Octachlorinated Metal Phthalocyanines (M = Co, Zn, VO): Crystal Structures, Thin-Film Properties, and Chemiresistive Sensing of Ammonia and Hydrogen Sulfide
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Octachloro-Substituted Metal Phthalocyanines
2.2. Thin Film Fabrication
2.3. Structural and Morphological Characterization
2.4. Quantum-Chemical Calculations
3. Results and Discussion
3.1. Characterization of CoPcCl8, ZnPcCl8, and VOPcCl8
3.1.1. Crystal Structure of CoPcCl8
3.1.2. Powder XRD Analysis of CoPcCl8, ZnPcCl8, and VOPcCl8
3.1.3. IR Spectra of MPcCl8
3.2. Structural and Functional Characterization of CoPcCl8, ZnPcCl8, and VOPcCl8 Thin Films
3.2.1. Structural Properties
3.2.2. Electrical and Sensor Properties
3.2.3. DFT Calculation of the Band Structure of CoPcCl8, ZnPcCl8, and VOPcCl8 Crystals
3.2.4. Sensor Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez Vergara, M.E.; Sánchez Moore, H.I.; Cantera-Cantera, L.A. Investigation of Halogenated Metallic Phthalocyanine (InPcCl and F16CuPc)-Based Electrodes and Palm Substrate for Organic Solid-State Supercapacitor Fabrication. Micromachines 2025, 16, 455. [Google Scholar] [CrossRef] [PubMed]
- Bonegardt, D.; Klyamer, D.; Sukhikh, A.; Krasnov, P.; Popovetskiy, P.; Basova, T. Fluorination vs. Chlorination: Effect on the Sensor Response of Tetrasubstituted Zinc Phthalocyanine Films to Ammonia. Chemosensors 2021, 9, 137. [Google Scholar] [CrossRef]
- Albayrak, S.; Farajzadeh, N.; Yasemin Yenilmez, H.; Özdemir, S.; Gonca, S.; Altuntaş Bayır, Z. Fluorinated Phthalocyanine/Silver Nanoconjugates for Multifunctional Biological Applications. Chem. Biodivers. 2023, 20, e202300389. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Cai, P.; Xu, K.; Li, H.; Chen, H.; Zhou, H.-C.; Huang, N. Stable Bimetallic Polyphthalocyanine Covalent Organic Frameworks as Superior Electrocatalysts. J. Am. Chem. Soc. 2021, 143, 18052–18060. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, L.; Zhang, S.; Lou, Y.; Zhao, S.; Tan, Q.; He, L.; Du, M. A copper(II) phthalocyanine-based metallo-covalent organic framework decorated with silver nanoparticle for sensitively detecting nitric oxide released from cancer cells. Sens. Actuators B Chem. 2021, 338, 129826. [Google Scholar] [CrossRef]
- Chen, M.; Li, H.; Liu, C.; Liu, J.; Feng, Y.; Wee, A.G.H.; Zhang, B. Porphyrin- and porphyrinoid-based covalent organic frameworks (COFs): From design, synthesis to applications. Coord. Chem. Rev. 2021, 435, 213778. [Google Scholar] [CrossRef]
- Pan, H.; Ren, Y.; Wang, Q.; Hu, J.; Zhang, Y.; Wang, K. New vitality of covalent organic frameworks endued by phthalocyanine: Yesterday, today, and tomorrow. Coord. Chem. Rev. 2025, 527, 216404. [Google Scholar] [CrossRef]
- Kuzmina, E.A.; Dubinina, T.V.; Tomilova, L.G. Recent advances in chemistry of phthalocyanines bearing electron-withdrawing halogen, nitro and: N-substituted imide functional groups and prospects for their practical application. New J. Chem. 2019, 43, 9314–9327. [Google Scholar] [CrossRef]
- Klyamer, D.; Bonegardt, D.; Basova, T. Fluoro-Substituted Metal Phthalocyanines for Active Layers of Chemical Sensors. Chemosensors 2021, 9, 133. [Google Scholar] [CrossRef]
- Sukhikh, A.; Klyamer, D.; Bonegardt, D.; Popovetsky, P.; Krasnov, P.; Basova, T. Tetrafluorosubstituted titanyl phthalocyanines: Structure of single crystals and phase transition in thin films. Dye. Pigment. 2024, 231, 112391. [Google Scholar] [CrossRef]
- Kuzumoto, Y.; Matsuyama, H.; Kitamura, M. Structural and electrical properties of fluorinated copper phthalocyanine toward organic photovoltaics: Post-annealing effect under pressure. Jpn. J. Appl. Phys. 2014, 53, 04ER16. [Google Scholar] [CrossRef]
- Klyamer, D.D.; Sukhikh, A.S.; Trubin, S.V.; Gromilov, S.A.; Morozova, N.B.; Basova, T.V.; Hassan, A.K. Tetrafluorosubstituted Metal Phthalocyanines: Interplay between Saturated Vapor Pressure and Crystal Structure. Cryst. Growth Des. 2020, 20, 1016–1024. [Google Scholar] [CrossRef]
- Li, J.; Li, X.G.; Xiao, Y.; Wang, S.R. Synthesis, photophysical and thermal properties of 2,9,16,23-tetrafluoro substituted metallophthalocyanines. Mater. Res. Innov. 2014, 18, 340–345. [Google Scholar] [CrossRef]
- Cuate Gomez, D.H.; Garzón Román, A.; Sosa Sanchez, J.L.; Zuñiga Islas, C.; Lugo, J.M. Dichloro-tin (IV) hexadeca-fluoro-phthalocyanine (F16PcSnCl2) thin film on porous silicon layers by ultrasonic spray pyrolysis, for possible application in optoelectronics devices. Phys. Scr. 2024, 99, 85938. [Google Scholar] [CrossRef]
- Jiang, H.; Ye, J.; Hu, P.; Wei, F.; Du, K.; Wang, N.; Ba, T.; Feng, S.; Kloc, C. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors and Structure-Property Relationships. Sci. Rep. 2014, 4, 7573. [Google Scholar] [CrossRef]
- Şahin, Z.; Meunier-Prest, R.; Dumoulin, F.; Kumar, A.; Isci, Ü.; Bouvet, M. Tuning of organic heterojunction conductivity by the substituents’ electronic effects in phthalocyanines for ambipolar gas sensors. Sens. Actuators B Chem. 2021, 332, 129505. [Google Scholar] [CrossRef]
- Russell, J.; Singer, B.W.; Perry, J.J. The identification of synthetic organic pigments in modern paints and modern paintings using pyrolysis-gas chromatography—Mass spectrometry. Anal. Bioanal. Chem. 2011, 400, 1473–1491. [Google Scholar] [CrossRef]
- Hu, D.; Hornbuckle, K.C. Inadvertent Polychlorinated Biphenyls in Commercial Paint Pigments. Environ. Sci. Technol. 2010, 44, 2822–2827. [Google Scholar] [CrossRef]
- Lee, S.U.; Kim, C.; Mizuseki, H.; Kawazoe, Y. The Origin of the Halogen Effect on the Phthalocyanine Green Pigments. Chem. Asian J. 2010, 5, 1341–1346. [Google Scholar] [CrossRef]
- Gorbunova, E.A.; Stepanova, D.A.; Kosov, A.D.; Bolshakova, A.V.; Filatova, N.V.; Sizov, L.R.; Rybkin, A.Y.; Spiridonov, V.V.; Sybachin, A.V.; Dubinina, T.V.; et al. Dark and photoinduced cytotoxicity of solubilized hydrophobic octa-and hexadecachloro-substituted lutetium (III) phthalocyanines. J. Photochem. Photobiol. A Chem. 2022, 426, 113747. [Google Scholar] [CrossRef]
- Stavtsev, D.D.; Dubinina, T.V.; Gorbunova, E.A.; Gerasimenko, A.Y. A Method for Fluorescent Diagnosis of Malignant Cutaneous Neoplasms Using Ytterbium Phthalocyanines. Biomed. Eng. 2022, 56, 237–241. [Google Scholar] [CrossRef]
- Slodeka, A.; Schnurpfeilb, G.; Wöhrle, D. Optical limiting of germanium(IV) and tin(IV) phthalocyanines in solution and polymer matrices and comparison to an indium(III) phthalocyanine. J. Porphyr. Phthalocyanines 2017, 21, 811–823. [Google Scholar] [CrossRef]
- Kuzmina, E.A.; Dubinina, T.V.; Borisova, N.E.; Tarasevich, B.N.; Krasovskii, V.I.; Feofanov, I.N.; Dzuban, A.V.; Tomilova, L.G. Dyes and Pigments Planar and sandwich-type Pr (III) and Nd (III) chlorinated phthalocyaninates: Synthesis, thermal stability and optical properties. Dye. Pigment. 2020, 174, 108075. [Google Scholar] [CrossRef]
- Milde, P.; Zerweck, U.; Eng, L.M.; Abel, M.; Giovanelli, L.; Nony, L.; Mossoyan, M.; Porte, L.; Loppacher, C. Interface dipole formation of different ZnPcCl 8 phases on Ag (111) observed by Kelvin probe force microscopy. Nanotechnology 2008, 19, 305501. [Google Scholar] [CrossRef]
- Bobaru, S.C.; Salomon, E.; Layet, J.-M.; Angot, T. Structural Properties of Iron Phtalocyanines on Ag(111): From the Submonolayer to Monolayer Range. J. Phys. Chem. C 2011, 115, 5875–5879. [Google Scholar] [CrossRef]
- Mittelberger, A.; Kramberger, C.; Meyer, J.C. Insights into radiation damage from atomic resolution scanning transmission electron microscopy imaging of mono-layer CuPcCl16 films on graphene. Sci. Rep. 2018, 8, 4813. [Google Scholar] [CrossRef]
- Klyamer, D.; Sukhikh, A.; Bonegardt, D.; Krasnov, P.; Popovetskiy, P.; Basova, T. Thin Films of Chlorinated Vanadyl Phthalocyanines as Active Layers of Chemiresistive Sensors for the Detection of Ammonia. Micromachines 2023, 14, 1773. [Google Scholar] [CrossRef]
- Basova, T.V.; Kiselev, V.G.; Klyamer, D.D.; Hassan, A. Thin films of chlorosubstituted vanadyl phthalocyanine: Charge transport properties and optical spectroscopy study of structure. J. Mater. Sci. Mater. Electron. 2018, 29, 16791–16798. [Google Scholar] [CrossRef]
- Reddy, K.R.V.; Keshavayya, J.; Seetharamappa, J. Synthesis, spectral, magnetic and thermal studies on symmetrically substituted metal (II). Dye. Pigment. 2003, 59, 237–244. [Google Scholar] [CrossRef]
- Faraonov, M.A.; Romanenko, N.R.; Kuzmin, A.V.; Konarev, D.V.; Khasanov, S.S.; Lyubovskaya, R.N. Crystalline salts of the ring-reduced tin (IV) dichloride hexadecachlorophthalocyanine and octachloro-and octacyanotetrapyrazinoporphyrazine macrocycles with strong electron-withdrawing ability. Dye. Pigment. 2020, 180, 108429. [Google Scholar] [CrossRef]
- Achar, B.N.; Mohan Kumar, T.M.; Lokesh, K.S. Synthesis, characterization, pyrolysis kinetics and conductivity studies of chloro substituted cobalt phthalocyanines. J. Coord. Chem. 2007, 60, 1833–1846. [Google Scholar] [CrossRef]
- Ouedraogo, S.; Ouedraogo, S.; Meunier-Prest, R.; Kumar, A.; Bayo-Bangoura, M.; Bouvet, M. Modulating the Electrical Properties of Organic Heterojunction Devices Based on Phthalocyanines for Ambipolar Sensors. ACS Sens. 2020, 5, 1849–1857. [Google Scholar] [CrossRef] [PubMed]
- Sukhikh, A.; Klyamer, D.; Bonegardt, D.; Basova, T. Octafluoro-Substituted Phthalocyanines of Zinc, Cobalt, and Vanadyl: Single Crystal Structure, Spectral Study and Oriented Thin Films. Int. J. Mol. Sci. 2023, 24, 2034. [Google Scholar] [CrossRef] [PubMed]
- APEX3; v.2019.1-0. Bruker AXS Inc.: Madison, WI, USA, 2019.
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985. [Google Scholar] [CrossRef]
- Kleinman, L.; Bylander, D.M. Efficacious Form for Model Pseudopotentials. Phys. Rev. Lett. 1982, 48, 1425–1428. [Google Scholar] [CrossRef]
- Morrison, I.; Bylander, D.M.; Kleinman, L. Nonlocal Hermitian norm-conserving Vanderbilt pseudopotential. Phys. Rev. B 1993, 47, 6728–6731. [Google Scholar] [CrossRef]
- Blöchl, P.E. Generalized separable potentials for electronic-structure calculations. Phys. Rev. B 1990, 41, 5414–5416. [Google Scholar] [CrossRef] [PubMed]
- Bachelet, G.B.; Hamann, D.R.; Schlüter, M. Pseudopotentials that work: From H to Pu. Phys. Rev. B 1982, 26, 4199–4228. [Google Scholar] [CrossRef]
- Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. Phys. Rev. B 1991, 43, 8861–8869. [Google Scholar] [CrossRef] [PubMed]
- Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006. [Google Scholar] [CrossRef]
- Ozaki, T. Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 2003, 67, 155108. [Google Scholar] [CrossRef]
- Ozaki, T.; Kino, H. Numerical atomic basis orbitals from H to Kr. Phys. Rev. B 2004, 69, 195113. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 1991, 44, 943–954. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Brena, B.; Banerjee, R.; Wende, H.; Eriksson, O.; Sanyal, B. Electronic structure of Co-phthalocyanine calculated by GGA+U and hybrid functional methods. Chem. Phys. 2010, 377, 96–99. [Google Scholar] [CrossRef]
- Brumboiu, I.E.; Haldar, S.; Lüder, J.; Eriksson, O.; Herper, H.C.; Brena, B.; Sanyal, B. Influence of Electron Correlation on the Electronic Structure and Magnetism of Transition-Metal Phthalocyanines. J. Chem. Theory Comput. 2016, 12, 1772–1785. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, Q. Magnetism of Phthalocyanine-Based Organometallic Single Porous Sheet. J. Am. Chem. Soc. 2011, 133, 15113–15119. [Google Scholar] [CrossRef]
- Mabrouk, M.; Hayn, R.; Denawi, H.; Ben Chaabane, R. Possibility of a ferromagnetic and conducting metal-organic network. J. Magn. Magn. Mater. 2018, 453, 48–52. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.B. Boltzmann Theory and Resistivity of Metals. In Quantum Theory of Real Materials; Chelikowsky, J.R., Louie, S.G., Eds.; Kluwer Academic Publisher: Boston, MA, USA, 1996; pp. 219–250. [Google Scholar]
- Madsen, G.K.H.; Singh, D.J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67–71. [Google Scholar] [CrossRef]
- Bonegardt, D.; Klyamer, D.; Krasnov, P.; Sukhikh, A.; Basova, T. Effect of the position of fluorine substituents in tetrasubstituted metal phthalocyanines on their vibrational spectra. J. Fluor. Chem. 2021, 246, 109780. [Google Scholar] [CrossRef]
- Cavallari, M.R.; Pastrana, L.M.; Sosa, C.D.F.; Marquina, A.M.R.; Izquierdo, J.E.E.; Fonseca, F.J.; de Amorim, C.A.; Paterno, L.G.; Kymissis, I. Organic thin-film transistors as gas sensors: A review. Materials 2021, 14, 3. [Google Scholar] [CrossRef]
- Klyamer, D.; Bonegardt, D.; Sukhikh, A.; Krasnov, P.; Basov, A. Films of tetrachlorosubstituted cobalt phthalocyanines: The effect of the position of substituents and the deposition method on their structure and sensor properties. J. Mater. Sci. Mater. Electron. 2025. under review. [Google Scholar]
- Shao, X.; Wang, S.; Li, X.; Su, Z.; Chen, Y.; Xiao, Y. Single component p-, ambipolar and n-type OTFTs based on fluorinated copper phthalocyanines. Dye. Pigment. 2016, 132, 378–386. [Google Scholar] [CrossRef]
- Vebber, M.C.; King, B.; French, C.; Tousignant, M.; Ronnasi, B.; Dindault, C.; Wantz, G.; Hirsch, L.; Brusso, J.; Lessard, B.H. From P-type to N-type: Peripheral fluorination of axially substituted silicon phthalocyanines enables fine tuning of charge transport. Can. J. Chem. Eng. 2023, 101, 3019–3031. [Google Scholar] [CrossRef]
- Brinkmann, H.; Kelting, C.; Makarov, S.; Tsaryova, O.; Schnurpfeil, G.; Wöhrle, D.; Schlettwein, D. Fluorinated phthalocyanines as molecular semiconductor thin films. Phys. Status Solidi Appl. Mater. Sci. 2008, 205, 409–420. [Google Scholar] [CrossRef]
- Pakhomov, L.G.; Pakhomov, G.L. NO2 interaction with thin film of phthalocyanine derivatives {1}. Synth. Met. 1995, 71, 2299–2300. [Google Scholar] [CrossRef]
- Ouedraogo, S.; Coulibaly, T.; Meunier-Prest, R.; Bayo-Bangoura, M.; Bouvet, M. P-Type and n-type conductometric behaviors of octachloro-metallophthalocyanine-based heterojunctions, the key role of the metal. J. Porphyr. Phthalocyanines 2020, 24, 750–757. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Klyamer, D.; Bonegardt, D.; Krasnov, P.; Sukhikh, A.; Popovetskiy, P.; Basova, T. Tetrafluorosubstituted Metal Phthalocyanines: Study of the Effect of the Position of Fluorine Substituents on the Chemiresistive Sensor Response to Ammonia. Chemosensors 2022, 10, 515. [Google Scholar] [CrossRef]















| Compound | CoPcCl8 |
| Empirical formula | C32H8N8Cl8Co |
| Formula weight | 846.99 |
| Temperature/K | 150 |
| Crystal system | triclinic |
| Space group | P-1 |
| a/Å | 3.7062 (10) |
| b/Å | 13.429 (4) |
| c/Å | 14.329 (4) |
| α/° | 83.320 (11) |
| β/° | 89.813 (10) |
| γ/° | 84.227 (11) |
| Volume/Å3 | 704.7 (4) |
| Z | 1 |
| ρcalcg/cm3 | 1.996 |
| μ/mm−1 | 12.145 |
| F (000) | 419.0 |
| Crystal size/mm3 | 0.07 × 0.005 × 0.005 |
| Radiation | CuKα (λ = 1.54178) |
| 2Θ range for data collection/° | 6.21 to 79.956 |
| Index ranges | −2 ≤ h ≤ 3, −11 ≤ k ≤ 10, −11 ≤ l ≤ 11 |
| Reflections collected | 2386 |
| Independent reflections | 840 |
| Rint | 0.1303 |
| Data/restraints/parameters | 840/120/199 |
| Goodness-of-fit on F2 | 0.977 |
| Final R indexes [I ≥ 2σ (I)] | R1 = 0.0573, wR2 = 0.1092 |
| Final R indexes [all data] | R1 = 0.1429, wR2 = 0.1415 |
| Largest diff. peak/hole/e Å−3 | 0.36/−0.49 |
| CCDC No | 2503921 |
| Compound | ZnPcCl8 | VOPcCl8 |
| Formula | C32H8Cl8N8Zn | C32H8Cl8N8VO |
| Formula weight | 853.49 | 855.04 |
| Crystal system | triclinic | tetragonal |
| Space group | P-1 | I4/m |
| a/Å | 3.82 (4) | 19.866 (6) |
| b/Å | 13.54 (12) | 19.866 (6) |
| c/Å | 14.24 (10) | 3.793 (1) |
| α/° | 83.44 (1) | 90 |
| β/° | 90.14 (2) | 90 |
| γ/° | 85.86 (2) | 90 |
| Oбъeм/Å3 | 730.8 | 1496.9 |
| Z | 1 | 2 |
| ρcalcg/cm3 | 1.942 | 1.897 |
| Experimental Wavenumbers, cm−1 | Assignment | ||
|---|---|---|---|
| CoPcCl8 | ZnPcCl8 | VOPcCl8 | |
| 431 | - | 428 | {Cγ, H} OOP * vibrations |
| 440 | 434 | 436 | Nα-M-Nα, Cβ-Cγ-Cδ, Cγ-Cδ-Cl, {Cγ, H} OOP vibrations |
| 505 | 496 | 505 | Nα-M, Cγ-Cl, Cβ-Cγ-Cδ |
| 552 | 544 | 546 | Nα-M-Nα, Cα-Nα-Cα, Cδ-Cδ-Cl, Cα-Nβ-Cα |
| 662 | 662 | 662 | Cγ-Cl, Cβ-Cβ-Cγ, Cβ-Cγ-Cδ |
| 708 | 702 | 706 | Nα-M, Nα-Cα-Cβ, Cα-Cβ-Cβ, Cδ-Cl |
| 750 | 743 | 748 | {Cα-Nα-Cα-Nβ} zig-zag OOP vibration, H OOP motions |
| 763 | - | 766 | {Cα-Nα-Cα-Nβ} zig-zag OOP vibration, H OOP motions |
| 785 | 781 | 781 | M-Nα, M-Nα-Cα, Cα-Nβ-Cα, Cα-Cβ-Cγ, Cβ-Cγ-H, Cδ-Cl |
| 851 | 839 | 849 | M-Nα, Cα-Nβ-Cα, Cγ-Cδ-Cδ, Cβ-Cγ-H, Cδ-Cl |
| 889 | 891 | 895 | {Cγ, H} OOP vibrations |
| 966 | 945 | 955 | Cβ-Cγ-H, Cδ-Cδ-Cl, Cγ-Cδ-Cδ, Cδ-Cl |
| - | - | 1012 | V=O |
| 1074 | 1069 | 1072 | Cβ-Cγ-H, Cδ-Cl, Cα-Cβ-Cγ |
| 1089 | 1088 | 1088 | Cα-Nα-Cα, Cβ-Cγ-H, Cδ-Cl, Cα-Nα |
| 1140 | 1132 | 1132 | Cα-Nα-Cα, Cβ-Cγ-H, Cδ-Cl, Cα-Nα, benzene breathing |
| 1202 | 1190 | 1190 | Cα-Cβ-Cγ, Cβ-Cγ-H, Cα-Nα-Cα, Cα-Nα |
| 1292 | 1288 | 1290 | Cα-Nα-Cα, Cα-Cβ-Cβ, Cδ-Cδ, Cα-Cβ, Cδ-Cγ-H |
| 1338 | 1329 | 1329 | Cβ-Cβ, Cδ-Cδ, Cγ-Cδ, Cα-Nα-Cα |
| 1389 | 1381 | 1381 | Cγ-Cδ, Cβ-Cγ-H, Cγ-Cδ-Cδ, Nα-Cα-Cβ |
| 1418 | 1411 | 1416 | Cγ-Cδ, Cβ-Cγ-H, Cδ-Cδ-Cl, Cα-Cβ |
| 1458 | 1456 | 1454 | Nα-Cα-Nβ, Cα-Nβ, Cα-Cβ, Cβ-Cβ, Cβ-Cγ-H |
| 1524 | 1485 | 1489 | Cα-Nβ, Cα-Nβ, Cα-Cβ, Cβ-Cγ-H |
| 1582 | 1568 | 1570 | Cβ-Cβ, Cδ-Cδ |
| 1605 | 1599 | 1607 | Cα-Cβ, Cβ-Cγ, Cγ-Cδ |
| MPcCl8 | LOD, ppm | Response Time, s | Recovery Time, s | |||
|---|---|---|---|---|---|---|
| NH3 | H2S | NH3 | H2S | NH3 | H2S | |
| CoPcCl8 | 1 | 0.3 | 30 | 35 | 180 | 140 |
| ZnPcCl8 | 0.8 | 1 | 45 | 15 | 150 | 80 |
| VOPcCl8 | 3.5 | 5 | 35 | 20 | 65 | 100 |
| Phthalocyanine Molecule | Deposition Technique | Response, % 10 ppm NH3 | Reference |
|---|---|---|---|
| ZnPcF4-p | PVD | 16 | [2] |
| ZnPcCl4-p | PVD | 27 | [2] |
| CoPcF4-p | PVD | 79 | [67] |
| VOPcCl4-p | PVD | 26.4 | [27] |
| CoPcCl4-p | SC | 9.3 | [60] |
| CoPcCl8 | SC | 15.6 | This work |
| ZnPcCl8 | SC | 45.3 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kamdina, T.; Klyamer, D.; Sukhikh, A.; Popovetskiy, P.; Krasnov, P.; Basova, T. Octachlorinated Metal Phthalocyanines (M = Co, Zn, VO): Crystal Structures, Thin-Film Properties, and Chemiresistive Sensing of Ammonia and Hydrogen Sulfide. Sensors 2026, 26, 8. https://doi.org/10.3390/s26010008
Kamdina T, Klyamer D, Sukhikh A, Popovetskiy P, Krasnov P, Basova T. Octachlorinated Metal Phthalocyanines (M = Co, Zn, VO): Crystal Structures, Thin-Film Properties, and Chemiresistive Sensing of Ammonia and Hydrogen Sulfide. Sensors. 2026; 26(1):8. https://doi.org/10.3390/s26010008
Chicago/Turabian StyleKamdina, Tatiana, Darya Klyamer, Aleksandr Sukhikh, Pavel Popovetskiy, Pavel Krasnov, and Tamara Basova. 2026. "Octachlorinated Metal Phthalocyanines (M = Co, Zn, VO): Crystal Structures, Thin-Film Properties, and Chemiresistive Sensing of Ammonia and Hydrogen Sulfide" Sensors 26, no. 1: 8. https://doi.org/10.3390/s26010008
APA StyleKamdina, T., Klyamer, D., Sukhikh, A., Popovetskiy, P., Krasnov, P., & Basova, T. (2026). Octachlorinated Metal Phthalocyanines (M = Co, Zn, VO): Crystal Structures, Thin-Film Properties, and Chemiresistive Sensing of Ammonia and Hydrogen Sulfide. Sensors, 26(1), 8. https://doi.org/10.3390/s26010008

