The Governing Role of Si/Al Ratio in the Structural Evolution and Mechanical Properties of N-A-S-H Gel
Abstract
1. Introduction
2. Materials and Methods
2.1. Molecular Dynamics Simulation
2.1.1. Simulation Strategy and Model Construction
2.1.2. Force Field Selection and Simulation Details
2.1.3. Structural Analysis and Characterization Methods
2.2. Experimental Scheme
2.2.1. Raw Materials and Preparation of AAMs
2.2.2. Sample Preparation and Testing Methods
3. Results and Discussion
3.1. Microstructural Evolution Law Revealed by Molecular Dynamics Simulation
3.1.1. Gelation Kinetics and the Dominant Role of Aluminum Coordination
3.1.2. Network Topology and Bonding Environment
3.1.3. Non-Monotonic Nanoporosity Variation and Optimal Si/Al Ratio
3.2. Experimental Validation: Correlation Between Macroscopic Properties and Microstructure
3.2.1. Mechanical Property Response to Si/Al Ratio
3.2.2. Evidence of Phase Evolution and Microscopic Morphology
3.3. Comprehensive Discussion: Regulation Mechanism of Si/Al Ratio and Structure-Property Relationship
- Al-rich region (Si/Al < 1.8): Sufficient Al species can rapidly form cross-linking sites, promoting the three-dimensionalization of the network. However, the silicon skeleton is relatively weak, and a large amount of Al may exist in high-coordination states (Al5, Al6), requiring more Na+ for charge compensation. Insufficient compensation or large steric hindrance tends to form local loose structural regions. The final structure has a moderate degree of cross-linking but inherently high porosity, corresponding to moderate macroscopic strength.
- Optimal region (Si/Al ≈ 1.8): The Si/Al ratio achieves an optimal match between thermodynamics and kinetics. Al provides moderate cross-linking sites, while Si forms a robust and moderately branched skeleton. Al5 exists as an effective charge buffer and reaction intermediate, achieving efficient synergy with Na+. Under this condition, the condensation reaction degree is high, forming an ideal gel network with high cross-linking, low porosity, and high continuity, corresponding to the peak macroscopic strength.
- Si-rich region (Si/Al > 1.8): Al cross-linking sites are relatively scarce, and Si tends to polymerize into long-chain structures, leading to a decrease in network cross-linking density. Limited Al mostly exists in high-coordination states to balance the system charge, exacerbating structural disorder. Long-chain silicates have poor close packing ability, and the isolation effect of Na+ is more significant. Together, these factors result in a significant rebound in nanoporosity and a decrease in the overall structural stiffness and strength of the gel.
4. Conclusions
- Revealed the dominant role of pentacoordinate aluminum: In the dynamic condensation environment, pentacoordinate aluminum (Al5) is the main existing form of aluminum in N-A-S-H gels (>50%). It may play a key role in charge balance and reaction promotion, which updates the understanding of the local structure of gels.
- Discovered the optimal ratio for structural densification: Molecular simulations clearly show that the nanoporosity of the gel reaches a minimum (35.2%) at Si/Al ≈ 1.8, indicating the highest atomic packing efficiency and optimal network compactness at this ratio.
- Established a cross-scale structure-property relationship: Experiments confirmed that the specimen with Si/Al = 1.8 exhibits the highest reaction degree, the most uniform and dense microscopic morphology, and the highest macroscopic compressive strength (15.3 MPa at 28 d), which perfectly verifies the simulation predictions and establishes a strong correlation between nanoporosity and macroscopic strength.
- Clarified the regulation mechanism of Si/Al ratio: This study proposes that the Si/Al ratio regulates the gel structure by regulating the balance between “Al cross-linking capacity” and “Si skeleton construction capacity”. Deviation from the optimal ratio will lead to insufficient cross-linking or excessive skeleton polymerization, thereby causing an increase in nanoporosity and performance degradation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qaidi, S.; Najm, H.M.; Abed, S.M.; Özkılıç, Y.O.; Al Dughaishi, H.; Alosta, M.; Sabri, M.M.S.; Alkhatib, F.; Milad, A. Concrete containing waste glass as an environmentally friendly aggregate: A review on fresh and mechanical characteristics. Materials 2022, 15, 6222. [Google Scholar] [CrossRef] [PubMed]
- Segura, I.P.; Ranjbar, N.; Damø, A.J.; Jensen, L.S.; Canut, M.; Jensen, P.A. A review: Alkali-activated cement and concrete production technologies available in the industry. Heliyon 2023, 9, e15718. [Google Scholar] [CrossRef] [PubMed]
- Qader, D.N.; Jamil, A.S.; Bahrami, A.; Ali, M.; Arunachalam, K.P. A systematic review of metakaolin-based alkali-activated and geopolymer concrete: A step toward green concrete. Rev. Adv. Mater. Sci. 2025, 64, e01958. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, X.; Ma, B.; Wang, T.; Su, L.; Zhou, B.; Lin, Y. Determination of gel products in alkali-activated fly ash-based composites incorporating inorganic calcium additives. Adv. Mater. Sci. Eng. 2022, 2022, 7476671. [Google Scholar] [CrossRef]
- Sun, B.; Ye, G.; De Schutter, G. A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials. Constr. Build. Mater. 2022, 326, 126843. [Google Scholar] [CrossRef]
- Chen, Y.; de Lima, L.M.; Li, Z.; Ma, B.; Lothenbach, B.; Yin, S.; Yu, Q.; Ye, G. Synthesis, solubility and thermodynamic properties of N-A-S-H gels with various target Si/Al ratios. Cem. Concr. Res. 2024, 180, 107484. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; van Deventer, J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005, 269, 47–58. [Google Scholar] [CrossRef]
- Wan, Q.; Rao, F.; Song, S.; García, R.E.; Estrella, R.M.; Patiño, C.L.; Zhang, Y. Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem. Concr. Compos. 2017, 79, 45–52. [Google Scholar] [CrossRef]
- Bumanis, G.; Vitola, L.; Bajare, D.; Dembovska, L.; Pundiene, I. Impact of reactive SiO2/Al2O3 ratio in precursor on durability of porous alkali activated materials. Ceram. Int. 2017, 43, 5471–5477. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Y.; Dong, S.; Li, H. Geopolymerization kinetics of steel slag activated gasification coal fly ash: A case study for amorphous-rich slags. J. Clean. Prod. 2022, 379, 134671. [Google Scholar] [CrossRef]
- Chen, Y.; Dolado, J.S.; Li, Z.; Yin, S.; Yu, Q.; Kostiuchenko, A.; Ye, G. A molecular dynamics study of N–A–S–H gel with various Si/Al ratios. J. Am. Ceram. Soc. 2022, 105, 6462–6474. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.S.; Dong, T.; Ouyang, G. Structural and mechanical properties of geopolymers made of aluminosilicate powder with different SiO2/Al2O3 ratio: Molecular dynamics simulation and microstructural experimental study. Constr. Build. Mater. 2020, 240, 117935. [Google Scholar] [CrossRef]
- Xu, W.; Tang, Z.; Xie, Y.; Long, G.; Kai, M.; Zhang, Z.; Bu, M.; Zaland, S. Understanding the impact of synthesis parameters on the pore structure properties of fly ash-based geopolymers. Constr. Build. Mater. 2024, 411, 134640. [Google Scholar] [CrossRef]
- Xu, L.Y.; Alrefaei, Y.; Wang, Y.S.; Dai, J.G. Recent advances in molecular dynamics simulation of the N-A-S-H geopolymer system: Modeling, structural analysis, and dynamics. Constr. Build. Mater. 2021, 276, 122196. [Google Scholar] [CrossRef]
- Li, L.; Wei, Y.; Feng, Q.; Liu, F.; Liu, B.; Pu, B. A review: Progress in molecular dynamics simulation of Portland cement (geopolymer)—Based composites and the interface between these matrices and reinforced material. Buildings 2023, 13, 1875. [Google Scholar] [CrossRef]
- Yang, H.L.; Ma, S.Q.; Zhao, S.J.; Wang, Q.; Liu, X.; He, P.; Jia, D.; Colombo, P.; Zhou, Y. Mechanistic understanding of geopolymerization at the initial stage: Ab initio molecular dynamics simulations. J. Am. Ceram. Soc. 2023, 106, 4425–4442. [Google Scholar] [CrossRef]
- Guo, F.; Chen, J.; Tang, Q.; Sun, M.; Feng, H.; Gao, H.; Li, M.; Lu, S. Molecular dynamics simulation of the initial stage induction of alkali-activated aluminosilicate minerals. RSC Adv. 2024, 14, 13972–13983. [Google Scholar] [CrossRef]
- Luo, X.; Tian, X.; Wu, J.; Yang, X.; Liu, Z.; Jiao, Z.; Peng, H. Molecular simulations of the initial stage’s induction and formation process of N-A-S-H Gel based on NaOH-activated Metakaolin. J. Non-Cryst. Solids 2024, 626, 122804. [Google Scholar] [CrossRef]
- Liu, Y.L.; Ren, S.Y.; Wang, D.H.; Yang, D.-W.; Kai, M.-F.; Guo, D. Molecular structure and thermal conductivity of hydrated sodium aluminosilicate (N-A-S-H) gel under different Si/Al ratios and temperatures: A molecular dynamics analysis. AIMS Mater. Sci. 2025, 12, 258–277. [Google Scholar] [CrossRef]
- Guan, X.; Jiang, L.; Fan, D.; Hernandez, A.G.; Li, B.; Do, H. Molecular simulations of the structure-property relationships of N-A-S-H gels. Constr. Build. Mater. 2022, 329, 127166. [Google Scholar] [CrossRef]
- Noorpour, M.; Tarighat, A. Effects of Si/Al ratio on structure, modulus of elasticity, and density in N-A-S-H geopolymer: A molecular dynamics simulation based on novel macromolecular model. J. Mol. Model. 2021, 27, 342. [Google Scholar] [CrossRef] [PubMed]
- Davidovits, J. Geopolymer Chemistry and Applications, 2nd ed.; Institut Géopolymère: Saint-Quentin, France, 2008. [Google Scholar]
- Shamo, E.; Charpentier, T.; Moskura, M.; Chartier, A.; Miserque, F.; Rousselet, A. Synthesis methodology of pure N–A–S–H gels with wide range of Si/Alratios at ambient temperature. J. Am. Ceram. Soc. 2024, 107, 7537–7549. [Google Scholar] [CrossRef]
- Li, J.; Gao, M.; Yan, W.; Yu, J. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chem. Sci. 2023, 14, 1935–1959. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, R. Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer. Ceram. Int. 2011, 37, 533–541. [Google Scholar] [CrossRef]
- van Duin, A.C.T.; Dasgupta, S.; Lorant, F.; Goddard, W.A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409. [Google Scholar] [CrossRef]
- van Duin, A.C.T.; Strachan, A.; Stewman, S.; Zhang, Q.; Xu, X.; Goddard, W.A. ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems. J. Phys. Chem. A 2003, 107, 3803–3811. [Google Scholar] [CrossRef]
- Yan, Y.G.; Wang, W.S.; Li, W.; Loh, K.P.; Zhang, J. A graphene-like membrane with an ultrahigh water flux for desalination. Nanoscale 2017, 9, 18951–18958. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Jiang, J.; Hou, D.; Zhang, J. The effect of water molecules on the structure, dynamics, and mechanical properties of sodium aluminosilicate hydrate (NASH) gel: A molecular dynamics study. Constr. Build. Mater. 2018, 193, 491–500. [Google Scholar] [CrossRef]
- Pitman, M.C.; van Duin, A.C.T. Dynamics of confined reactive water in smectite clay–zeolite composites. J. Am. Chem. Soc. 2012, 134, 3042–3053. [Google Scholar] [CrossRef]
- Shahsavari, R.; Buehler, M.J.; Pellenq, R.J.; Ulm, F. First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite. J. Am. Ceram. Soc. 2009, 92, 2323–2330. [Google Scholar] [CrossRef]
- ASTM C109; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International: West Conshohocken, PA, USA, 2025.
- JTG 3441-2024; Test Methods of Inorganic Binder Stabilized Materials for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2024.
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Jin, M.; Ravi, M.; Lei, C.; Heard, C.J.; Brivio, F.; Tošner, Z.; Grajciar, L.; van Bokhoven, J.A.; Nachtigall, P. Dynamical equilibrium between Brønsted and Lewis sites in zeolites: Framework-associated octahedral aluminum. Angew. Chem. Int. Ed. 2023, 62, e202306183. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.C.; Jiang, Y.J.; Baiker, A.; Hunger, M.; Huang, J. Promoting aromatic C–H activation through reactive Brønsted acid–base pairs on penta-coordinated Al-enriched amorphous silica–alumina. J. Phys. Chem. Lett. 2022, 13, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jiang, Y.; Baiker, A.; Huang, J. Pentacoordinated aluminum species: New frontier for tailoring acidity-enhanced silica–alumina catalysts. Acc. Chem. Res. 2020, 53, 2648–2658. [Google Scholar] [CrossRef]
- Wang, Z.C.; Jiang, Y.J.; Yi, X.F.; Zhou, C.; Rawal, A.; Hook, J.; Liu, Z.; Deng, F.; Zheng, A.; Hunger, M.; et al. High population and dispersion of pentacoordinated AlV species on the surface of flame-made amorphous silica-alumina. Sci. Bull. 2019, 64, 516–523. [Google Scholar] [CrossRef]
- Zhang, W.; van Duin, A.C.T. Improvement of the ReaxFF description for functionalized hydrocarbon/water weak interactions in the condensed phase. J. Phys. Chem. B 2018, 122, 4083–4092. [Google Scholar] [CrossRef]
- Brunet, F.; Cabane, B.; Dubois, M.; Perly, B. Sol-gel polymerization studied through silicon-29 NMR with polarization transfer. J. Phys. Chem. 1991, 95, 945–951. [Google Scholar] [CrossRef]
- Singh, P.S.; Bastow, T.; Trigg, M. Structural studies of geopolymers by 29Si and 27Al MAS-NMR. J. Mater. Sci. 2005, 40, 3951–3961. [Google Scholar] [CrossRef]
- White, C.E.; Provis, J.L.; Proffen, T.; van Deventer, J.S.J. The effects of temperature on the local structure of metakaolin-based geopolymer binder: A neutron pair distribution function investigation. J. Am. Ceram. Soc. 2010, 93, 3486–3492. [Google Scholar] [CrossRef]












| System ID | Target Si/Al Ratio | Number of PS | Number of PSS | Number of Na+ (NaOH) | Initial H2O Molecules | Final H2O Molecules | Total Density (g/cm3) |
|---|---|---|---|---|---|---|---|
| GP-1.0 | 1 | 100 | 0 | 100 | 473 | 694 | 1.443 |
| GP-1.5 | 1.5 | 50 | 50 | 100 | 560 | 807 | 1.708 |
| GP-1.8 | 1.8 | 20 | 80 | 100 | 612 | 848 | 1.867 |
| GP-2.0 | 2 | 0 | 100 | 100 | 647 | 898 | 1.973 |
| Step Number | Simulation Process | Ensemble Type | Temperature Condition | Time Parameter |
|---|---|---|---|---|
| ① | Energy Minimization | — | — | — |
| ② | Initial System Equilibration | NVT | 300 K | 100 ps |
| ③ | Density Equilibration | NPT | 300 K | 300 ps |
| ④ | Heating Process | NVT | 300 K rise to 2000 K (17 K/ps) | 100 ps |
| ⑤ | High-Temperature Relaxation | NVT | 2000 K | 1000 ps |
| ⑥ | Quenching Process | NVT | 2000 K drop to 300 K (5 K/ps) | 340 ps |
| ⑦ | Room-Temperature Relaxation | NVT | 300 K | 300 ps |
| Chemical Components (%) | SiO2 | Al2O3 | CaO | Na2O | MgO | Fe2O3 | Others |
|---|---|---|---|---|---|---|---|
| Fly Ash | 45.10 | 36.80 | 4.50 | 0 | 0 | 0.85 | 12.75 |
| Glass Powder | 71.58 | 0.81 | 4.41 | 13.8 | 3.94 | 0 | 5.46 |
| Sample ID | Target Si/Al | FA | GP | LSS | NaOH | Add. Water | Calculated Si/Al |
|---|---|---|---|---|---|---|---|
| E-1.0 | 1 | 500 | 0 | 0 | 51.6 | 150 | 1.02 |
| E-1.5 | 1.5 | 500 | 0 | 367 | 11.2 | 95 | 1.51 |
| E-1.8 | 1.8 | 500 | 52 | 469 | 0 | 70 | 1.79 |
| E-2.0 | 2 | 500 | 112 | 469 | 0 | 60 | 2.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hu, M.; Chen, J.; Xia, B.; Chen, J. The Governing Role of Si/Al Ratio in the Structural Evolution and Mechanical Properties of N-A-S-H Gel. Materials 2026, 19, 246. https://doi.org/10.3390/ma19020246
Hu M, Chen J, Xia B, Chen J. The Governing Role of Si/Al Ratio in the Structural Evolution and Mechanical Properties of N-A-S-H Gel. Materials. 2026; 19(2):246. https://doi.org/10.3390/ma19020246
Chicago/Turabian StyleHu, Min, Jiayun Chen, Bo Xia, and Jiejin Chen. 2026. "The Governing Role of Si/Al Ratio in the Structural Evolution and Mechanical Properties of N-A-S-H Gel" Materials 19, no. 2: 246. https://doi.org/10.3390/ma19020246
APA StyleHu, M., Chen, J., Xia, B., & Chen, J. (2026). The Governing Role of Si/Al Ratio in the Structural Evolution and Mechanical Properties of N-A-S-H Gel. Materials, 19(2), 246. https://doi.org/10.3390/ma19020246
