Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,005)

Search Parameters:
Keywords = packing density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3585 KB  
Article
Mass Deposition Rates of Carbon Dioxide onto a Cryogenically Cooled Surface
by Martin Jan Tuinier, Wout Jacob René Ververs, Danica Tešić, Ivo Roghair and Martin van Sint Annaland
Processes 2026, 14(2), 271; https://doi.org/10.3390/pr14020271 (registering DOI) - 12 Jan 2026
Abstract
The rates of CO2 mass deposition onto cryogenically cooled surfaces are crucial for CO2 removal processes that rely on cryogenics. A dedicated experimental setup was constructed to measure CO2 mass deposition rates under controlled conditions. Experiments were carried out with [...] Read more.
The rates of CO2 mass deposition onto cryogenically cooled surfaces are crucial for CO2 removal processes that rely on cryogenics. A dedicated experimental setup was constructed to measure CO2 mass deposition rates under controlled conditions. Experiments were carried out with both pure CO2 and CO2/N2 mixtures, growing frost layers up to 8 mm thick. Results demonstrated that heat transfer through the frost layer significantly slows down the mass deposition process. Furthermore, it was found that the addition of N2 to the gas phase has a considerable influence on mass deposition rates, because it introduces an additional mass transfer resistance toward the frost surface. To describe the experimentally observed behavior, a frost growth model based on mass and energy balances was developed. Expressions for the frost density as a function of the frost temperature and for the effective frost conductivity as a function of the frost density were derived and implemented in the model. When accounting for drift fluxes, the model accurately captures the behavior observed in experiments. The findings of this work highlight the significant impact of heat transfer limitations on processes that accumulate a thick solid CO2 layer, such as continuously cooled heat exchangers. Conversely, technologies like cryogenically refrigerated packed beds do not develop a thick solid CO2 layer; calculations showed that a frost layer of 3.24∙10−5 m is formed, resulting in a Biot number well below 0.01, indicating that heat transfer in the frost layer is not limiting. Full article
(This article belongs to the Section Chemical Processes and Systems)
15 pages, 2300 KB  
Article
Sustained Release Varnish of Chlorhexidine for Prevention of Biofilm Formation on Non-Absorbable Nasal and Ear Sponges
by Sari Risheq, Athira Venugopal, Andres Sancho, Michael Friedman, Irit Gati, Ron Eliashar, Doron Steinberg and Menachem Gross
Pharmaceutics 2026, 18(1), 96; https://doi.org/10.3390/pharmaceutics18010096 - 12 Jan 2026
Abstract
Background: Non-absorbable polyvinyl alcohol sponges (Merocel) are widely used in otolaryngology for nasal and ear packing but are prone to bacterial colonization and biofilm formation, which may increase infection risk and drive frequent use of systemic antibiotics. Sustained-release drug delivery systems enable [...] Read more.
Background: Non-absorbable polyvinyl alcohol sponges (Merocel) are widely used in otolaryngology for nasal and ear packing but are prone to bacterial colonization and biofilm formation, which may increase infection risk and drive frequent use of systemic antibiotics. Sustained-release drug delivery systems enable prolonged local antiseptic activity at the site of packing while minimizing systemic exposure. Methods: We developed a sustained-release varnish containing chlorhexidine (SRV-CHX) and coated sterile Merocel sponges. Antibacterial, in vitro, activity against Staphylococcus aureus and Pseudomonas aeruginosa was evaluated using kinetic diffusion assays on agar, optical density (OD600) measurements of planktonic cultures, drop plate, ATP-based viability assays, biofilm analysis by MTT metabolic assay, crystal violet bio-mass staining, high-resolution scanning electron microscopy (HR-SEM), and spinning disk confocal microscopy. Results: SRV-CHX-coated sponges produced sustained zones of inhibition on agar plates for up to 37 days against S. aureus and 39 days against P. aeruginosa, far exceeding the usual 3–5 days of clinical sponge use. Planktonic growth was significantly reduced compared with SRV-placebo, and a bactericidal effect persisted for up to 16 days for S. aureus and 5 days for P. aeruginosa before becoming predominantly bacteriostatic. Biofilm formation was markedly inhibited, with suppression of metabolic activity and biomass for at least 33 days for S. aureus and up to 16 days for P. aeruginosa. HR-SEM and confocal imaging confirmed sparse, discontinuous biofilms and predominance of non-viable bacteria on SRV-CHX-coated sponges compared with dense, viable biofilms on the placebo controls. Conclusions: Coating Merocel sponges with SRV-CHX provides prolonged antibacterial and anti-biofilm activity against clinically relevant pathogens. This strategy may reduce dependence on systemic antibiotics and improve infection control in nasal and ear packing applications in otolaryngology. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

20 pages, 3327 KB  
Article
Three-Dimensional Electrolysis Reactor Using Automotive Scrap Metals for the Treatment of Water-Soluble Cutting Fluid Solution
by Go-eun Kim, Seong-ho Jang, Hyung-kyu Lee, Ho-min Kim, Young-chae Song, Won-ki Lee and Han-seok Kim
Eng 2026, 7(1), 34; https://doi.org/10.3390/eng7010034 - 9 Jan 2026
Viewed by 61
Abstract
This study investigated the efficacy of electrochemical treatment of a water-soluble cutting fluid (SCF) solution using Al, Fe, and stainless steel (SUS304) scraps as three-dimensional (3D) electrode packing materials. The SCF solution had an initial CODCr of approximately 109,000 mg·L−1, [...] Read more.
This study investigated the efficacy of electrochemical treatment of a water-soluble cutting fluid (SCF) solution using Al, Fe, and stainless steel (SUS304) scraps as three-dimensional (3D) electrode packing materials. The SCF solution had an initial CODCr of approximately 109,000 mg·L−1, a TOC of approximately 25,000 mg·L−1, and an initial pH of 9.65. During treatment, the pH remained in the alkaline range (9.99–10.67), and the solution conductivity was approximately 1000 μS·cm−1. Using a conventional two-dimensional (2D) configuration, Al exhibited the highest removal efficiencies (TOC: 58.55%; CODCr: 57.12%). An applied current of 0.8 A, corresponding to a current density of 5.00 mA·cm−2 based on the geometric electrode area, and an inter-electrode distance of 40 mm provided an optimal balance between treatment performance and energy consumption. Under these optimized conditions, the introduction of metal scraps as 3D packing media significantly enhanced treatment efficiency. Al scrap (20 g) achieved the highest TOC removal (69.55%), while Fe scrap showed superior CODCr removal (87.42% at 40 g) with the lowest specific energy consumption (0.27 kWh·kg−1 CODremoved). The energy consumption of the baseline D system was 0.46 kWh·kg−1 CODremoved(cage O) and 0.72 kWh·kg−1 CODremoved(cage X). Overall, scrap-based 3D electrodes effectively improved organic removal and energy performance, demonstrating their potential as low-cost and sustainable electrode materials for the electrochemical pre-treatment of high-strength oily wastewater. Full article
Show Figures

Figure 1

28 pages, 6125 KB  
Article
Experimental Study on Optimization of Gravel Packing Parameters for Sand Control in Unconsolidated Sandstone Reservoirs
by Peng Du, Hairui Guo, Youkeren An and Yiqun Zhang
J. Mar. Sci. Eng. 2026, 14(2), 139; https://doi.org/10.3390/jmse14020139 - 9 Jan 2026
Viewed by 85
Abstract
Offshore unconsolidated sandstone reservoirs suffer from severe sand production, which impairs wellbore stability and productivity. This study evaluates gravel packing in light-oil unconsolidated sandstone reservoirs in the Weizhou field. This paper conducts visual sand-control experiments to compare screens and gravel packs, and to [...] Read more.
Offshore unconsolidated sandstone reservoirs suffer from severe sand production, which impairs wellbore stability and productivity. This study evaluates gravel packing in light-oil unconsolidated sandstone reservoirs in the Weizhou field. This paper conducts visual sand-control experiments to compare screens and gravel packs, and to quantify the effects of gravel size, packing thickness, packing density, and clay content on sand-retention behavior. On this basis, a coupled CFD–DEM model was developed to simulate sand transport and plugging within the gravel pack. Results show that gravel packing rapidly forms a stable bridging structure, reaching stabilized production 38.1% earlier than the screen and reducing sand production by 74.4%, while maintaining a stable pressure difference and limiting fine-sand breakthrough. Low-viscosity oil enhances sand carrying, increasing the stabilized pressure difference by 12% relative to water. For the low-clay fine reservoir, gravel sizes of 3–6 times the median sand size, packing thickness ≥ 25 mm, and packing density of 90–95% provide a balance between permeability and sand control. Numerical simulations identify a four-stage plugging process—initiation, surface accumulation, deep filling, and equilibrium—offering pore-scale support for the experimental observations. This study offers technical and theoretical guidance for the optimization of gravel-pack sand control in offshore light-oil unconsolidated sandstone reservoirs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 16588 KB  
Article
The Governing Role of Si/Al Ratio in the Structural Evolution and Mechanical Properties of N-A-S-H Gel
by Min Hu, Jiayun Chen, Bo Xia and Jiejin Chen
Materials 2026, 19(2), 246; https://doi.org/10.3390/ma19020246 - 7 Jan 2026
Viewed by 126
Abstract
Alkali-activated cementitious materials are environmentally friendly alternatives to traditional cement. The structure of their core product, sodium aluminosilicate hydrate (N-A-S-H) gel, is regulated by the silicon-to-aluminum (Si/Al) ratio; however, the atomic-scale mechanism underlying this influence remains unclear. Integrating reactive force field molecular dynamics [...] Read more.
Alkali-activated cementitious materials are environmentally friendly alternatives to traditional cement. The structure of their core product, sodium aluminosilicate hydrate (N-A-S-H) gel, is regulated by the silicon-to-aluminum (Si/Al) ratio; however, the atomic-scale mechanism underlying this influence remains unclear. Integrating reactive force field molecular dynamics simulations and experiments, this study systematically reveals the regulation mechanism of the Si/Al ratio (1.0–2.0) on the microstructure and macroscopic properties of N-A-S-H gels. Starting from well-defined PS and PSS oligomers, the simulation results demonstrate that the Si/Al ratio governs the polymerization pathway, aluminum coordination environment (especially the content of pentacoordinate aluminum), and evolution of nanoporosity. When the Si/Al ratio is approximately 1.8, the system exhibits the highest silicate polymerization degree, lowest nanoporosity, and densest three-dimensional (3D) network structure; deviation from this ratio leads to structural degradation due to charge imbalance or excessive polymerization. These computational findings are validated by experiments on fly ash-based geopolymers: the material achieves the highest compressive strength at a Si/Al ratio of 1.8. The consistency between simulations and experiments collectively reveals a cross-scale action mechanism: the Si/Al ratio determines the macroscopic mechanical properties by regulating the nanoscale packing density and defect distribution of the gel. This study provides critical atomic-scale insights for the rational design of high-performance geopolymers. Full article
(This article belongs to the Topic Novel Cementitious Materials)
Show Figures

Figure 1

10 pages, 3868 KB  
Article
The Influence of Sintering Temperature on the Transport Properties of GdBa2Cu3O7 Superconductor Prepared from Nano-Powders via the Co-Precipitation Method
by Ahmed Al-Mobydeen, Mohammed M. Alawamleh, Sondos Shamha, Ehab AlShamaileh, Iessa Sabbe Moosa, Jamal Rahhal, Mike Haddad, Wala`a Al-Tarawneh, Yousef Al-Dalahmeh and Imad Hamadneh
Inorganics 2026, 14(1), 25; https://doi.org/10.3390/inorganics14010025 - 7 Jan 2026
Viewed by 112
Abstract
This study examines the influence of sintering temperature on the structural and transport properties of GdBa2Cu3O7 (Gd123) superconductors prepared from nano-sized precursors via the co-precipitation method. The metal-oxalate precursor (average particle size < 50 nm) was calcined at [...] Read more.
This study examines the influence of sintering temperature on the structural and transport properties of GdBa2Cu3O7 (Gd123) superconductors prepared from nano-sized precursors via the co-precipitation method. The metal-oxalate precursor (average particle size < 50 nm) was calcined at 900 °C for 12 h, and then the prepared pellets were sintered under an oxygen atmosphere in the range of 920–950 °C for 15 h. All samples showed metallic properties and a sharp superconducting transition. Critical temperatures TC(R=0) were 94–95 K, with higher sintering temperatures steadily boosting critical current density. X-ray diffraction confirmed orthorhombic Gd123 as the dominant phase, with its phase fraction increasing from 92% to 99.8% as the sintering temperature increased. SEM micrographs showed large, densely packed grains, with higher sintering temperatures promoting improved grain connectivity and reduced porosity. The sample sintered at 950 °C exhibited the most favorable transport performance, attributed to enhanced intergranular coupling and the presence of nanoscale secondary phases acting as effective flux-pinning centers. Overall, these results demonstrate that careful control of sintering temperature can significantly optimize the microstructure and superconducting properties of Gd123 materials, supporting their advancement for practical electrical and magnetic applications. Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
Show Figures

Figure 1

14 pages, 3619 KB  
Article
Multifunctional Benzene-Based Solid Additive for Synergistically Boosting Efficiency and Stability in Layer-by-Layer Organic Photovoltaics
by Junchen Li, Peng He, Wuchao Xie, Yujie Xie, Yongquan Fu, Shutian Huang, Guojuan Lai, Zhen Wang, Fujun Zhang and Xixiang Zhu
Energies 2026, 19(1), 211; https://doi.org/10.3390/en19010211 - 31 Dec 2025
Viewed by 211
Abstract
The realization of desirable vertical phase separation, enabled by sequential processing that allows for the separate deposition and targeted regulation of donor and acceptor components to construct a well-defined donor–acceptor (D-A) interface, serves as a pivotal factor governing the performance of layer-by-layer organic [...] Read more.
The realization of desirable vertical phase separation, enabled by sequential processing that allows for the separate deposition and targeted regulation of donor and acceptor components to construct a well-defined donor–acceptor (D-A) interface, serves as a pivotal factor governing the performance of layer-by-layer organic photovoltaics (LOPVs). This study explores the utility of 4-trifluoromethyl benzoic anhydride (4-TBA), a multifunctional benzene-based solid additive, in the PM6/L8-BO LOPV system, focusing on its role in regulating the vertical phase separation of donor-PM6 and acceptor-L8-BO components to form a well-structured D-A interface. To this end, 4-TBA is doped into the donor-PM6 layer, acceptor-L8-BO layer, or both layers, and its effects on device performance are systematically characterized. The results show that simultaneous doping of 0.05 wt% 4-TBA in both PM6 and L8-BO layers yields the optimal performance, with the power conversion efficiency reaching 18.49% compared to the pristine device with a PCE of 17.05%, and this is accompanied by a significant increase in short-circuit current density from 24.71 mA/cm2 to 26.65 mA/cm2. Additionally, the optimal devices exhibit better stability, as unencapsulated devices retain 76% of their initial PCE after 175 h under ambient conditions compared to 73% for the devices without 4-TBA doping. Essentially, solid additive 4-TBA modulates molecular packing via its interaction between the donor and acceptor molecules and enhances molecular aggregation and hydrophobicity, thereby suppressing bimolecular and trap-assisted recombination, reducing trap density of states, and forming favorable interpenetrating networks. This work validates 4-TBA, which contains benzene rings and other functional groups, as a versatile additive suitable for the LOPV system and offers a generalizable strategy for optimizing LOPV performance by leveraging multifunctional solid additives. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

27 pages, 4169 KB  
Article
Optimizing Mortar Mix Design for Concrete Roofing Tiles Using Machine Learning and Particle Packing Theory: A Case Study
by Jorge Fernando Sosa Gallardo, Vivian Felix López Batista, Aldo Fernando Sosa Gallardo, María N. Moreno-García and Maria Dolores Muñoz Vicente
Appl. Sci. 2026, 16(1), 236; https://doi.org/10.3390/app16010236 - 25 Dec 2025
Viewed by 239
Abstract
The increasing demand for sustainable construction materials has motivated the optimization of mortar mix designs to reduce cement consumption and its environmental impact while maintaining adequate mechanical performance. This study develops a machine learning (ML) model for optimizing mortar mixtures used in concrete [...] Read more.
The increasing demand for sustainable construction materials has motivated the optimization of mortar mix designs to reduce cement consumption and its environmental impact while maintaining adequate mechanical performance. This study develops a machine learning (ML) model for optimizing mortar mixtures used in concrete roofing tiles by integrating aggregate particle packing techniques with non-linear regression algorithms, using an industry-grade dataset generated in the Central Laboratory of Wienerberger Ltd. Unlike most previous studies, which mainly focus on compressive strength, this research targets the transverse strength of industrial roof tile mortar. The proposed approach combines Tarantula Curve gradation limits, experimentally derived packing density (η), and ML regression within a unified and application-oriented workflow, representing a research direction rarely explored in the literature for optimizing concrete mix transverse strength. Fine concrete aggregates were characterized through a sand sieve analysis and subsequently adjusted according to the Tarantula Curve method to optimize packing density and minimize void content. Physical properties of cements and fine aggregates were assessed, and granulometric mixtures were evaluated using computational methods to calculate fineness modulus summation (FMS) and packing density. Mortar samples were tested for transverse strength at 1, 7, and 28 days using a three-point bending test, generating a robust dataset for modeling training. Three ML models—Random Forest Regressor (RFR), XG-Boost Regressor (XGBR), and Support Vector Regressor (SVR)—were evaluated, confirming their ability to capture nonlinear relationships between mix parameters and transverse strength. The analysis of input variables, which consistently ranked as the highest contributors according to impurity-based and permutation-based importance metrics, revealed that the duration of curing, density, and the summation of the fineness modulus significantly influenced the estimated transverse strength derived from the models. The integration of particle size distribution optimization and ML demonstrates a viable pathway for reducing cement content, lowering costs, and achieving sustainable mortar mix designs in the tile manufacturing industry. Full article
(This article belongs to the Topic Software Engineering and Applications)
Show Figures

Figure 1

13 pages, 2037 KB  
Article
Photocatalytic 3D ZnO Nanostructures Prepared by Atomic Layer Deposition from a Sacrificial Cellulose Template
by Rafaela Radičić, Maria Kolympadi Markovic, Robert Peter, Ivna Kavre Piltaver, Krešimir Salamon and Gabriela Ambrožić
Catalysts 2026, 16(1), 17; https://doi.org/10.3390/catal16010017 - 25 Dec 2025
Viewed by 372
Abstract
Three-dimensional ZnO structures were prepared by both thermal atomic layer deposition (ThALD) and plasma-enhanced atomic layer deposition (PEALD) on a sacrificial cellulose template. The synthetic approach consisted of ALD of conformal ZnO nanofilms on the fibrous cellulose template, followed by thermal removal of [...] Read more.
Three-dimensional ZnO structures were prepared by both thermal atomic layer deposition (ThALD) and plasma-enhanced atomic layer deposition (PEALD) on a sacrificial cellulose template. The synthetic approach consisted of ALD of conformal ZnO nanofilms on the fibrous cellulose template, followed by thermal removal of the polymer. The resulting calcinated samples, consisting of a scaffold of fused polycrystalline ZnO nanoparticles, showed a sevenfold and ninefold increase in photocatalytic activity against methyl orange under ultraviolet-A light, for the ThALD and PEALD samples, respectively, compared to the non-calcined samples prior to cellulose removal. In addition to the improved three-dimensional surface exposure and accessible active sites, it was suggested that the amount of hydroxyl groups on the surface and the density of nanoparticle packing in 3D ZnO structures are critical parameters for improving the photoinduced degradation of the dye. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Graphical abstract

23 pages, 1109 KB  
Review
A Systematic Review of Numerical Modelling Approaches for Cryogenic Energy Storage Systems
by Arian Semedo, João Garcia and Moisés Brito
Processes 2026, 14(1), 51; https://doi.org/10.3390/pr14010051 - 23 Dec 2025
Viewed by 397
Abstract
Cryogenic Energy Storage (CES) has emerged as a promising solution for large-scale and long-duration energy storage, offering high energy density, zero local emissions, and compatibility with intermittent renewable energy sources. This systematic review critically examines recent advances in the numerical modeling of CES [...] Read more.
Cryogenic Energy Storage (CES) has emerged as a promising solution for large-scale and long-duration energy storage, offering high energy density, zero local emissions, and compatibility with intermittent renewable energy sources. This systematic review critically examines recent advances in the numerical modeling of CES systems, with the objective of identifying prevailing methodologies, emerging trends, and existing research gaps. The studies analyzed are classified into three main categories: global thermodynamic modeling, simulation of specific components, and transient dynamic modeling. The findings highlight the continued use of thermodynamic models due to their simplicity and computational efficiency, alongside a growing reliance on high-fidelity CFD and transient models for more realistic operational analyses. A clear trend is also observed toward hybrid approaches, which integrate deterministic modeling with machine learning techniques and response surface methodologies to enhance predictive accuracy and computational performance. Nevertheless, significant challenges persist, including the absence of multiscale integrative models, the scarcity of high-resolution experimental data under transient conditions, and the limited consideration of operational uncertainties and material degradation. It is concluded that the development of integrated numerical frameworks will be critical to advancing the technological maturity of CES systems and ensuring their robust deployment in real-world energy transition scenarios. Additionally, the review also discusses local thermal non-equilibrium (LTNE) conditions, the influence of geometric and operational parameters, and the role of multidimensional and multi-region modeling in predicting thermal and exergy performance of packed-bed TES within LAES cycles. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 3049 KB  
Article
Octachlorinated Metal Phthalocyanines (M = Co, Zn, VO): Crystal Structures, Thin-Film Properties, and Chemiresistive Sensing of Ammonia and Hydrogen Sulfide
by Tatiana Kamdina, Darya Klyamer, Aleksandr Sukhikh, Pavel Popovetskiy, Pavel Krasnov and Tamara Basova
Sensors 2026, 26(1), 8; https://doi.org/10.3390/s26010008 - 19 Dec 2025
Viewed by 375
Abstract
Octachlorinated metal phthalocyanines (MPcCl8, M = Co, Zn, VO) represent an underexplored class of functional materials with promising potential for chemiresistive sensing applications. This work is the first to determine the structure of single crystals of CoPcCl8, revealing a [...] Read more.
Octachlorinated metal phthalocyanines (MPcCl8, M = Co, Zn, VO) represent an underexplored class of functional materials with promising potential for chemiresistive sensing applications. This work is the first to determine the structure of single crystals of CoPcCl8, revealing a triclinic (P-1) packing motif with cofacial molecular stacks and an interplanar distance of 3.381 Å. Powder XRD, vibrational spectroscopy, and elemental analysis confirm phase purity and isostructurality between CoPcCl8 and ZnPcCl8, while VOPcCl8 adopts a tetragonal arrangement similar to its tetrachlorinated analogue. Thin films were fabricated via physical vapor deposition (PVD) and spin-coating (SC), with SC yielding highly crystalline films and PVD resulting in poorly crystalline or amorphous layers. Electrical measurements demonstrate that SC films exhibit n-type semiconducting behavior with conductivities 2–3 orders of magnitude higher than PVD films. Density functional theory (DFT) calculations corroborate the experimental findings, predicting band gaps of 1.19 eV (Co), 1.11 eV (Zn), and 0.78 eV (VO), with Fermi levels positioned near the conduction band, which is consistent with n-type character. Chemiresistive sensing tests reveal that SC-deposited MPcCl8 films respond reversibly and selectively to ammonia (NH3) and hydrogen sulfide (H2S) at room temperature. ZnPcCl8 shows the highest NH3 response (45.3% to 10 ppm), while CoPcCl8 exhibits superior sensitivity to H2S (LOD = 0.3 ppm). These results suggest that the films of octachlorinated phthalocyanines produced by the SC method are highly sensitive materials for gas sensors designed to detect toxic and corrosive gases. Full article
Show Figures

Figure 1

16 pages, 2004 KB  
Article
1-Butyl-3-methylimidazolium Mandelate: A Multifunctional Ionic Liquid with Enhanced Hydrogen Bonding, Thermal Stability, Antimicrobial Activity, and Extraction Capability
by Nikolett Cakó Bagány, Eleonora Čapelja, Sanja Belić, Dajana Lazarević, Jelena Jovanović, Tatjana Trtić-Petrović and Slobodan Gadžurić
Molecules 2025, 30(24), 4824; https://doi.org/10.3390/molecules30244824 - 18 Dec 2025
Viewed by 319
Abstract
Designing ionic liquids (ILs) where a single functional group orchestrates a suite of enhanced properties remains a key challenge in materials science. Here, we introduce 1-butyl-3-methylimidazolium mandelate, [Bmim][Man], a novel IL where the hydroxyl group on the mandelate anion simultaneously enhances hydrogen bonding, [...] Read more.
Designing ionic liquids (ILs) where a single functional group orchestrates a suite of enhanced properties remains a key challenge in materials science. Here, we introduce 1-butyl-3-methylimidazolium mandelate, [Bmim][Man], a novel IL where the hydroxyl group on the mandelate anion simultaneously enhances hydrogen bonding, thermal stability, antimicrobial activity, and extraction selectivity. The structure-property relationships of [Bmim][Man] were investigated through measurements of density, viscosity, and conductivity and were compared with analogous ILs. The presence of the hydroxyl group on the mandelate anion resulted in the highest density and viscosity among the series, attributed to strong hydrogen bonding and efficient ion packing. Notably, [Bmim][Man] exhibited a high molar conductivity that decouples from its high viscosity, suggesting an unusual degree of ion dissociation facilitated by the hydroxyl group. Thermogravimetric analysis revealed superior thermal stability. Furthermore, the investigated ionic liquid demonstrated a low critical aggregation concentration (CAC = 0.01982 mol·dm−3) in water, indicating a strong propensity for self-aggregation. [Bmim][Man] showed synergistic, enhanced antibacterial activity against E. coli and P. aeruginosa. Finally, the functional utility of this designed liquid was demonstrated in separation science, where [Bmim][Man]-based aqueous biphasic systems showed selective extraction capabilities for transition metals, a process driven by the same hydrogen-bonding and coordination interactions that define its bulk properties. These findings establish [Bmim][Man] as a promising multifunctional material where the mandelate anion concurrently dictates liquid microstructure, thermal resilience, antimicrobial performance, and application in extraction. Full article
(This article belongs to the Section Molecular Liquids)
Show Figures

Graphical abstract

36 pages, 15395 KB  
Article
Numerical and Experimental Approaches for Mechanical Durability Assessment of an EV Battery Pack Case
by Hyun Soo Kim, Mingoo Cho, Changyeon Lee, Jaewoong Kim and Sungwook Kang
Materials 2025, 18(24), 5683; https://doi.org/10.3390/ma18245683 - 18 Dec 2025
Viewed by 411
Abstract
Electric vehicle (EV) battery pack cases (BPCs) must withstand mechanical loads such as impact, compression, and vibration to ensure structural integrity and passenger safety. This study evaluates the mechanical durability of a full-scale aluminum BPC using combined experimental testing and finite element analysis [...] Read more.
Electric vehicle (EV) battery pack cases (BPCs) must withstand mechanical loads such as impact, compression, and vibration to ensure structural integrity and passenger safety. This study evaluates the mechanical durability of a full-scale aluminum BPC using combined experimental testing and finite element analysis (FEA). A bottom impact test, 200 kN compression test, and power spectral density (PSD)-based random vibration test were conducted to simulate representative operating and handling conditions. The numerical model replicated boundary conditions and load profiles identical to the experiments, enabling a direct comparison of stress distribution and deformation characteristics. The results demonstrated that stress and displacement trends predicted by FEA closely matched experimental observations, with stress concentrations appearing at corner and frame junction regions and less than 1 mm deformation recorded under peak compression loading. Vibration responses were most pronounced in the vertical direction, without bolt loosening or structural damage. These results verify the reliability of the proposed BPC design and provide quantitative evidence supporting simulation-driven lightweight battery enclosure development. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Graphical abstract

23 pages, 3084 KB  
Article
Density and Viscosity of Orange Oil, Turpentine, and Their Hydrogenated Derivatives as Biofuel Components
by Brent Mellows and Yolanda Sanchez-Vicente
Thermo 2025, 5(4), 59; https://doi.org/10.3390/thermo5040059 - 16 Dec 2025
Viewed by 289
Abstract
Biofuels represent a viable alternative to fossil fuels due to their lower greenhouse gas emissions, potential for large-scale production, and renewable nature. Orange oil, turpentine, and their hydrogenated derivatives have emerged as promising candidates for biofuel components. Efficient design and operation of internal [...] Read more.
Biofuels represent a viable alternative to fossil fuels due to their lower greenhouse gas emissions, potential for large-scale production, and renewable nature. Orange oil, turpentine, and their hydrogenated derivatives have emerged as promising candidates for biofuel components. Efficient design and operation of internal combustion engines require knowledge of biofuel density and viscosity as functions of temperature; however, experimental data on these properties remain limited. In this work, the densities and viscosities of turpentine, orange oil, hydrogenated turpentine, and hydrogenated orange oil were measured at atmospheric pressure over the temperature range (293.15–373.15) K. The measurements were performed with uncertainties below 0.05 kg·m−3 for density and 0.3 mPa·s for viscosity. The experimental data were correlated as a function of temperature using a quadratic function for density and the Andrade equation for viscosity, with absolute average relative deviations of 0.01% for density and 0.5% for viscosity. For all substances, both viscosity and density decrease with increasing temperature, and they are lower than the values for biodiesel. Orange oil and turpentine exhibited higher densities but lower viscosities than their hydrogenated counterparts, which can be attributed to differences in molecular size and packing efficiency. Finally, the measured density and viscosity values are compared with the limit values specified in the European and American biodiesel standards. The analysis shows that blending these essential oils with conventional biodiesel could result in biofuel mixtures that meet both standards. Full article
Show Figures

Figure 1

18 pages, 15168 KB  
Article
A Packed-Type Reconfigurable Air Filtration System for Removal of Particulate Matter and HCHO
by Eun Jin Kim, Seung Hee Han, Dong Geon Lee and Won San Choi
Polymers 2025, 17(24), 3312; https://doi.org/10.3390/polym17243312 - 15 Dec 2025
Viewed by 271
Abstract
A flexible and packed-type air filter ball (AFB) system was developed for the efficient removal of particulate matter (PM) and formaldehyde (HCHO). The Mg/Si-embedded AFB (Mg/Si-AFB) was synthesized through sequential physical etching of a sponge, oxidation of glass fiber, and subsequent formation of [...] Read more.
A flexible and packed-type air filter ball (AFB) system was developed for the efficient removal of particulate matter (PM) and formaldehyde (HCHO). The Mg/Si-embedded AFB (Mg/Si-AFB) was synthesized through sequential physical etching of a sponge, oxidation of glass fiber, and subsequent formation of Mg-Si components. The resulting Mg/Si-AFB exhibited a highly porous and roughened architecture with enhanced surface reactivity. A disk-type filtration device loaded with Mg/Si-AFBs demonstrated a PM2.5 removal efficiency (RE) of 97.4% at a pressure drop of 57 Pa. The RE increased with packing density and PM concentration and notably remained constant even at high air velocities (7 m/s). In addition, the oxidized glass fiber (GF)-based AFB (O-GF-AFB) exhibited rapid HCHO adsorption capability, achieving 100% HCHO removal within 1 min. Hybrid air filters combining Mg/Si-AFBs and O-GF-AFBs in an equal ratio (8:8) exhibited synergistic performance, simultaneously achieving 97.1% PM2.5 RE and complete HCHO removal within 1–6 min, while maintaining low pressure drops (55–57 Pa) over 50 reuse cycles. Full article
(This article belongs to the Special Issue Polymer Membranes for Gas and Liquid Filtration Techniques)
Show Figures

Graphical abstract

Back to TopTop