The Influence of Sintering Temperature on the Transport Properties of GdBa2Cu3O7 Superconductor Prepared from Nano-Powders via the Co-Precipitation Method
Abstract
1. Introduction
2. Results and Discussion
2.1. TGA Curve of the Produced Blue Nano-Powder
2.2. Microstructure of the Produced Powder and Sintered Pellets
2.3. XRD Results
2.4. Electrical Measurements
2.5. Relative Density and Porosity
3. Materials and Methods
3.1. Materials
3.2. Superconductor Powder Synthetization
3.3. Compaction and Sintering
3.4. Electrical Resistance Measurement
3.5. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takao, T.; Kameyama, S.; Doi, T.; Tanoue, N.; Kamijo, H. Increase of Levitation Properties on Magnetic Levitation System Using Magnetic Shielding Effect of GdBCO Bulk Superconductor. IEEE Trans. Appl. Supercond. 2011, 21, 1543–1546. [Google Scholar] [CrossRef]
- Jha, A.K.; Matsumoto, K.; Horide, T.; Saini, S.; Ichinose, A.; Mele, P.; Yoshida, Y.; Awaji, S. Evaluation of temperature dependent vortex pinning properties in strongly pinned YBa2Cu3O7−δ thin films with Y2BaCuO5 nanoinclusions. Superconductivity 2024, 9, 100087. [Google Scholar] [CrossRef]
- Jha, A.K.; Matsumoto, K.; Horide, T.; Saini, S.; Mele, P.; Ichinose, A.; Yoshida, Y.; Awaji, S. Isotropic enhancement in the critical current density of YBCO thin films incorporating nanoscale Y2BaCuO5 inclusions. J. Appl. Phys. 2017, 122, 093905. [Google Scholar] [CrossRef]
- Buchgeister, M.; Herzog, P.; Hosseini, S.M.; Kopitzki, K.; Wagener, D. Oxygen Evolution from ABa2Cu3O7−δ High-Tc Superconductors with A = Yb, Er, Y, Gd, Eu, Sm, Nd, and La. Phys. C 1991, 178, 105–109. [Google Scholar] [CrossRef]
- Plackowski, T.; Sułkowski, C.; Włosewicz, D.; Wnuk, J. Effect of the RE3+ Ionic Size on the REBa2Cu3O7−δ Ceramics Oxygenated at 250 Bar. Phys. C 1998, 300, 184–190. [Google Scholar] [CrossRef]
- Agarwal, A.G.; Muralidhar, M. Enhancing the superconducting properties of bulk (Sm,Eu,Gd)Ba2Cu3O7−δ: Impact of BaO2 and Ag2O addition via infiltration growth process in air. J. Appl. Phys. 2025, 137, 013906. [Google Scholar] [CrossRef]
- Park, Y.; Lee, M.; Ann, H.; Choi, Y.H.; Lee, H.A. Superconducting Joint for GdBa2Cu3O7−δ Coated Conductors. NPG Asia Mater. 2014, 6, e98. [Google Scholar] [CrossRef]
- Masi, A.; Freda, R.; Formichetti, A.; Greco, A.; Alimenti, A.; Khan, M.R.; Celentano, G. High Current Measurement of Commercial REBCO Tapes in Liquid Helium: Experimental Challenges and Solutions. Appl. Sci. 2024, 14, 7697. [Google Scholar] [CrossRef]
- Chung, J.; Kim, C.J.; Choi, S.M.; Yoo, S.I.; Shin, K.M. TEM Analysis of the Interfacial Defects in the Superconducting GdBa2Cu3O7−δ Tapes Synthesized by IBAD-PLD. Phys. C 2007, 463–465, 722–726. [Google Scholar] [CrossRef]
- Keshvani, M.J.; Ravalia, A.; Venkateshwarlu, D.; Ganesan, V.; Kuberkar, D.G. Pinning Centers and Thermally Activated Flux Flow in GdBa2Cu3O7–δ Superconducting Film. J. Supercond. Nov. Magn. 2023, 36, 813–820. [Google Scholar] [CrossRef]
- Rosenzweig, S.; Hänisch, J.; Hühne, R.; Holzapfel, B.; Schultz, L. Tc Optimisation of GdBa2Cu3O7 Thin Films Grown by Pulsed Laser Deposition. J. Phys. Conf. Ser. 2010, 234, 012035. [Google Scholar] [CrossRef]
- Salama, A.H.; El-Hofy, M.; Rammah, Y.S.; Elkhatib, M. Pinning behaviour of nano nonmagnetic CuO, SnO2 and magnetic Mn3O4 substitutions in YBCO bulk superconductors. InterCeram Int. Ceram. Rev. 2016, 65, 17–24. [Google Scholar] [CrossRef]
- Hapipi, N.M.; Shaari, A.H.; Kechik, M.M.A.; Tan, K.B.; Abd-Shukor, R.; Mohd-Suib, N.R.; Chen, S.K. Effect of heat treatment condition on the phase formation of YBa2Cu3O7−δ superconductor. Solid State Phenom. 2017, 268, 305–310. [Google Scholar] [CrossRef]
- Hamadneh, I.; Ahmad, A.M.; Wahid, M.H.; Zainal, Z.; Abd-Shukor, R. Effect of Nano-Sized Oxalate Precursor on the Formation of GdBa2Cu3O7−δ Phase via Coprecipitation Method. Mod. Phys. Lett. B 2009, 23, 2063–2068. [Google Scholar] [CrossRef]
- Hamadneh, I.; Halim, S.A.; Lee, C.K. Characterization of Bi1.6Pb0.4Sr2Ca2Cu3Oy Ceramic Superconductor Prepared via Coprecipitation Method at Different Sintering Times. J. Mater. Sci. 2006, 41, 5526–5530. [Google Scholar] [CrossRef]
- Bolotnikova, A.O.; Nedilko, S.A.; Dzyazko, A.G.; Fesych, I.V. Effect of Phase Composition of Superconductor Y3Ba5Cu8O18+δ on Its Conducting Characteristics. Theor. Exp. Chem. 2017, 52, 342–348. [Google Scholar] [CrossRef]
- Hashim, H.; Syuhaida, I.N.; Azman, K.; Azura, C.M.N.; Robaiah, M.; Syamsyir, A.S.; Rosli, M.M. Influence of rare-earth (doped) on low-density Bi1.6Pb0.4Sr2Ca1.9RE0.1Cu3Oδ (RE=Nd, Er) superconductors via co-precipitation method. Mater. Sci. Forum 2016, 846, 574–578. [Google Scholar] [CrossRef]
- Jia, J.; Liu, C.; Guo, M.; Han, Y.; Ren, Y.; Liu, D.; Zhao, G. Fabrication of GdBa2Cu3O7−δ Fine Patterns by “Chemically Modified Self-Photosensitive” Photolithography. Ceram. Int. 2021, 47, 27503–27510. [Google Scholar] [CrossRef]
- Mimouni, M.; Bayou, S.; Zeroual, S.; Hamadneh, I.; Mahboub, M.S.; Ramdani, S.; Rihia, G.; Ghougali, M.S. Synthesis and Characterization of Bulk Bi-2212 Superconducting Ceramic Using Photopolymerization Reaction-Based Method. J. Supercond. Nov. Magn. 2022, 35, 401–408. [Google Scholar] [CrossRef]
- Hamadneh, I.; Abdullah, I.; Halim, S.A.; Abd-Shukor, R. Dynamic Magnetic Properties of Superconductor/Polymer NdBCO/PVC Composites. J. Mater. Sci. Lett. 2002, 21, 1615–1617. [Google Scholar] [CrossRef]
- Camargo, C.C.C.; Saavedra Gaona, I.M.; Landínez-Téllez, D.A.; Parra Vargas, C.A.P. Evaluation of the structural, morphological, and magnetic properties of the RE-358, RE-123, RE-Ca0.1 with RE = Gd and Sm superconductors. Phys. C Supercond. Its Appl. 2025, 630, 1354647. [Google Scholar] [CrossRef]
- Yahya, A.K.; Hamid, N.A.; Abd-Shukor, R.; Imad, H. Anomalous Elastic Response of HoBa2−xHoxCu3O7−δ Ceramic Superconductors. Ceram. Int. 2004, 30, 1597–1601. [Google Scholar] [CrossRef]
- Srour, A.; Malaeb, W.; Marhaba, S.; Awad, R. Thermoelectric power of (Cu0.5Tl0.5)-1223 superconducting phase added with BaSnO3 nanoparticles. J. Phys. Conf. Ser. 2017, 869, 012017. [Google Scholar] [CrossRef]
- Hapipi, N.M.; Chen, S.K.; Shaari, A.H.; Kechik, M.M.A.; Tan, K.B.; Lim, K.P. Superconductivity of Y2O3 and BaZrO3 nanoparticles co-added YBa2Cu3O7−δ bulks prepared using co-precipitation method. J. Mater. Sci. Mater. Electron. 2018, 29, 18684–18692. [Google Scholar] [CrossRef]
- Wahid, M.H.; Zainal, Z.; Hamadneh, I.; Tan, K.B.; Halim, S.A.; Rosli, A.M.; Alaghbari, E.S.; Nazarudin, M.F.; Kadri, E.F. Phase Formation of REBa2Cu3O7−δ (RE: Y0.5Gd0.5, Y0.5Nd0.5, Nd0.5Gd0.5) Superconductors from Nanopowders Synthesized via Coprecipitation. Ceram. Int. 2012, 38, 1187–1193. [Google Scholar] [CrossRef]
- Sibille, R.; Didelot, E.; Mazet, T.; Malaman, B.; François, M. Magnetocaloric Effect in Gadolinium-Oxalate Framework Gd2(C2O4)3(H2O)6(0.6H2O). APL Mater. 2014, 2, 124402. [Google Scholar] [CrossRef]
- Liu, B.-L.; Liu, Q.-X.; Li, A.-H.; Tao, R.-J. A novel 2D oxalate- and dissymmetrical oxamidato-bridged heterometallic Cu(II)-Gd(III) complex: Synthesis, crystal structure and magnetic properties. Inorg. Chim. Acta 2012, 392, 1–4. [Google Scholar] [CrossRef]
- Maimaiti, N.; Abulaiti, A.; Yang, W. The Effect of Infiltration Temperature on the Microstructure and Magnetic Levitation Force of Single-Domain YBa2Cu3O7−x Bulk Superconductors Grown by a Modified Y+011 IG Method. Nanomaterials 2025, 15, 21. [Google Scholar] [CrossRef]
- Sebastian, M.A.P.; Reichart, J.N.; Ratcliff, M.M.; Burke, J.L.; Haugan, T.J.; Tsai, C.; Wang, H. Optimizing Flux Pinning of YBa2Cu3O7−δ (YBCO) Thin Films With Unique Large Nanoparticle Size and High Concentration of Y2BaCuO5 (Y211) Additions. IEEE Trans. Appl. Supercond. 2015, 25, 6601405. [Google Scholar] [CrossRef]
- Wu, T.; Yang, W.; Chen, L. The Effect of the Pre-Infiltration Temperature on the Liquid-Phase Infiltration Characteristics and the Magnetic Properties of Single-Domain GdBCO Bulk Superconductors. Crystals 2024, 14, 842. [Google Scholar] [CrossRef]
- Ruiz, H.S.; Hänisch, J.; Polichetti, M.; Galluzzi, A.; Gozzelino, L.; Torsello, D.; Milošević Govedarović, S.; Grbovic Novakovic, J.; Dobrovolskiy, O.V.; Lang, W.; et al. Critical current density in advanced superconductors. Prog. Mater. Sci. 2026, 155, 101492. [Google Scholar] [CrossRef]







| Weight Losses (Drops) | Reaction Mechanism | |
|---|---|---|
| Drop 1 (4.3%) | 30–125 °C | Moisture loss from the surface of metal oxalate complex |
| Drop 2 (15.0%) | 125–226 °C | BaC2O4· 0.5H2O ⟶ BaC2O4 + 0.5H2O CuC2O4· H2O ⟶ CuC2O4 + H2O |
| Drop 3 (20.0%) | 226–310 °C | Gd2(C2O4)3· 6H2O ⟶ Gd2(C2O4)3 + 6H2O BaC2O4 ⟶ BaCO3 + CO CuC2O4 ⟶ CuO + CO2 + CO |
| Drop 4 (12.1%) | 310–860 °C | Gd2(C2O4)3 ⟶ Gd2O3 + 3CO2 + 3CO CuO + BaCO3 ⟶ BaCuO + CO2 |
| Drop 5 (4.0%) | Above 860 °C | 0.5 Gd2O3 + 2 BaCuO2 + CuO + 0.5 O2 ⟶ GdBa2Cu3O7 |
| Sintering Temp. (°C) | a (Å) | b (Å) | c (Å) | Volume (Å)3 |
|---|---|---|---|---|
| 920 | 3.84921 ± 0.00033 | 3.90079 ± 0.00079 | 11.7179 ± 0.0028 | 175.923 ± 0.021 |
| 930 | 3.84691 ± 0.00025 | 3.90007 ± 0.00039 | 11.7158 ± 0.0011 | 175.799 ± 0.029 |
| 940 | 3.84163 ± 0.00016 | 3.90276 ± 0.00021 | 11.7157 ± 0.0004 | 175.807 ± 0.021 |
| 950 | 3.84311 ± 0.00032 | 3.90030 ± 0.00056 | 11.7234 ± 0.0018 | 175.853 ± 0.022 |
| Sintering (°C) | TC(R=0) | TC (onset) | Impurities % | Relative Density % | Jc (A/cm2) |
|---|---|---|---|---|---|
| 920 | 95 | 97 | 3.8 | 80.3 | 4.35 ± 0.11 |
| 930 | 94 | 97 | 0.9 | 83.2 | 6.4 ± 0.4 |
| 940 | 94 | 96 | 1.8 | 89.9 | 7.9 ± 0.7 |
| 950 | 95 | 97 | 2.2 | 95.3 | 12.9 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Al-Mobydeen, A.; Alawamleh, M.M.; Shamha, S.; AlShamaileh, E.; Moosa, I.S.; Rahhal, J.; Haddad, M.; Al-Tarawneh, W.; Al-Dalahmeh, Y.; Hamadneh, I. The Influence of Sintering Temperature on the Transport Properties of GdBa2Cu3O7 Superconductor Prepared from Nano-Powders via the Co-Precipitation Method. Inorganics 2026, 14, 25. https://doi.org/10.3390/inorganics14010025
Al-Mobydeen A, Alawamleh MM, Shamha S, AlShamaileh E, Moosa IS, Rahhal J, Haddad M, Al-Tarawneh W, Al-Dalahmeh Y, Hamadneh I. The Influence of Sintering Temperature on the Transport Properties of GdBa2Cu3O7 Superconductor Prepared from Nano-Powders via the Co-Precipitation Method. Inorganics. 2026; 14(1):25. https://doi.org/10.3390/inorganics14010025
Chicago/Turabian StyleAl-Mobydeen, Ahmed, Mohammed M. Alawamleh, Sondos Shamha, Ehab AlShamaileh, Iessa Sabbe Moosa, Jamal Rahhal, Mike Haddad, Wala`a Al-Tarawneh, Yousef Al-Dalahmeh, and Imad Hamadneh. 2026. "The Influence of Sintering Temperature on the Transport Properties of GdBa2Cu3O7 Superconductor Prepared from Nano-Powders via the Co-Precipitation Method" Inorganics 14, no. 1: 25. https://doi.org/10.3390/inorganics14010025
APA StyleAl-Mobydeen, A., Alawamleh, M. M., Shamha, S., AlShamaileh, E., Moosa, I. S., Rahhal, J., Haddad, M., Al-Tarawneh, W., Al-Dalahmeh, Y., & Hamadneh, I. (2026). The Influence of Sintering Temperature on the Transport Properties of GdBa2Cu3O7 Superconductor Prepared from Nano-Powders via the Co-Precipitation Method. Inorganics, 14(1), 25. https://doi.org/10.3390/inorganics14010025

