska, K.; Gronba-Chyła, A. Efficiency Analysis of the Generation of Energy in a Biogas CHP System and Its Management in a Waste Landfill. Case Study. J. Ecol. Eng. 2022, 23, 143–157. [Google Scholar] [CrossRef]
Type of Polymer | Abbreviation | Polymer Source |
---|---|---|
Polyamide | PA | Synthetic fibers from clothing (e.g., nylon) |
Polyester | PES | Sports and casual clothing, home textiles [16,17] |
Polyethylene terephthalate | PET | Disposable bottles and packaging, plastic, textiles [18] |
Polypropylene | PP | Food packaging, disposable utensils, filters, fibers in masks and hygiene materials [19,20] |
Viscose | CV | Regenerated fibers from cellulose used in textiles and wipes [21] |
Polyethylene | PE | Plastic bags, packaging films, bottles, microbeads from cosmetics and detergents [20,22] |
Polystyrene | PS | Disposable packaging, polystyrene, building insulation, foam material fragmentation [22] |
Polyvinyl chloride | PVC | Pipes, liners, building components [23] |
Polyacrylonitrile | PAN | Synthetic fabrics (e.g., fleece), ropes, filters |
Ethylene vinyl acetate | EVA | Shoe soles, mats, toys, sports materials [24] |
Type of Polymer | Abbreviation | Size of Polymer [Ref.] | Concentration [Ref.] |
---|---|---|---|
Polyethylene terephthalate | PET | 350 μm [28,29], >100 μm, ≥75 μm, 65.2 ± 41.9 μm, ≤49 μm, 15 μm, 10–40 μm [40], 5 μm [42] | 0.41, 9.9 ± 2.5, 175 MP·m−3 [42], 0.8–4.000 MP·ml−1 [39,40] |
Polyamide | PA | 180.5–118.7 μm [31], <50 μm, 22.7 μm | 0–219.6, 0.02–2.38 MP·m−3 [42,45] |
Polyester | PES | 350 μm [28,29], ≥75 μm [42], 4–7 μm [42] | 2.19 MP·m−3 [42] |
Polypropylene | PP | 380 μm, 200 ± 90 μm, 50 ± 26 μm [29], ≥15 μm, 85 μm, 5 μm <10 μm [41,42] | 10,000 MP·dm−3, 680 MP·dm−3 [29], 9.9 ± 2.5 MP·m−3 [42] |
Polyethylene | PE | ≥15 μm, <10 μm [42,43] | 9.9 ± 2.5 MP·m−3 [42] |
Polystyrene | PS | 100–400 μm [28,29], 180.5–118.7 μm [31], <10 μm, 5 μm [42] | 9.9 ± 2.5 MP·m−3 [42] |
Polyvinyl chloride | PVC | <10 μm, 5 μm [42] | 9.9 ± 2.5 MP·m−3 [42] |
Polymethyl methacrylate | PMMA | <10 μm, 5 μm [42] | 9.9 ± 2.5 MP·m−3 [42] |
Vegetation | Location | EI | Ref. |
---|---|---|---|
Sea grass H. ovalis | South China Sea coast | 1.3 | [109] |
Mangrove forest A. marina | South China Sea coast | 17.6 | [109] |
Sea grass E. acoroides | Hainan in China | 2.1; 2.9 | [109] |
Meadow Zostera marina | Scotland | 1.7 | [109] |
Inland and riverside vegetation | Italy, the riverine area of the Tiber, Aniene, Almone, Mignone, Marta, Sacco, Ninfa-Sisto, Arrone rivers | 17.6 | [110] |
Plant | Microplastic | Ref. | |
---|---|---|---|
Type | Impact | ||
Soybean (Glycine max L.) | PS, PE, PVC (C = 10%) | Increased plant biomass and reduced root to shoot ratio. | [126] |
Onion (Allium cepa L.) | PS (50 nm) | Decreased mitotic index, genotoxicity (cytogenetic anomalies and micronucleus formation), and increased oxidative stress. | [129] |
Rice (Oryza sativa) | PS (100 nm and 1 μm) at 0, 0.1, 1 and 10 mg L−1 | Reduction in primary root length, inhibition of nutrient uptake, stimulation of lateral root growth to meet nutrient requirements. | [130] |
Lettuce (Lactuca sativa L.) | 5 type | Inhibition of plant growth, root lignification, root cell apoptosis and oxidative stress. | [128] |
Lettuce (Lactuca sativa L.) | PE (40 μm; 0.1 and 1% w/w) | Decrease in the shoot fresh weight, shoot dry weight, leaf number, Chlorophile a, leaf N, P, K content. | [131] |
Strawberry plants (Fragaria × ananasa Duch) | HDPE 2–5 mm 0.2 g kg−1 | Decrease in plant height, biomass, stem diameter, and root surface area, volume and biomass of root. | [132] |
Mustard (Brassica juncea var. Multiceps) | PE (6.5 ± 1.9 nm; 1% w/w) PP (7.8 ± 1.6 nm; 1% w/w) | Increase in plant height and early senescence and flowering with small leaves and reduction in root length and Chlorophyll b content. | [133] |
Environment Area | Main Acts | Range of Adjustment |
---|---|---|
Water | Water Framework Directive (2000/60/WE) [243] Regulation (UE) 2020/741 [244] Directive 2019/883 [245] | Protecting surface, ground and drinking water Monitoring the presence of microplastics Reducing microplastic emissions from land-based sources |
Soil | Directive 2008/98/EC on waste [241] Regulation REACH (WE 1907/2006) [238] Directive 2019/904 [240] | Managing plastic waste Reducing the release of microplastics into the soil Bans the use of certain single-use plastic |
Air | Directive 2008/50/WE [246] Regulation REACH (WE 1907/2006) [238] Directive 2013/39/UE [247] | Monitoring of particulate matter (which may contain MP) Reduction in chemical emissions into the atmosphere |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochanek, A.; Grąz, K.; Potok, H.; Gronba-Chyła, A.; Kwaśny, J.; Wiewiórska, I.; Ciuła, J.; Basta, E.; Łapiński, J. Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review. Toxics 2025, 13, 564. https://doi.org/10.3390/toxics13070564
Kochanek A, Grąz K, Potok H, Gronba-Chyła A, Kwaśny J, Wiewiórska I, Ciuła J, Basta E, Łapiński J. Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review. Toxics. 2025; 13(7):564. https://doi.org/10.3390/toxics13070564
Chicago/Turabian StyleKochanek, Anna, Katarzyna Grąz, Halina Potok, Anna Gronba-Chyła, Justyna Kwaśny, Iwona Wiewiórska, Józef Ciuła, Emilia Basta, and Jacek Łapiński. 2025. "Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review" Toxics 13, no. 7: 564. https://doi.org/10.3390/toxics13070564
APA StyleKochanek, A., Grąz, K., Potok, H., Gronba-Chyła, A., Kwaśny, J., Wiewiórska, I., Ciuła, J., Basta, E., & Łapiński, J. (2025). Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review. Toxics, 13(7), 564. https://doi.org/10.3390/toxics13070564